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Abstract

This work proposes a new learning framework that uses a
loss function in the frequency domain to train a convolutional
neural network (CNN) in the time domain. At the training time,
an extra operation is added after the speech enhancement net-
work to convert the estimated signal in the time domain to the
frequency domain. This operation is differentiable and is used
to train the system with a loss in the frequency domain. This
proposed approach replaces learning in the frequency domain,
i.e., short-time Fourier transform (STFT) magnitude estimation,
with learning in the original time domain. The proposed method
is a spectral mapping approach in which the CNN first generates
a time domain signal then computes its STFT that is used for
spectral mapping. This way the CNN can exploit the additional
domain knowledge about calculating the STFT magnitude from
the time domain signal. Experimental results demonstrate that
the proposed method substantially outperforms the other meth-
ods of speech enhancement. The proposed approach is easy
to implement and applicable to related speech processing tasks
that require spectral mapping or time-frequency (T-F) masking.
Index Terms: speech enhancement, fully convolutional net-
works, deep learning, L loss, time domain

1. Introduction

Speech enhancement is the task of removing additive noise from
a speech signal. It has many applications including robust auto-
matic speech recognition, automatic speaker recognition, mo-
bile speech communication and hearing aids design. Tradi-
tional speech enhancement approaches include spectral subtrac-
tion [1], Wiener filtering [2], statistical model-based methods
[3] and nonnegative matrix factorization [4]. In last few years,
supervised methods for speech enhancement using deep neural
networks have become state of the art. Among the most pop-
ular deep learning methods are deep denoising autoencoders
[5], deep neural networks (DNNs) [6, 7], and CNNs [8]. An
overview of deep learning based methods for speech separation
is given in [9].

Primary methods for supervised speech enhancement use
T-F masking or spectral mapping [9]. Both of these approaches
generally reconstruct the speech signal in the time domain from
the frequency domain using the phase of the noisy signal. This
means that the learning machine learns a function in the fre-
quency domain but the task of going from the frequency domain
to the time domain is not subject to the learning process. In this
work, we propose a learning framework in which the objective
of the learning machine remains the same but now the process
of reconstructing a signal in the time domain is incorporated
into the learning process. Integrating the domain knowledge of
going from the frequency domain to the time domain or going
from the time domain to the frequency domain inside the net-
work can be helpful for the core task of speech enhancement.

A similar approach of incorporating the domain knowledge in-
side the network is found to be useful in [10], where the authors
employ a time-domain loss for T-F masking.

We design a fully convolutional neural network that takes
as input the noisy speech signal in the time domain and out-
puts the enhanced speech signal in the time domain. A simple
method to learn this network would be to minimize the mean
squared error or the mean absolute error loss between the clean
speech signal and the enhanced speech signal [11]. However,
in our experiments, we find that using this loss some of the
phonetic information in the estimated speech gets distorted be-
cause these underlying phones are difficult to distinguish from
the background noise. This means that there is no clear dis-
criminability between the background noise and these phones
in the speech signal. Also, using a loss function in the time do-
main does not produce good quality speech. So, it is essential
to use a frequency domain loss which has clear discriminability
and produces speech with high quality. Motivated by these con-
siderations, we propose to add an extra operation in the model
at the training time that converts the estimated speech signal in
the time domain to the frequency domain. The process of going
from the time domain to the frequency domain is differentiable,
and so a loss in the frequency domain can be used to train a
network in the time domain.

Furthermore, the proposed framework can be explained as
a deep learning based solution to the invalid STFT problem de-
scribed in [12]. The authors point out that not all combinations
of STFT magnitude and STFT phase signal give a valid STFT.
The combination of noisy phase and estimated STFT magni-
tude, in the tasks of spectral mapping or T-F masking, is un-
likely a valid STFT. The proposed framework solves this prob-
lem by producing a signal in the time domain with a loss in the
frequency domain.

This paper is organized as follows: section 2 describes the
proposed loss function followed by the description of the model
in section 3. Section 4 discusses the invalid STFT problem.
Section 5 lists the experimental settings followed by results and
discussions in section 6. Finally, we conclude our work in sec-
tion 7.

2. Frequency domain loss function

Given a speech signal frame in the time domain, it can be
converted into the frequency domain by multiplying it with
a complex-valued discrete Fourier transform (DFT) matrix as
given in equation 1.

X =Dx (1

where X is the DFT of the time domain frame or vector x. Now,
since the vector « is a real signal the relation in the equation 1
can be rewritten as:

X = (DR+jD1):E:DR:L’+jD[l’ 2)
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where Dp is the real part and Dy is the imaginary part of
the complex-valued matrix D. This relation can be separated
into two different equations with real and imaginary part of the
complex-valued vector X as given in the equation 3.

Xr = Dgrx
. _ 3)
1= Dix
Xr and X from equation 3 can be used to define a loss func-
tion in the frequency domain. One such loss can be defined as
the sum of the real loss and the imaginary loss as given in the
following equation:

L(X,X) = Avg(|Xr — Xp| +[Xr = Xu]) )
where X is the estimated vector and X is the reference vector.
| X | is defined as a vector formed by taking the elementwise ab-
solute value of the vector X and Avg(X) is a function which
takes a vector as input and returns the average value of its el-
ements. It is worth mentioning that this loss function has both
the magnitude and the phase information because it uses both
the real part and the imaginary part separately. However, we
find that using both the magnitude and the phase information
does not give an as good performance as using only the magni-
tude information. So, we use the following loss defined using
only the magnitudes:

L(X,X) = Avg(|(IXr| + |X1]) = (1 Xr| + X)) ()

This loss function can also be described as the mean abso-
lute error loss between the estimated STFT magnitude and the
clean STFT magnitude when the magnitude of a complex num-
ber is defined using L1 norm. Using Lo norm is also a choice
here, but we do not propose it because it gives similar objec-
tive scores but introduces an artifact in the enhanced speech.
The schematic diagram for computing a frequency domain loss
function from a time domain signal is shown in the upper part
of figure 1. It should be noted that the matrix Dr and D; are
real matrices, so the network can be trained using backpropaga-
tion with real gradients. This means that a real network in the
time domain can be trained with a loss function defined in the
complex frequency domain. Although using both the real and
the imaginary part separately does not give better performance
than using only the magnitude, nevertheless it opens a new re-
search direction for combining the real and imaginary part in
a better way to utilize the phase information effectively. The
enhanced output is first divided into frames and then multiplied
by the Hanning window before feeding it to the loss calculation
framework.

3. Model architecture

We use an autoencoder based fully convolutional neural net-
work with skip connections [13]. The schematic diagram of
the proposed model is shown in the lower part of figure 1.
Each convolution layer in the network is followed by paramet-
ric ReLU [14] activation function except for the output layer
which is followed by Tanh. The encoder comprises nine lay-
ers of convolution in which the first layer has a stride of one,
and the rest of the eight layers have a stride of 2. The de-
coder is comprised of deconvolution layers with the number
of channels equal to the double of the number of channels in
the corresponding symmetric layer in the encoder. The number
of channels in the decoder is doubled because of the incoming
skip connections from the encoder. The input to the network
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Figure 1: Schematic diagram of the proposed learning frame-
work. Lower part is the network in the time domain and upper
part shows the operations to compute the loss function in the
frequency domain.

is a speech frame of size 2048. The dimensions of the out-
puts from the successive layers of the network are: 2048x1 (in-
put), 2048x64, 1024x64, 512x64, 256x128, 128x128, 64x128,
32x256, 16x256, 8x256, 16x512, 32x512, 64x256, 128x256,
256x256, 512x128, 1024x128, 2048x128, 2048x1 (output).

4. Invalid short-time Fourier transform

In [12], authors explain that not all 2-dimensional complex-
valued signals are valid STFT. A 2-dimensional complex-
valued signal is a valid STFT if and only if it is obtained
by taking the STFT of a time domain signal. In other
words, if an STFT Y is not a valid STFT then Y will not
be equal to STFT(ISTFT(Y')), where ISTFT means inverse
STFT. However, a time domain signal X will always be equal
to ISTFT(STFT(X)). In [12], authors proposed an iterative
method which minimizes the distance between the STFT mag-
nitudes by iteratively going back and forth to the time domain
from the frequency domain. Going from the time domain to the
frequency domain guarantees that the obtained STFT is a valid
one.

In the frequency domain speech enhancement, popular ap-
proaches are spectral mapping and T-F masking. Both of these
methods require using the phase of the noisy speech STFT with
the estimated magnitude of STFT to reconstruct the time do-
main speech signal. Combination of the noisy phase with the
estimated magnitude of STFT is unlikely a valid STFT. The
proposed framework can be thought of as a supervised way of
solving the invalid STFT problem by training a network which
produces a speech signal in the time domain but is trained by a
loss function which minimizes the distance between the STFT
magnitudes.
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Figure 2: From left to right: noisy spectrogram (babble noise at -5 dB SNR); spectrogram of the signal enhanced with DNN; spectro-
gram of the signal enhanced with AECNN-T; spectrogram of the signal enhanced with AECNN-SM; clean spectrogram

Table 1: The average performance of noise specific models
for five noises and 3 SNR conditions: Mixture (a), DNN (b),
AECNN-T (c), AECNN-RI, (d), AECNN-SM (e).

PESQ STOI (%)

SNR -5 0 5 mean -5 0 5 mean
a) 141 1.72 206 1.73 56.6 68.1 789 679
b) 200 239 277 239 73.1 820 87.8 81.0
c) 1.77 227 261 222 79.5 879 918 864
d) 190 241 274 235 79.5 88.1 919 86.5
e) 220 265 295 2.60 81.0 889 925 875

5. Experimental settings

First, we evaluate the performance of the proposed framework
on the TIMIT dataset [15]. Training and test data are generated
in the same manner as in [16]. Performance is evaluated on the
SNR conditions of -5 dB, 0 dB and 5 dB in which the 5 dB SNR
is an unseen SNR condition. Five noise specific (NS) models
are trained and tested on noises; babble, factory, speech-shaped
noise (SSN), oproom and engine. A single noise generalized
(NG) model is trained using all the above five noises and tested
on two unseen noises; factory2 and tank. For the baselines, we
train three types of DNNs, with L; loss, using spectral map-
ping, ratio masking and spectral magnitude masking [9, 17].
For a given test condition, we pick the best performing DNN to
compare with the proposed framework [17].

Next, we evaluate the proposed framework for large-scale
training by training a speaker-specific model for a large num-
ber of noises. Training utterances are created by mixing 10000
different types of noises with 560 male IEEE utterances. Our
data generation for training and testing conditions are same as
in [18]. We compare our proposed framework with a five-layer
DNN model proposed in [18].

Table 2: The average generalization performance of all the
models for 2 unseen noises and 3 SNR conditions; Mixture (a),
DNN (b), AECNN-T (c), AECNN-RI, (d), AECNN-SM (e).

PESQ STOI (%)

SNR -5 0 5 mean -5 0 5 mean
a) 1.63 2.00 235 1.99 66.5 763 847 758
b) 220 263 3.00 261 764 847 90.0 83.7
c) 206 257 288 250 83.5 90.6 934 89.1
d) 2.18 2.68 298 261 842 90.8 934 895
e) 249 288 312 283 851 912 935 899

We use Tanh activation function at the output of the net-
work, so all the utterances are normalized to the range [—1, 1].
Utterances are divided into the frames of size 2048 with a shift
of 256. The value of the shift is 256 for all the training and test
experiments except for the large-scale training in which case a
shift of 1024 is used. Multiple predictions of a sample in an
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utterance are averaged. The output from the network is divided
into the frames of size 512, with a shift of 256, and multiplied
by the Hanning window before feeding into the loss calculation
framework.

We use Adam optimizer [19] for the training and all the
models are trained with a batch size of 256. A dropout of 0.2
is applied at the intervals of 3 layers of convolution. Learning
rate is exponentially decayed after every epoch with an initial
learning rate set to 0.001.

STOI AECNN-M EE T loss

SM loss

EE T loss
SM loss

Figure 3: A chart depicting the consistency of the proposed
framework for different sized network. AECNN-S has 0.4 mil-
lion parameters, AECNN-M has 1.6 million parameters and
AECNN-L has 6.4 million parameters.

6. Results and discussions

Performance of the proposed framework is evaluated in terms
of short-term objective intelligibility (STOI) [20] and percep-
tual evaluation of the speech quality (PESQ) [21] scores. We
call our speech enhancement model AECNN, standing for au-
toencoder convolutional neural network. The model is trained
using three different loss functions. The used loss functions and
corresponding abbreviated names for the models are time loss
(AECNN-T), real plus imaginary loss (AECNN-RI), and STFT
magnitude loss (AECNN-SM). Time loss is the mean absolute
error (MAE) loss in the time domain, real plus imaginary loss
is the loss defined in equation 4 and STFT magnitude loss is the
loss defined in equation 5.

The average performance of all the five NS models with dif-
ferent loss functions and baseline DNN model is listed in table
1. The AECNN-T model improves the STOI score by 6.4% at
-5 dB, 5.4% at 0 dB and 4% at 5db with respect to the base-
line DNN. But, the PESQ score for this model is much worse
than the baseline. This suggests that the time domain loss for
enhancement in the time domain is good for the STOI score



Table 3:

the noise generalized model is reported for two unseen noises
and 3 different SNR conditions.

Mixture Noisy Learned  Clean

Phase Phase Phase
o -5db 1.63 2.46 2.49 2.67
E 0 db 2.00 2.84 2.88 3.05
A~ 5 db 2.35 3.11 3.12 3.29
— -5db 66.5 82.0 85.1 87.4
8 0db 76.3 88.3 91.2 92.8
v 5 db 84.7 91.6 93.6 94.7

but not for the PESQ score of the enhanced speech. Next, we
find that the AECNN-RI model improves both the STOI and
the PESQ score of the enhanced speech. Improvement in the
STOI score, in this case, is similar to the AECNN-T model but
the PESQ score improves significantly and becomes compara-
ble to the baseline. This indicates that moving from the loss in
the time domain to the loss in the frequency domain boosts the
objective quality of enhanced speech significantly. Finally, we
see that the AECNN-SM model improves both the STOI and
the PESQ score significantly when compared to both the base-
line DNN and AECNN-RI. It improves the PESQ score by 0.43
at -5 dB, 0.38 at 0 dB and 0.34 at 5db when compared with
AECNN-T. This means that a fixed model (AECNN) is able to
significantly improve the performance just by using a loss in
the frequency domain. The AECNN-SM model is also consid-
erably better than the baseline model which operates entirely in
the frequency domain.

Spectrograms of a sample utterance are shown in figure 2.
We can clearly observe that the time domain loss removes the
noise, but it also distorts the spectrogram. Baseline model in-
troduces less distortion but is not good at removing the noise.
The AECNN-SM model introduces the least distortion and is
also good at removing the noise.

We find that a model trained using a loss defined only on
the real part of the STFT gives similar performance as a model
trained using a loss defined only on the imaginary part of the
STFT. The performance of the loss defined on individual com-
ponents is also similar to the performance of AECNN-RI model.
This suggests that the real and the imaginary parts of the STFT
of a speech signal are highly correlated.

The AECNN-RI model does not give better performance
than the AECNN-SM model even though it uses phase informa-
tion. One explanation for such behavior, based on the empirical
observations, can be provided as follows: in the given frame-
work, the gradients for a given weight is computed using two
components; gradients from the real side (through Dg, see fig-
ure 1) and the gradients from the imaginary side (through Dy,
see figure 1). In AECNN-RI model, the loss is computed by
adding the loss on the real and the imaginary component which
means that both the components, that are highly correlated, try
to minimize the total loss independently. However, in the case
of STFT magnitude loss, the gradients from the imaginary side
(through Dy) and the gradients from the real side (through Dg)
are dependent on each other. So, the gradients from both sides
of the network minimize the total loss in an informed way rather
than in an independent way and hence are able to learn a better
function.

Next, we compare the generalization performance of the
proposed framework. We observe similar trends as for the NS

Performance score depicting the effectiveness of
learned phase over the noisy phase. Average performance of
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Table 4: Comparison of the percentage improvement in the
STOI score for large scale training.

Babble Cafeteria
DNN AECNN DNN AECNN
5db 12 13.63 13.3 14.44
0db 17.1 21.06 18.1 21.06
-2db 18 23.51 18.7 22.54
-5db 16.6 23.31 17.5 21.53

models. The AECNN-SM model improves the STOI score by
8.7% at -5 dB, 6.5% at 0dB and 3.5% at 5 dB with respect to the
baseline DNN. Similarly, it improves the PESQ score by 0.43
at -5 dB, 0.31 at 0OdB and 0.24 at 5db with respect to SEAE-T.
It improves the PESQ score by 0.29 at -5 dB, 0.25 at 0 dB and
0.12 at 5dB when compared to the baseline DNN.

At this point, one can claim that the improved performances
using a loss in the frequency domain may not sustain when
a large model is trained. To verify this, we trained AECNNs
with different sizes and looked at the relative improvement of
AECNN-SM compared to AECNN-T. A chart in figure 3 de-
picts the consistent improvement using networks with the num-
ber of parameters equal to 0.4 million, 1.6 million and 6.4 mil-
lion respectively. We can see that AECNN-SM is consistently
and substantially better than AECNN-T model for all the three
sized networks.

In the proposed framework, the STFT magnitude loss ig-
nores the phase information which means that the network
learns a phase structure itself. We quantify the effectiveness
of the learned phase by taking the STFT magnitude of the en-
hanced speech and reconstructing the speech signal with three
different phase signals; the noisy phase, the learned phase, and
the clean signal phase. The results are given in table 3. We find
that the network has learned a phase structure which is good for
the objective intelligibility of the speech. The learned phase is
better for the STOI score, on average, by 3.2% at -5 dB, 2.9%
at 0dB and 2% at 5 dB.

Finally, we evaluate the proposed framework for large-scale
training. We compare our model with a model proposed in [18].
The results are given in table 4. The proposed framework is
significantly better than the baseline. The STOI improvement
is, on average, better by 5.37% on -5 dB which is a difficult and
unseen SNR condition. Similarly, it is also significantly better
for three other noise conditions as can be seen in table 4.

7. Conclusions

In this work, we proposed a new framework which generates a
speech signal in the time domain by minimizing a loss in the
frequency domain. The proposed method significantly outper-
forms the spectral mapping and T-F masking based methods.
The proposed approach is easy to implement and applicable for
related speech processing tasks that require spectral mapping
and T-F masking. This work also opens a new research direc-
tion for exploring the proposed framework for the effective use
of phase and magnitude information for speech enhancement.

8. Acknowledgements

This research was supported in part by two NIDCD (RO1
DC012048 and R02 DCDCO015521) grants and the Ohio Super-
computer Center.



(1]

[2

—

(3]

[4]

(51

[6

[t}

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

9. References

S. Boll, “Suppression of acoustic noise in speech using spectral
subtraction,” IEEE Transactions on acoustics, speech, and signal
processing, vol. 27, no. 2, pp. 113-120, 1979.

P. Scalart et al., “Speech enhancement based on a priori signal to
noise estimation,” in Acoustics, Speech, and Signal Processing,
1996. ICASSP-96. Conference Proceedings., 1996 IEEE Interna-
tional Conference on, vol. 2. 1EEE, 1996, pp. 629-632.

P. C. Loizou, Speech enhancement: theory and practice.
press, 2013.

CRC

N. Mohammadiha, P. Smaragdis, and A. Leijon, “Supervised and
unsupervised speech enhancement using nonnegative matrix fac-
torization,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 21, no. 10, pp. 2140-2151, 2013.

X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech enhancement
based on deep denoising autoencoder.” in Interspeech, 2013, pp.
436-440.

Y. Wang and D. Wang, “Towards scaling up classification-based
speech separation,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 21, no. 7, pp. 1381-1390, 2013.

Y. Xu, J. Du, L-R. Dai, and C.-H. Lee, “A regression ap-
proach to speech enhancement based on deep neural networks,”
IEEE/ACM Transactions on Audio, Speech and Language Pro-
cessing (TASLP), vol. 23, no. 1, pp. 7-19, 2015.

S. R. Park and J. Lee, “A fully convolutional neural network for
speech enhancement,” arXiv preprint arXiv:1609.07132, 2016.

D. Wang and J. Chen, “Supervised speech separation based on
deep learning: an overview,” arXiv preprint arXiv:1708.07524,
2017.

Y. Wang and D. L. Wang, “A deep neural network for time-domain
signal reconstruction,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on. IEEE,
2015, pp. 4390—4394.

S.-W. Fu, Y. Tsao, X. Lu, and H. Kawai, “Raw waveform-based
speech enhancement by fully convolutional networks,” arXiv
preprint arXiv:1703.02205, 2017.

D. Griffin and J. Lim, “Signal estimation from modified short-
time fourier transform,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 32, no. 2, pp. 236243, 1984.

S. Pascual, A. Bonafonte, and J. Serr, “Segan: Speech
enhancement generative adversarial network,” in Proc. In-
terspeech 2017, 2017, pp. 3642-3646. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2017-1428

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
in Proceedings of the IEEE international conference on computer
vision, 2015, pp. 1026-1034.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S.
Pallett, “Darpa timit acoustic-phonetic continous speech corpus
cd-rom. nist speech disc 1-1.1,” NASA STI/Recon technical report
n, vol. 93, 1993.

Y. Wang, A. Narayanan, and D. Wang, “On training targets for
supervised speech separation,” IEEE/ACM Transactions on Au-
dio, Speech and Language Processing (TASLP), vol. 22, no. 12,
pp. 1849-1858, 2014.

A. Pandey and D. Wang, “On adversarial training and loss func-
tions for speech enhancement,” in Acoustics, Speech and Signal
Processing (ICASSP), 2018 IEEE International Conference on.
IEEE, 2018, p. in press.

J. Chen, Y. Wang, S. E. Yoho, D. Wang, and E. W. Healy,
“Large-scale training to increase speech intelligibility for hearing-
impaired listeners in novel noises,” The Journal of the Acoustical
Society of America, vol. 139, no. 5, pp. 26042612, 2016.

D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

1140

[20]

[21]

C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An al-
gorithm for intelligibility prediction of time—frequency weighted
noisy speech,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 19, no. 7, pp. 2125-2136, 2011.

A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hek-
stra, “Perceptual evaluation of speech quality (pesq)-a new
method for speech quality assessment of telephone networks and
codecs,” in Acoustics, Speech, and Signal Processing, 2001. Pro-
ceedings.(ICASSP’01). 2001 IEEE International Conference on,
vol. 2. IEEE, 2001, pp. 749-752.



