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ABSTRACT

Generative adversarial networks (GANs) are becoming in-
creasingly popular for image processing tasks. Researchers
have started using GANs for speech enhancement, but the
advantage of using the GAN framework has not been estab-
lished for speech enhancement. For example, a recent study
reports encouraging enhancement results, but we find that the
architecture of the generator used in the GAN gives better
performance when it is trained alone using the L1 loss. This
work presents a new GAN for speech enhancement, and ob-
tains performance improvement with the help of adversarial
training. A deep neural network (DNN) is used for time-
frequency mask estimation, and it is trained in two ways:
regular training with the L1 loss and training using the GAN
framework with the help of an adversary discriminator. Ex-
perimental results suggest that the GAN framework improves
speech enhancement performance. Further exploration of loss
functions, for speech enhancement, suggests that the L1 loss
is consistently better than the L2 loss for improving the per-
ceptual quality of noisy speech.

Index Terms— Speech enhancement, generative adver-
sarial networks, deep learning, L1 loss, fully connected

1. INTRODUCTION

Speech enhancement or separation is the task of removing ad-
ditive noise from a speech signal. It is important for many ap-
plications, such as robust automatic speech recognition, au-
tomatic speaker verification, mobile speech communication
and hearing aids design. Traditional speech enhancement ap-
proaches include spectral subtraction [1], Wiener filtering [2],
statistical model-based methods [3] and nonnegative matrix
factorization [4].

Deep learning has been applied for speech enhancement
in past few years, and deep learning based methods have be-
come the state of the art, due to its ability to learn complex
hierarchical functions from data. Some of the most popu-
lar deep learning based methods are: deep denoising autoen-
coders [5], DNNs [6, 7], and convolutional neural networks
[8]. An overview of deep learning based methods for speech
separation is given recently in [9].

In recent years, GAN [10] based approaches were ex-
plored [11, 12]. In these studies, new architectures were
proposed for speech enhancement, and trained adversarially.
These works, however, do not present a convincing picture
for the suitability of GANs for speech enhancement. We have
explored the architecture proposed in [11], and found that
training of the generator with L1 loss alone performs better in
terms of short term objective intelligibility (STOI) [13] and
perceptual evaluation of speech quality (PESQ) [14] scores,
accounting for reported improvements. This does not answer
the question that whether GANs are a promising framework
for speech enhancement or not. In this paper, we address
this question by exploring GANs for a simple DNN. Specif-
ically, we use a DNN for spectral magnitude mask (SMM)
estimation, and train it in two ways: regular training of the
generator with L1 loss and adversarial training. Adversarial
training means that we use the mask estimation network as
the generator in the GAN framework.

In image processing tasks, researchers claim that the L1

loss is better than L2 loss because it promotes less blurring
of images [15, 16]. This raises the question whether L1 loss
is better for speech enhancement or not. In fact, in [11] and
[12] the authors have used L1 loss for speech enhancement
citing the arguments used for image processing. In this study,
we also do a comparison between L1 and L2 loss so that an
informed decision can be taken for their use for speech en-
hancement.

This paper is organized as follows: We first describe
GANs in the next section followed by an explanation of GAN
used in this study. Section 4 talks about the comparison
between L1 and L2 loss. Experiment details are given in
Section 5. Section 6 presents and discusses the results and
Section 7 concludes the paper.

2. GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (GANs) [10] are models
that learn to generate samples from a given data distribution,
pdata(x). GANs consist of two networks: a generator G and
a discriminator D. The job of G is to map a noise vector
z, from a given prior distribution pz(z), to an output sam-
ple G(z) resembling the data samples in the training data.
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The discriminator D is a classifier network which determines
whether its input is real or fake. A sample coming from the
training data, x, is considered real, and a sample coming from
the generator output, G(z), is considered fake. The generator
and discriminator are trained in an adversarial way where
both networks play a mini-max game, and try to maximize
their own utility function. The generator tries to fool the dis-
criminator by producing samples which are very close to the
samples from the training data, and the discriminator tries to
be good at classifying real and fake data. The loss functions
for the mini-max game are defined as following [10]:

J (D) = − 1

2
Ex∼pdata(x)logD(x) −

1

2
Ez∼pz(z)log(1−D(G(z)))

(1)

J (G) = −J (D) (2)

Conditional GANs [17] can be used for the regression task.
In a conditional GAN, some extra information, a vector xc, is
provided along with the noise vector z at the input of the gen-
erator. The equation for the cost function of the discriminator
in a conditional GAN is given as:

J (D) = − 1

2
Ex,xc∼pdata(x,xc)logD(x, xc) −

1

2
Exc∼pdata(xc),z∼pz(z)log(1−D(G(z, xc)))

(3)

The equations presented above are prone to cause the vanish-
ing gradient problem in the early stages of training [18], so
we use slightly modified loss functions which were proposed
in [19] and also used in [11]. In this GAN, the loss functions
of the generator and discriminator use mean squared error as
given in equation (4) and (5).

J (D) =
1

2
Ex,xc∼pdata(x,xc)[(D(x, xc)− 1)2] +

1

2
Exc∼pdata(xc),z∼pz(z)[D(G(z, xc))

2]

(4)

J (G) =
1

2
Exc∼pdata(xc),z∼pz(z)[D(G(z, xc)− 1]2 (5)

3. FULLY CONNECTED GAN FOR SPEECH
ENHANCEMENT

As mentioned in the previous section, a conditional GAN can
be used for a regression task. In this work, we use a GAN for
the regression task of time-frequency mask estimation. Short-
term Fourier transform (STFT) magnitude features of noisy
speech are used as extra information (xc in equations (4) and
(5)) to generate the target SMM from the GAN. The equation
for SMM is defined as:

SMM(t, f) =
|S(t, f)|
|Y (t, f)|

(6)

where S(t, f) and Y (t, f) are STFT coefficients of clean
speech and noisy speech respectively.

Fig. 1. Mask estimation framework using conditional GAN

The G network here is a fully connected DNN which takes
as input, the concatenation of two vectors, xc and z, where xc
is the STFT magnitude of noisy speech and z is a randomly
sampled noise vector from a normal distribution. Output of
the G network, G(z, xc), is the estimated SMM.

The D network is also a fully connected DNN with the
same number of hidden layers as that in the generator net-
work. The discriminator loss is computed using two different
batches of data: a real batch and a fake batch. For the real
batch, the input to the discriminator is a concatenation of the
target SMM and the noisy speech STFT magnitude, [x, xc]
and the expected output is 1. Similarly, for the fake batch,
the input to the discriminator is a concatenation of the esti-
mated SMM and the noisy speech STFT, [G([z, xc]), xc] and
the expected output is 0. This setting is illustrated in Fig. 1.

It is difficult to train a conditional GAN using the loss
functions given in equations (4) and (5). Therefore, we addi-
tionally use the L1 loss in the generator to stabilize the train-
ing. The use of L1 loss to stabilize the training was proposed
in [15], and adopted for speech enhancement in [11, 12]. The
modified loss function of the generator becomes:

J (G) =
1

2
Exc∼pdata(xc),z∼pz(z)[D(G(z, xc)− 1]2

+λ||G(z, xc)− x||1
(7)

where λ is a hyper parameter which can be tuned to stabilize
the training.

4. L1 LOSS VERSUS L2 LOSS

In our initial experiments, we compare the GAN training with
the L2 loss training and observe some improvement. Further
exploration reveals that the observed improvement is due to
the additional L1 loss in the generator (equation 7), but not
due to adversarial training. Therefore, we decide to compare
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SNR System Babble Factory SSN Engine Oproom
STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ

Z OFF Z ON Z OFF Z ON Z OFF Z ON Z OFF Z ON Z OFF Z ON Z OFF Z ON Z OFF Z ON Z OFF Z ON Z OFF Z ON Z OFF Z ON

-5 dB
Mixture 54.85 54.85 1.41 1.41 54.31 54.31 1.30 1.30 56.75 56.75 1.49 1.49 57.26 57.26 1.40 1.40 59.54 59.54 1.41 1.41

DNN 63.64 63.76 1.70 1.70 66.88 66.86 1.75 1.75 72.76 72.90 1.97 1.97 79.81 80.47 2.31 2.34 79.49 80.11 2.34 2.37
GAN 65.15 65.56 1.71 1.72 68.15 68.25 1.77 1.78 74.09 73.98 2.01 2.00 80.79 80.66 2.36 2.35 80.03 81.10 2.35 2.40

0 dB
Mixture 66.57 66.57 1.74 1.74 66.56 66.56 1.64 1.64 69.16 69.16 1.75 1.75 68.96 68.96 1.66 1.66 69.76 69.76 1.78 1.78

DNN 76.49 76.64 2.16 2.16 78.60 78.79 2.25 2.25 82.92 83.12 2.40 2.41 86.46 86.90 2.68 2.70 84.82 85.26 2.67 2.70
GAN 77.84 78.27 2.18 2.18 79.94 80.06 2.26 2.27 83.99 83.95 2.44 2.43 87.26 87.17 2.68 2.67 85.34 86.05 2.66 2.72

5 dB
Mixture 77.48 77.48 2.09 2.09 77.71 77.71 2.01 2.01 80.81 80.81 2.05 2.05 80.19 80.19 1.97 1.97 79.07 79.07 2.16 2.16

DNN 85.15 85.52 2.59 2.61 86.42 86.80 2.66 2.66 89.41 89.66 2.79 2.80 91.17 91.39 2.97 2.99 88.83 89.18 2.97 2.99
GAN 86.00 86.33 2.61 2.62 87.48 87.47 2.67 2.68 90.30 90.34 2.81 2.81 91.67 91.61 2.96 2.95 89.32 89.75 2.96 2.99

Table 1. Performance comparison between L1 loss training and GAN training on 3 different SNR conditions.

adversarial training and regular L1 loss training. This obser-
vation also raises the question of the L1 loss being better than
the L2 loss for speech enhancement. Also, in image process-
ing tasks, [15] and [16] claim that L1 loss encourages less
blurring of images than L2 loss. [11] and [12] use L1 loss for
speech enhancement citing the arguments given in [15] and
[16]. We perform a comparison between L1 and L2 loss for
speech enhancement to have a better understanding. Specif-
ically, we train DNNs for three different targets: ideal ratio
mask (IRM) [9], SMM and STFT magnitude, using L1 and
L2 loss. Performance comparisons are reported in Table 3
and Table 4, and discussed in Section 6.

5. EXPERIMENTAL SETTINGS

5.1. Dataset

We create the training and test sets in the same manner as in
[20]. 2000 utterances are randomly selected from the TIMIT
[21] dataset as training utterances. 192 utterances from the
core test set of TIMIT are used as test utterances. Noise spe-
cific and noise generalized models are trained. Performance
is evaluated using STOI and PESQ scores. For the noise spe-
cific case, models are trained and tested on the same noise.
Specifically, five noises, babble, factory, SSN, oproom and
engine are used. For the noise generalized case, the model is
trained on all five noises mentioned above and tested on two
unseen noises, factory2 and buccaneer1. All the noises except
SSN are obtained from Noisex dataset [22]. SSN is generated
using the training utterances. Training noisy utterances are
created by adding noises at -5 dB and 0 dB. Test noisy utter-
ances are created by mixing noises at -5 dB, 0dB and 5 dB
SNR where 5dB is an unseen SNR condition used to assess
the SNR generalizability of the model.

5.2. Preprocessing

The audio signals are resampled to 16kHz. A 512-point STFT
is computed using a 32 ms Hanning window and a shift of 16
ms (256 samples). 512 points STFT magnitudes are reduced
to 257 points by removing the symmetric half. Five consec-
utive time frames are concatenated to form the input, and the
masks for corresponding five frames are predicted together at
the output. This makes the input and the output dimensions

of the generator to be 1285. Multiple predictions of the mask,
for a given time frame, are averaged together. Inputs to the
generator are normalized to have zero mean and unit variance.

All SMM values greater than 10 are clipped to 10 and
then transformed to the range [−1, 1]. Range transformation
is required because we use tanh at the generator output in the
GAN. Tanh is used for training convergence [18].

SNR System Factory2 Buccaneer1
STOI (%) PESQ STOI (%) PESQ

Z OFF Z ON Z OFF Z ON Z OFF Z ON Z OFF Z ON

-5 dB
Mixture 65.64 65.64 1.59 1.59 51.97 51.97 1.19 1.19

DNN 76.45 76.60 2.20 2.23 58.94 59.02 1.44 1.43
GAN 76.37 76.76 2.25 2.22 59.42 60.09 1.43 1.45

0 dB
Mixture 76.05 76.05 1.95 1.95 63.48 63.48 1.49 1.49

DNN 84.45 84.59 2.60 2.63 71.46 71.59 1.71 1.71
GAN 84.42 85.05 2.61 2.61 71.99 72.45 1.71 1.72

5 dB
Mixture 84.48 84.48 2.30 2.30 75.09 75.09 1.83 1.83

DNN 89.40 89.48 2.92 2.93 81.95 82.02 2.12 2.12
GAN 89.22 89.86 2.92 2.94 82.39 82.57 2.10 2.11

Table 2. Generalization performance of L1 loss training and
CGAN training on 2 unseen noises and 3 SNR conditions.

5.3. Training

All DNNs use 3 hidden layers. Batch normalization [23] is
used before every layer except the output layer of the discrim-
inator and the input layer of the generator. A dropout rate of
0.2 is used for all the hidden layers. The discriminator uses
leaky ReLUs at the hidden layers and no activation at the out-
put layer [11]. The generator uses parametric ReLUs at the
hidden layers and the output layer activation is determined by
targets. For comparison between L1 loss training and adver-
sarial training, tanh is used at the output layer of the generator.
For L1 and L2 loss comparison, ReLU is used for STFT mag-
nitude and SMM, and sigmoid is used for IRM. SMM is not
transformed to [−1, 1] after clipping when comparing the loss
functions.

The generator in the GAN is trained for two cases, with
and without an input noise vector. The noise vector is of di-
mension 100, and is sampled from a normal distribution with
zero mean and unit variance. With noise, the dimension of in-
put to the generator is 1385, and the number of units in each
hidden layer are 1124. Without noise, the number of units in
each hidden layer are 1024. The number of hidden units in
the discriminator are twice of that in the generator.
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SNR Target Babble Factory SSN Engine oproom
STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ
L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

-5 dB

Mixture 54.85 54.85 1.41 1.41 54.31 54.31 1.30 1.30 56.75 56.75 1.49 1.49 57.26 57.26 1.40 1.40 59.54 59.54 1.41 1.41
IRM 63.66 63.08 1.67 1.66 66.62 65.74 1.74 1.69 72.37 71.30 1.96 1.89 80.31 79.81 2.32 2.24 80.12 79.45 2.35 2.25
STFT 65.56 64.54 1.78 1.59 69.38 68.62 1.87 1.69 75.05 73.63 2.09 1.83 81.67 81.19 2.19 1.86 81.07 80.30 2.22 1.87
SMM 63.80 63.75 1.68 1.63 66.74 66.75 1.74 1.67 72.69 73.72 1.95 1.90 80.19 81.15 2.27 2.18 80.01 80.42 2.32 2.21

0 dB

Mixture 66.57 66.57 1.74 1.74 66.56 66.56 1.64 1.64 69.16 69.16 1.75 1.75 68.96 68.96 1.66 1.66 69.76 69.76 1.78 1.78
IRM 76.84 75.99 2.15 2.11 78.79 77.88 2.24 2.18 82.95 82.13 2.42 2.33 86.80 86.28 2.71 2.59 85.33 84.64 2.70 2.59
STFT 78.59 77.63 2.17 1.85 80.73 79.94 2.28 1.97 84.28 83.32 2.41 2.00 87.16 86.71 2.47 2.12 85.62 85.10 2.46 2.12
SMM 76.62 76.35 2.15 2.07 78.73 78.62 2.24 2.14 82.91 83.52 2.41 2.30 86.61 87.18 2.64 2.50 85.06 85.28 2.65 2.51

5 dB

Mixture 77.48 77.48 2.09 2.09 77.71 77.71 2.01 2.01 80.81 80.81 2.05 2.05 80.19 80.19 1.97 1.97 79.07 79.07 2.16 2.16
IRM 85.83 85.26 2.59 2.54 86.90 86.32 2.67 2.60 89.92 89.48 2.83 2.73 91.56 91.24 3.04 2.91 89.33 88.82 3.01 2.89
STFT 85.77 84.98 2.44 2.03 86.53 85.27 2.43 2.06 89.19 88.02 2.57 2.10 90.47 89.90 2.65 2.26 88.51 87.78 2.63 2.25
SMM 85.48 85.28 2.60 2.48 86.74 86.70 2.66 2.54 89.69 90.02 2.79 2.65 91.32 91.61 2.95 2.78 89.05 89.19 2.95 2.78

Table 3. Performance comparison between L1 and L2 loss on 3 different SNR conditions.

For equation (7), we set λ to 100. The training of the
generator and discriminator is done as described in [10].
One-sided label smoothing with α equal to 0.9 is used [24].
The discriminator is updated twice for each update of the
generator. The Adam optimizer [25] is used for SGD based
optimization with a batch size of 1024. A learning rate of
0.0002 and β1 = 0.5 is used, as in [18]. Adversarial train-
ing shows some oscillatory behaviour initially, but converges
when trained for a long time. Once converged, the value of
the generator loss, in equation (5), converges to 0.81.

SNR Target Factory2 Buccaneer1
STOI PESQ STOI PESQ

L1 L2 L1 L2 L1 L2 L1 L2

-5 dB

Mixture 65.64 65.64 1.59 1.59 51.97 51.97 1.19 1.19
IRM 76.53 76.82 2.19 2.17 59.38 59.58 1.47 1.43
STFT 76.90 77.57 1.97 1.70 62.53 63.29 1.49 1.25
SMM 76.59 77.78 2.22 2.16 60.03 61.11 1.46 1.41

0 dB

Mixture 76.05 76.05 1.95 1.95 63.48 63.48 1.49 1.49
IRM 84.92 84.74 2.64 2.55 71.94 71.72 1.75 1.75
STFT 83.36 83.94 2.24 1.94 74.48 75.59 1.82 1.59
SMM 84.26 85.22 2.61 2.53 72.10 72.61 1.73 1.70

5 dB

Mixture 84.48 84.48 2.30 2.30 75.09 75.09 1.83 1.83
IRM 89.95 89.88 2.99 2.88 82.13 81.92 2.14 2.14
STFT 85.71 86.27 2.38 2.07 83.54 83.63 2.19 1.85
SMM 89.10 89.97 2.93 2.85 82.01 82.21 2.11 2.08

Table 4. Generalization performance of L1 and L2 loss for 2
unseen noises at 3 different SNR conditions.

6. RESULTS AND DISCUSSIONS

We first compare the performance of L1 loss training and ad-
versarial training. Results are reported in Table 1. In Ta-
ble 1, Z OFF and Z ON denote the presence and absence of
noise vector at the input of the generator, respectively. We ob-
serve that the GAN gives consistently better STOI score, but
there is not much of an improvement in PESQ score. STOI
improvements are better at low SNR conditions. The impor-
tance of using a noise vector at the input of the generator is not
very clear from the noise specific models. Therefore, a noise
generalized model is also trained. The generalization perfor-
mance is given in Table 2. We observe that on factory2 noise,
the GAN gives consistent improvement with the noise vector

but is not able to improve the performance without it. Also,
for buccaneer1 noise, the performance improvement is better
when the noise vector is used. This indicates the importance
of the noise vector for generalization.

Next, we compare L1 and L2 loss for speech enhance-
ment. Results are reported in Table 3 and Table 4. L1 loss
gives a better PESQ score for all the cases. Specifically, a
significant improvement in PESQ is observed for the STFT
magnitude estimation. Additionally, we observe that L1 loss
gives a better STOI score when the targets are IRM and STFT
magnitude and a noise specific model is trained. L2 loss gives
a better generalization performance in terms of STOI score.

7. CONCLUSIONS

In this work, we demonstrate the effectiveness of adversar-
ial training for speech enhancement. We train a DNN with
L1 loss and with adversarial training, and show that a given
DNN performs better speech enhancement with adversarial
training. Additionally, we compare L1 and L2 loss for speech
enhancement using three different targets, and find that L1

loss consistently gives a better PESQ score, but does not give
a better generalization performance for the STOI score. This
work makes a case for further exploration of adversarial train-
ing for speech enhancement. A possible future work is the use
of GANs for fine tuning, in which the generator further en-
hances a signal already enhanced with regular L1 or L2 loss
training.

8. ACKNOWLEDGEMENTS

This research was supported in part by two NIDCD (R01
DC012048 and R02 DCDC015521) grants and the Ohio Su-
percomputer Center. We thank H. Zhang for discussions on
the paper.

9. REFERENCES

[1] S. Boll, “Suppression of acoustic noise in speech using
spectral subtraction,” IEEE Transactions on acoustics,

5417



speech, and signal processing, vol. 27, no. 2, pp. 113–
120, 1979.

[2] P. Scalart et al., “Speech enhancement based on a pri-
ori signal to noise estimation,” in Acoustics, Speech,
and Signal Processing, 1996. ICASSP-96. Conference
Proceedings., 1996 IEEE International Conference on.
IEEE, 1996, vol. 2, pp. 629–632.

[3] P. C. Loizou, Speech enhancement: theory and practice,
CRC press, 2013.

[4] N. Mohammadiha, P. Smaragdis, and A. Leijon, “Su-
pervised and unsupervised speech enhancement using
nonnegative matrix factorization,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 21,
no. 10, pp. 2140–2151, 2013.

[5] X. Lu, Y. Tsao, S. Matsuda, and C. Hori, “Speech en-
hancement based on deep denoising autoencoder.,” in
Interspeech, 2013, pp. 436–440.

[6] Y. Wang and D. Wang, “Towards scaling up
classification-based speech separation,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol.
21, no. 7, pp. 1381–1390, 2013.

[7] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “A regression
approach to speech enhancement based on deep neural
networks,” IEEE/ACM Transactions on Audio, Speech
and Language Processing (TASLP), vol. 23, no. 1, pp.
7–19, 2015.

[8] S. R. Park and J. Lee, “A fully convolutional neu-
ral network for speech enhancement,” arXiv preprint
arXiv:1609.07132, 2016.

[9] D. Wang and J. Chen, “Supervised speech separation
based on deep learning: an overview,” arXiv preprint
arXiv:1708.07524, 2017.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial nets,” in Advances in neural in-
formation processing systems, 2014, pp. 2672–2680.

[11] S. Pascual, A. Bonafonte, and J. Serr, “Segan: Speech
enhancement generative adversarial network,” in Proc.
Interspeech 2017, 2017, pp. 3642–3646.

[12] D. Michelsanti and Z.-H. Tan, “Conditional generative
adversarial networks for speech enhancement and noise-
robust speaker verification,” in Proc. Interspeech 2017,
2017, pp. 2008–2012.

[13] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen,
“An algorithm for intelligibility prediction of time–
frequency weighted noisy speech,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 19,
no. 7, pp. 2125–2136, 2011.

[14] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hek-
stra, “Perceptual evaluation of speech quality (pesq)-a
new method for speech quality assessment of telephone
networks and codecs,” in Acoustics, Speech, and Sig-
nal Processing, 2001. Proceedings.(ICASSP’01). 2001
IEEE International Conference on. IEEE, 2001, vol. 2,
pp. 749–752.

[15] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-
to-image translation with conditional adversarial net-
works,” arXiv preprint arXiv:1611.07004, 2016.

[16] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and
A. A. Efros, “Context encoders: Feature learning by
inpainting,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp.
2536–2544.

[17] M. Mirza and S. Osindero, “Conditional generative ad-
versarial nets,” arXiv preprint arXiv:1411.1784, 2014.

[18] A. Radford, L. Metz, and S. Chintala, “Unsu-
pervised representation learning with deep convolu-
tional generative adversarial networks,” arXiv preprint
arXiv:1511.06434, 2015.

[19] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. P.
Smolley, “Least squares generative adversarial net-
works,” arXiv preprint ArXiv:1611.04076, 2016.

[20] Y. Wang, A. Narayanan, and D. Wang, “On training
targets for supervised speech separation,” IEEE/ACM
Transactions on Audio, Speech and Language Process-
ing (TASLP), vol. 22, no. 12, pp. 1849–1858, 2014.

[21] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus,
and D. S. Pallett, “Darpa timit acoustic-phonetic con-
tinous speech corpus cd-rom. nist speech disc 1-1.1,”
NASA STI/Recon technical report n, vol. 93, 1993.

[22] A. Varga and H. J. Steeneken, “Assessment for auto-
matic speech recognition: Ii. noisex-92: A database and
an experiment to study the effect of additive noise on
speech recognition systems,” Speech communication,
vol. 12, no. 3, pp. 247–251, 1993.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift,” in International Conference on Machine
Learning, 2015, pp. 448–456.

[24] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A.
Radford, and X. Chen, “Improved techniques for train-
ing gans,” in Advances in Neural Information Process-
ing Systems, 2016, pp. 2234–2242.

[25] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

5418


