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Abstract

In this study we describe a binaural auditory model for recognition of speech in the presence of spatially separated

noise intrusions, under small-room reverberation conditions. The principle underlying the model is to identify time–fre-

quency regions which constitute reliable evidence of the speech signal. This is achieved both by determining the spatial

location of the speech source, and by grouping the reliable regions according to common azimuth. Reliable time–fre-

quency regions are passed to a �missing data� speech recogniser, which performs decoding based on this partial descrip-
tion of the speech signal.

In order to obtain robust estimates of spatial location in reverberant conditions, we incorporate some aspects of pre-

cedence effect processing into the auditory model. We show that the binaural auditory model improves speech recogni-

tion performance in small room reverberation conditions in the presence of spatially separated noise, particularly for

conditions in which the spatial separation is 20� or larger. We also demonstrate that the binaural system outperforms

a single channel approach, notably in cases where the target speech and noise intrusion have substantial spectral overlap.
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1. Introduction

Human speech perception is remarkably robust.

Listeners can follow a conversation in the presence

of background noise, even in cases where two or
ed.
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more speakers are simultaneously active (Yost,

1997; Hawley et al., 1999). Similarly, speech per-

ception adapts quickly to the characteristics of

an acoustic environment, and can tolerate the

spectral distortion introduced by moderate rever-
beration (Nabelek and Robinson, 1982) or by a

transmission channel (Watkins, 1991).

In contrast to human performance, automatic

speech recognition (ASR) in noisy or reverberant

acoustic environments remains very problematic.

It is reasonable to argue, therefore, that ASR per-

formance could be improved by adopting an ap-

proach that models the known mechanisms of
auditory processing more closely (for example,

see Hermansky, 1998). Additionally, such auditory

models may contribute to our understanding of

human hearing by clarifying the computational

processes involved in speech perception.

The robustness of human speech perception has

its foundation, at least in part, in the ability of the

auditory system to perceptually segregate a target
sound from an acoustic mixture. The process by

which listeners parse a mixture of sounds in order

to retrieve a description of a particular sound

source has been termed auditory scene analysis

(ASA) by Bregman (1990). Conceptually, ASA

may be regarded as a two-stage process. In the first

stage, the sound reaching the ears is decomposed

into sensory elements. In the second stage––termed
auditory grouping––elements that are likely to have

arisen from the same environmental event are

combined to form a perceptual stream. Streams

are subjected to higher-level processing, such as

language understanding.

Auditory grouping is known to exploit acoustic

cues which are related to common spectro-tempo-

ral properties of sound (see Darwin and Carlyon,
1995; for a review). Additionally, ASA uses infor-

mation about the spatial location of sound

sources, which is principally encoded by interaural

time difference (ITD) and interaural level differ-

ence (ILD) cues at the two ears. Indeed, it has been

appreciated since the early 1950s that the intelligi-

bility of speech in the presence of another utter-

ance is improved when the target and competing
sentences originate from different locations in

space. For example, Spieth et al. (1954) found that

the intelligibility of two overlapping speech signals
improved as the spatial separation between them

was increased. For large spatial separations (be-

tween 90� and 180�) the number of utterances cor-
rectly identified improved by as much as 20%.

More recent studies have considered speech intelli-
gibility in the presence of multiple competing sen-

tences, and they indicate that the intelligibility of

the target is principally determined by the proxim-

ity of the competing speech to the target location

(Hawley et al., 1999).

Computational approaches to ASA (for a re-

view see Rosenthal and Okuno, 1998) have been

described which are able to segregate speech from
interfering noise, and these have been employed as

front-ends to ASR systems with promising results

(e.g., Barker et al., 2000a,b; Brown et al., 2001).

However, the large majority of this work has only

addressed monaural grouping mechanisms. A

number of systems that incorporate binaural

grouping cues have been described (Denbigh and

Zhao, 1992; Bodden, 1993; Glotin et al., 1999;
Okuno et al., 1999; Shamsoddini and Denbigh,

2001; Roman et al., 2002). However, only a few

of these sound separation algorithms have been

evaluated in reverberant conditions, presumably

because of the difficulty of the task. Notable excep-

tions are the systems described by Denbigh and

Zhao (1992), Shamsoddini and Denbigh (2001)

and Bodden (1993), although these do not explic-
itly model the auditory mechanisms that are

thought to allow robust localisation of sound

sources in reverberant environments (the �prece-
dence effect�; see Section 2.2.1).
From a purely engineering perspective, ASR

systems that are intended to operate in the pres-

ence of reverberation or background noise typi-

cally exploit microphone array processing and
blind source separation (for example, see Koutras

et al., 2001; Seltzer and Raj, 2001). These ap-

proaches are not informed by principles of human

auditory function, and typically make stronger

assumptions about the number of sound sources

and their characteristics than computational

ASA systems (see van der Kouwe et al., 2001).

In cases where only a single noisy and/or reverber-
ated speech channel is available, the usual ap-

proach is to employ noise-robust feature vectors

such as RASTA (Hermansky and Morgan, 1994)
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or modulation-filtered spectrograms (Kingsbury

et al., 1998). Interestingly, such acoustic features

are often motivated by principles of auditory

processing, such as forward masking and limited

spectral resolution.
Recently, progress has also been made in devel-

oping ASR systems that apply principles of audi-

tory function at processing stages beyond the

initial extraction of acoustic features. Cooke and

his co-workers (Cooke et al., 2001) have inter-

preted the robustness of speech perception mecha-

nisms in terms of their ability to deal with �missing
data�, and have proposed an approach to ASR in
which a hidden Markov model (HMM) classifier

is adapted to cope with missing or unreliable fea-

tures. The missing data paradigm is complemen-

tary to computational ASA; an auditory model

can be used to decide which acoustic components

belong to a target speech source, and only these

�reliable� features are passed to the recogniser (for
example, see Brown et al., 2001; Palomäki et al.,
2001).

In this study, we propose a perceptually in-

spired approach to computational ASA which is

able to segregate a target speech signal from inter-

fering sound sources on the basis of spatial loca-

tion. The current study extends our earlier work

(Palomäki et al., 2001) in a number of important

respects. First, we describe an improved model of
binaural perception which is able to identify the

spatial location of acoustic sources more robustly

in the presence of background noise and reverber-

ation. Secondly, we describe a novel strategy for

performing spectral energy normalisation of
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tem. Finally, we present a detailed evaluation of

the model in a number of reverberant acoustic

environments, and compare its performance with

a conventional speech recognizer that uses noise-
robust feature vectors. We show that the model

provides an effective front-end for missing data

recognition of speech in noisy and reverberant

conditions, and outperforms the conventional ap-

proach in most cases.
2. Model

The model (Fig. 1) is divided into monaural and

binaural pathways. The monaural pathway is

responsible for peripheral auditory processing,

and produces feature vectors for the speech recog-

niser. The binaural pathway is responsible for

sound localisation and separation according to

common azimuth. Acoustic input to the model is
obtained by spatialising speech and noise signals

using a model of small room acoustics and realistic

head-related impulse responses (HRIRs) (see Sec-

tion 3.1 for details).
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The acoustic inputs to the left and right ears of
the model, xleft(n) and xright(n), are initially proc-
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centre frequencies equally spaced on the equivalent

rectangular bandwidth (ERB) scale (Glasberg and

Moore, 1990). We use fourth-order gammatone fil-

ters of the form

gðtÞ ¼ t3 expð�2pbtÞ cosð2pf0tÞuðtÞ ð1Þ
where f0 is the centre frequency, u(t) is the unit step

function (i.e., u(t) = 1 for t P 0, 0 otherwise) and
b is proportional to the ERB bandwidth. The low-

est centre frequency was 50 Hz, and the highest

was 8 kHz. Here, we use a digital implementation

of the gammatone filter described by Cooke

(1993). The output of each filter is half-wave recti-

fied, giving a simple simulation of the auditory

nerve response for each frequency channel which

we denote by ai,k(n) for channel i of ear k, with
k 2 {left,right}.
The envelope of the auditory nerve response is

required for two reasons; to obtain features for

the speech recogniser (a vector of channel energies

for each time frame), and to generate an inhibitory

signal that is used in our simulation of precedence

effect processing (see Section 2.2.1). Cooke (1993,

Appendix C) shows that the cosine term in (1)
can be replaced with a complex sinusoid, giving a

(complex) filter whose output is a close approxi-

mation to the analytic signal of the input (see also

Cohen, 1994). Hence, the instantaneous Hilbert

envelope can be obtained directly from the com-

plex gammatone filter coefficients by

eðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðnÞ þ I2ðnÞ

q
ð2Þ

where RðnÞ and IðnÞ represent the output of the
real and imaginary parts of the complex

gammatone filter. To obtain features for the

speech recognizer, the envelope e(n) of each chan-
nel is smoothed by a one-pole lowpass filter

H(z) = 1/(1 + az�1) with a time constant of 8 ms
(i.e., a = exp(�1000/fs · 8) where fs = 20,000 Hz

is the sample rate). The smoothed envelope is sam-

pled at 10 ms intervals and compressed by raising

it to the power of 0.3. The resulting representation,

which we denote by env( j), can be interpreted as

an estimate of auditory nerve firing rate (we use

the index j to denote frame number). When env( j )

is plotted for each channel over time a �rate map� is
obtained, which may be regarded as an auditory

spectrogram.

The binaural model produces an estimate of fir-

ing rate for the left and right ears, envL( j) and

envR( j). In some experimental cases (see Section
3) recognition is based on the firing rate in one

ear only, but in most cases the feature vectors

passed to the recognizer consist of a linear combi-

nation of the features from the two ears:

envLRð jÞ ¼
1

2
ðenvLð jÞ3:333 þ envRð jÞ3:333Þ

� �0:3
ð3Þ
2.2. Binaural pathway

Human listeners primarily use interaural time

difference (ITD) and interaural level difference
(ILD) cues to localize sound sources in space (see

Moore, 1997 for a review). Here, we describe a

simple computational model of sound localisation

which employs both cues, and incorporates aspects

of precedence effect processing.

2.2.1. Modelling the precedence effect

The term �precedence effect� refers to a group of
psychophysical phenomena which are believed to

underlie the ability of listeners to localise sound

sources in reverberant environments (see Wallach

et al., 1949; and more recent reviews by Zurek,

1987; Blauert, 1997; Litovsky et al., 1999). In such

environments, direct sound is closely followed by

multiple reflections from different directions; how-

ever, listeners usually report that the sound has
originated from one direction only. The perceived

location corresponds to the direction of the first

wavefront; hence it appears that the directional

cues in the first-arriving sound are given �prece-
dence� over cues contained in the later reflections.
The precedence effect is relevant to the study de-

scribed here because we consider localisation of

speech and noise sources in reverberant condi-
tions. We note that an earlier version of our binau-

ral CASA system did not include precedence effect

processing, and was unable to accurately locate

sound sources when reverberation was present

(Palomäki et al., 2001). The current model rectifies

this deficiency.
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Several computational models of sound localisa-

tion have been proposed which incorporate aspects

of precedence effect processing (for example, see

Lindemann, 1986; MacPherson, 1991; Martin,

1997). These models focus on peripheral (rather
than cognitive) factors and suggest that the prece-

dence effect is underlain by an inhibitory mecha-

nism that suppresses echoes. The closest in

approach to the model we present here is the work

of Martin (1997), who describes a computational

implementation of Zurek�s (1987) phenomenologi-
cal model. In Martin�s model, instantaneous infor-
mation about the ITD of a sound source is
suppressed by an inhibitory input which begins

approximately 1 ms after the onset of an abrupt

sound. Suppression is strong for a fewmilliseconds,

and then recovers over a time scale of approxi-

mately 10 ms in accordance with Zurek�s data.
Here, we adopt an approach in which acoustic

onsets are emphasized in the simulated auditory

nerve response prior to ITD analysis. The
instantaneous envelope is computed from each

gammatone filter as described in (2), and this is

low-pass filtered in order to produce an inhibitory

signal which is a smoothed and time-delayed ver-

sion of the auditory nerve response. The low-pass

filter has an impulse response of the form

hlpðnÞ ¼ An exp
�n
a

� �
ð4Þ

where the constant A is chosen to give unity gain
at DC, and a is a time constant. The low-pass filter
has a time constant of 15 ms, corresponding to

a = 300 samples at the sample rate used (20

kHz). When the inhibitory signal is subtracted

from the auditory nerve response, sustained activ-

ity is suppressed but transients (which tend to con-

tain reliable localisation information) are

preserved. Specifically, the auditory nerve response
is transformed by

ri;kðnÞ ¼ ½ai;kðnÞ � GðhlpðnÞ � ei;kðnÞÞ	þ ð5Þ
where ai,k(n) is the auditory filter response for
channel i of the kth ear, ei,k(n) is the corresponding
instantaneous envelope and G is a constant gain

term that determines the strength of inhibition.

The operator [ ]+ indicates half-wave rectification,

and the symbol • denotes convolution. We set
G = 1.0 by inspection. Fig. 2 shows the output

from each stage of processing in the precedence ef-

fect model, for a filter channel centered on 1 kHz

that is responding to a transient speech sound.

2.2.2. Cross-correlogram

ITD is estimated by computing the cross-corre-

lation between the output of the precedence proc-

essed auditory filter response at the two ears.

Given the output of the precedence effect model

for the left and right ear in channel i, ri,L(n) and

ri,R(n), the cross correlation for delay s and time
frame j is

Cið j; sÞ ¼
XM�1

n¼0
ri;Lð jT � nÞri;Rð jT � n� sÞwðnÞ

ð6Þ
where w is a window of width M time steps and T

is the frame period (10 ms, or 200 samples). Cur-

rently, we use a rectangular window with

M = 600, corresponding to a duration of 30 ms,

and consider values of s between �1 and 1 ms.
For efficiency, the fast Fourier transform is used

to evaluate (6) in the frequency domain. Comput-
ing Ci( j,s) for each channel i (1 6 i 6 N) gives a

cross-correlogram, which is computed at 10 ms

intervals of the time index j. The upper panel of

Fig. 3A shows a cross-correlogram for one frame

of a mixture of female and male speech, in which

the voices originate from azimuths of �20� and
+20�, respectively.
Ideally, the cross-correlogram should exhibit a

�spine� at the delay s corresponding to the ITD

of a sound source. This feature can be emphasized

by summing the channel cross-correlation func-

tions, giving a pooled cross-correlogram, P( j,s),
which is shown in the lower panel of Fig. 3A:

Pð j; sÞ ¼
XN
i¼1

Cið j; sÞ ð7Þ

In free-field listening conditions, diffraction effects

introduce a weak frequency-dependence to ITDs

which is evident in the HRIR-filtered stimuli used

here. As a result, the �spine� can be unclear and (7)
does not exhibit a clear peak at the ITD. We note

that this complication does not arise in many

cross-correlation models of ITD analysis (e.g.,
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Shackleton et al., 1992), because they only con-

sider stimuli in which ITDs are synthetically gener-

ated and are therefore consistent across frequency.

Here, we address this issue by warping each cross-
correlation function (6) to an azimuthal axis, giv-

ing a modified cross-correlogram of the form

Ci( j,/) where / is azimuth in degrees. The azimuth
is quantised to a resolution of 1�, giving 181 points
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between �90� and +90�. Warping is achieved by a
table look-up, which relates the azimuth in degrees

to its corresponding ITD in each channel of the

auditory model. The functions relating azimuth

to ITD were derived from cross-correlograms of
random noise and are monotonic, being sigmoidal

at low frequencies (where diffraction effects are

greatest) and increasingly linear at high frequen-

cies. A warped cross-correlogram and its corre-

sponding pooled version, P( j,/) are shown in

Fig. 3B.

2.2.3. The skeleton cross-correlogram

A further stage of processing is motivated by
the observation that the true position of peaks in

the cross-correlogram can be obscured by the fil-

tering characteristic of each frequency band. In

particular, low frequency channels produce very

broad peaks. To address this problem, we intro-

duce the notion of a skeleton cross-correlation

function. For each channel of the cross-correlo-

gram, a skeleton function Si( j,/) is formed by
superimposing Gaussian functions at azimuths

corresponding to local maxima in the correspond-

ing cross-correlation function, Ci( j,/). First, each
function Ci( j,/) is reduced to a form Qi( j,/),
which contains non-zero values only at its local

maxima. Subsequently, Qi( j,/) is convolved with
a Gaussian to give the skeleton function Si( j,/),

Sið j;/Þ ¼ Qið j;/Þ � exp
�/2

2r2i

� 	
ð8Þ

The standard deviations of the Gaussians, ri, vary
linearly with frequency channel i, being 4.5 sam-

ples in the lowest frequency channel and 0.75 sam-

ples in the highest (these parameters were derived

empirically using a small data set). This approach

is similar in effect to applying lateral inhibition

along the azimuthal axis, and causes a sharpening

of the cross-correlation response (see Fig. 3C).
2.2.4. Interaural level difference (ILD)

ILD is only computed for frequency bands

above 2800 Hz, since there is insufficient �head sha-
dow� at low frequencies to give an appreciable ILD
(Blauert, 1997; Moore, 1997). The ILD in dB is

computed as follows:
ildið jÞ ¼ 10log10
engi;Rð jÞ
engi;Lð jÞ

" #
ð9Þ

Here, engi,k( j) represents the energy in channel i of

ear k at time frame j, obtained by raising the enve-

lope envi,k( j) to the power of 3.333 (in order to

reverse the effect of compression) and then squar-

ing to obtain the energy.

2.3. Grouping by common azimuth

Missing data ASR requires each acoustic fea-

ture to be labelled as �reliable� or �unreliable� (see
Section 2.7). In practice, this information is pro-

vided to the recogniser in the form of a time–fre-

quency mask (Cooke et al., 2001). Here, we use a

binary mask in which a value of unity represents
a reliable feature, and a value of zero represents

an unreliable feature (we note that real-valued

masks may also be employed; see Barker et al.,

2000b). Typical masks are shown in Fig. 4.

In our system, the mask is estimated by a proc-

ess that groups acoustic features according to com-

mon azimuth. We assume that sound sources have

stationary locations; hence, source locations can
be estimated from the mean pooled skeleton

cross-correlogram Z(/), computed over all K time

frames of the input

Zð/Þ ¼ 1

K

XK
j¼1

XN
i¼1

Sið j;/Þ ð10Þ

The azimuths of the speech and noise sources, /s
and /n, correspond to the two largest peaks in

Z(/). In order to allow the speech and noise

sources to be discriminated, we assume that

/s > /n (i.e., that the speech lies to the right of

the noise; we discuss how this assumption might
be relaxed in Section 4). Values in the mask

m(i,j) are then set according to

mði; jÞ ¼
1 if Cið j;/sÞ > Cið j;/nÞ

and Cið j;/sÞ > Hc

0 otherwise

8><
>: ð11Þ

The heuristic (11) sets the mask to unity (i.e., indi-

cates a reliable region) if channel i is dominated by

the speech source at time frame j, as estimated



Fig. 4. Mask estimation examples for the utterance ‘‘one five zero zero six’’ in anechoic conditions (top) and for a T60 reverberation

time of 0.3 s. (bottom), for which the angular separation is 40� and the SNR is 0 dB. From left to right, panels show the rate maps

(firing rate of the auditory model), a priori masks and masks estimated from the binaural model.
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from the relative height of the peaks in Ci( j,/) at
the azimuths of the speech and the noise. Addi-

tionally, a threshold value for Ci( j,/s) is applied,
so that values belowHc are discarded. This ensures

that time–frequency regions are discarded in

which the energy of the speech source is low, but

still above that of the noise. Here we set Hc = 10

(model units) by inspection.

2.4. ILD constraint

The model checks the ILD in each frequency

band for consistency with azimuth estimates from

the cross-correlogram, in order to confirm whether

each time–frequency region is dominated by the

target speech source, by noise from the interfering
source or by reflections. First, ildi( j) is calculated

for each channel i at time frame j, as described in

(9). The ILD estimate is then verified against the

azimuth of the speech source, /s, derived from

ITD cues. We consider that the ILD and ITD

are consistent if

j ildið jÞ � Xið/sÞ j< 0:5 dB ð12Þ
where Xi(/s) is an ILD template for channel i and

azimuth /s. If the condition (12) does not hold,
then the corresponding mask value m(i,j) is set to

zero.

The ILD template represents the �ideal� ILD ob-

served in each frequency channel for a sound

source at a specified azimuth (see Roman et al.,
2002; for a related approach). The templates are
precomputed in each frequency band above 2800

Hz, for 5� increments of azimuthal angle in the

frontal horizontal plane. Clean, unreverberated

speech was used to generate the ILD templates,

although any wideband sound will suffice; near-

identical templates have been obtained using

broadband noise rather than speech.

2.5. Rate threshold

In the final stage of mask estimation, we apply a

threshold to the energy in each frequency channel.

A moving average, Ei( j), of the energy is computed

for each channel i over a 200 ms window, with a

frame shift of 100 ms (note that we use the average

energy across the two ears of the model, engi,LR( j),
in this process). Then, if the condition

10log10
engi;LRð jÞ

Eið jÞ

� �
> Hr ð13Þ

does not hold, the corresponding mask element

m(i,j) is set to zero. Here, Hr is a rate threshold

which we set to �11 dB by inspection. The heuris-
tic (13) is particularly effective in conditions where

the signal-to-noise ratio is low. In such cases, azi-

muth estimation may be inaccurate (particularly

when the angular separation between sources is

small) and mask estimation is improved by reject-

ing time–frequency regions that have low energy,

since these are likely to be dominated by the inter-

fering noise.
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2.6. A priori mask

We employ a baseline system in which mask

estimation is based on a priori information about

regions of uncorrupted speech (see also Cooke
et al., 2001). This is achieved by measuring the dif-

ference (in each channel i at time frame j) between

the energy for speech contaminated by noise and/

or reverberation, engnoisyi;LR ð jÞ, and clean speech

engcleani;LR ð jÞ:

ma prioriði; jÞ ¼
1 if 10log10

eng
noisy

i;LR ð jÞ
engcleani;LR ð jÞ

� �
< Hap

0 otherwise

8<
:

ð14Þ

The threshold Hap was tuned to give optimal per-

formance for each experimental condition. The

a priori masks derived from (14) serve two pur-
poses; they allow the limits of the missing data

approach to be tested using a near-optimal mask,

and they allow us to test how close to this ideal

performance we can achieve using a posteriori

information only. Fig. 4 shows two masks gener-

ated using the a priori heuristic.
2.7. Missing data speech recogniser

The speech recogniser used in this study em-

ploys the missing data technique (Cooke et al.,

2001), in which a hidden Markov model (HMM)

system is adapted to deal with missing or unrelia-

ble data. The classification problem in speech re-

cognition involves the assignment of an acoustic

vector Y to a classW, such that the posterior prob-
ability P(WjY) is maximised. However, when a

noise intrusion is present or when the speech is

corrupted by environmental conditions such as

reverberation, some components of Y are likely

to be unreliable or missing. In these cases, the

acoustic model P(YjW) cannot be computed as

usual. The �missing data� technique addresses this
problem by partitioning Y into reliable and unreli-
able components, Yr and Yu. The reliable compo-

nents Yr are directly available to the classifier. As

noted in Section 2.3, the recogniser is provided

with a �mask� which represents the time–frequency
distribution of reliable and unreliable components

(see Fig. 4).

In the simplest approach, the unreliable compo-

nents are simply ignored, so that classification is

based on the marginal distribution P(YrjW). How-
ever, when Y is an acoustic vector it is usually

known that the uncertain components have

bounded values, and this information can be

exploited during classification using the so-called

�bounded marginalisation� method (Cooke et al.,

2001). Here, we use bounded marginalisation in

which Y is an estimate of auditory nerve firing

rate, so the lower bound for Yu is zero and the
upper bound is the observed firing rate.
2.8. Spectral energy normalisation

In order to achieve robustness to the convolu-

tional distortion caused by reverberation and

HRIR filtering, a spectral normalisation method

was developed. In conventional ASR systems
(for example, see Kingsbury, 1998), acoustic fea-

ture vectors are often normalised by the spectral

mean and variance in each frequency band. How-

ever, such an approach is not effective in the pres-

ence of non-stationary noise (such as an interfering

speaker), because clean regions of the speech signal

may be normalised by a spectral mean and vari-

ance that are computed when both speech and
noise sources are present.

This problem can be addressed within the miss-

ing data framework by computing a normalisation

factor from the reliable components Yr only, as

indicated by the time–frequency mask. Here, we

use a simple implementation of this scheme in

which the acoustic features in each channel are

normalised by the mean of the L largest reliable
features in that channel. More specifically, we

compute a normalisation factor gi for channel i
as follows:

gi ¼
1

L

X
l2C

envi;LRðlÞ ð15Þ

Here, C is a set containing the indices of the L larg-
est values of envi,LR( j) for which m(i,j) is unity. It

is important to emphasise here that envi,LR( j) con-
tains only positive values. The rationale for (15) is
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that a normalising factor should be computed

from time–frequency regions which are labelled

as reliable in the missing data mask and have high

energy, since they are least likely to be corrupted

by an interfering sound.
Generally, L is set to K/B, where K is the num-

ber of time frames in the input and B is a constant

(we use B = 15). However, in cases where the value

of L computed in this way is less than the number

of reliable regions, L is set to the number of relia-

ble regions exactly. If the number of reliable re-

gions is zero, the normalisation factor gi is

determined by interpolation from adjacent chan-
nels. During training of the recognizer, the whole

utterance was included in the search for the L larg-

est values, since the training was performed with

clean speech (i.e., all regions are reliable).
3. Evaluation

We have evaluated our system using a variety of

reverberation and noise conditions, generated by a

simulation of small room acoustics. In the first

experimental case, the effect of reverberation on

recognition performance was investigated. Sec-

ondly, we determined the extent to which recogni-

tion performance was influenced by the spatial

separation between speech and noise sources. In
the third experiment, the effect of the type of noise

intrusion on recognition performance was as-

sessed. Finally, we investigated the reliability of

azimuth estimation by the model in small-room

reverberation conditions for a number of spatial

separations in the presence of interfering speech,

both with and without precedence effect

processing.

3.1. Producing acoustic input using a model of small

room acoustics

Sound propagation from the acoustic source to

the ear canal is simulated using conventional spati-

alisation techniques (for an overview, see Møller,

1992). Room reflections are estimated using the
image model of small room acoustics (Allen and

Berkley, 1979) and then the direction dependent

filtering effects of the pinna, head and torso are
modelled by convolving the direct sound and

reflections with a head-related impulse response

(HRIR) for each ear. The set of HRIRs used in

this study were measured from the KEMAR arti-

ficial head by Gardner and Martin (1994). The
dimensions of the simulated room were chosen to

mimic a small office (length 6 m, width 4 m and

height 3 m). The sound receiver (�listener�) was
positioned in the middle of the floor at a height

of 2 m, and speech and noise were emitted from

a distance of 1.5 m at different horizontal angles.

The image model approximates the paths from a

sound source to a receiver by treating each bound-
ary of the room as a mirror, in which the source is

reflected. Sound reflections therefore correspond

to direct paths between the mirror-image sources

and the sound receiver. The different reverberation

times used in our experiments were created by var-

ying the absorption characteristics of the room

boundaries according to data for commonly used

building materials (Hall, 1991). Typically, acoustic
properties of surface materials vary a great deal

across frequency and are therefore characterised

by absorption coefficients for octave bands, which

can be transformed to octave band reflection coef-

ficients for the image model (see also Huopaniemi

et al., 1997). Sound propagation is also influenced

by air absorption, which introduces a low pass fil-

tering effect that mostly depends on distance and
air humidity.

To model the interaction between acoustic

space and the listener�s head and torso we define
a binaural room impulse response (Møller, 1992).

The total transmission from sound source v to

each ear, calculated from R reflection paths, is

hvleftðnÞ ¼
XR

p¼0
hvs;pðnÞ � hva;pðnÞ � hvleft;/p ;hpðnÞ

hvrightðnÞ ¼
XR

p¼0
hvs;pðnÞ � hva;pðnÞ � hvright;/p;hpðnÞ

ð16Þ

Here the term hvs;pðnÞ represents surface absorp-
tions along reflection pathway p, estimated from

the image model; hva;pðnÞ is an air propagation filter
(assuming approximately 50% relative humidity)

for pathway p; and hvleft;/p;hpðnÞ and hvright;/p ;hpðnÞ
are the left and right HRIRs, where /p and hp
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represent the azimuth and elevation at which

reflection pathway p strikes the head. The air

propagation filter is obtained as follows. Firstly,

we estimate an air absorption filter for propaga-

tion through 1 m of air, and then raise it to the
power of the distance assuming that air is a con-

volutive medium. It should be noted that circular

wave attenuation of sound pressure level is esti-

mated separately according to the 1/r law. The

techniques applied for room surface modelling

and air absorption are described in detail by Lokki

(2002).

For simplicity and computational efficiency, the
azimuth and elevation of each transmission path

were quantised to fit the resolution of the KE-

MAR HRIR data (see Gardner and Martin,

1994). The elevation angle was rounded to the

nearest 10 degrees in the interval �40� to 90�,
and larger negative values were always rounded

to �40. The azimuth resolution was 5� in the vicin-
ity of the horizontal plane and decreased as the ele-
vation increased to higher positive or negative

angles.

Our experiments required acoustic mixtures in

which speech and an interfering noise were pre-

sented from different spatial locations. These were

generated by separately convolving speech s(n) and

noise z(n) signals with a binaural impulse response

(16) corresponding to the desired location, and
summing the spatialised signals at each ear to give

a binaural mixture:

xleftðnÞ ¼ ½hsleftðnÞ � sðnÞ	 þ ½hzleftðnÞ � zðnÞ	
xrightðnÞ ¼ ½hsrightðnÞ � sðnÞ	 þ ½hzrightðnÞ � zðnÞ	

ð17Þ
3.2. Recogniser architecture and corpus

The system was evaluated on a 240 utterance

subset of male speakers from the TiDigits con-

nected digits corpus (Leonard, 1984). The sample

rate of the speech data was 20 kHz. Excitation pat-

terns were obtained for the training section of the

corpus, and were used to train 12 word-level

HMMs (a silence model, �oh�, �zero� and �1–9�) each
consisting of 8 no-skip, straight-through states

with observations modelled by a 10 component

diagonal Gaussian mixture. All models were
trained on clean, unreverberated signals. The

speech recognition accuracy of the system on the

clean test set was 98.6%.

The rock music, female speech and male speech

from Cooke�s (1993) corpus of noise intrusions
were used to test the model (Cooke designates

these signals as n4, n7 and n8 respectively). The

amplitude of each noise intrusion was scaled to

give a range of signal-to-noise ratios (SNRs) from

0 to 200 dB.

Noise intrusions and test utterances were con-

volved with left ear and right ear binaural impulse

responses to give spatial separations of 10�, 20�
and 40�. The binaural impulse response incorpo-
rated a room impulse response, generated by the

image model, to give T60 reverberation times of

0, 0.3 or 0.45 s (the T60 is the time required for

the sound level to drop by 60 dB following sound

offset). The spatialised noise and utterance signals

were then summed for each ear, giving a binaural

mixture.
We also trained the same HMM recognizer with

mel-cepstral coefficients (MFCCs) to provide a

baseline comparison. Feature vectors consisted of

13 MFCCs, together with their first and second or-

der temporal derivatives. In the MFCC processing

chain, signals were first transformed to the mel-

spectral domain after which left and right ear sig-

nals were summed. Then the combined left and
right ear spectrum was compressed logarithmically

and transformed to the cepstral domain by taking

the discrete cosine transform (DCT). Finally, ceps-

tral mean subtraction (CMS) was applied to the

cepstral representation. The accuracy of the

MFCC baseline recognizer on the clean test set

was 99.4%.

3.3. Experiment 1: effect of reverberation time

The first experiment evaluated the effect of

reverberation on speech recognition performance,

using T60 reverberation times of 0 (anechoic), 0.3

(mildly reverberant office) and 0.45 s (�live� office).
Mixtures of male speech and a noise intrusion (an-

other male speaker) were presented at SNRs of 0,
10, 20 and 200 dB in each reverberant condition.

The spatial separation between sources was 40�,
with the target speech presented at 20� azimuth
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and the interfering speech at �20� azimuth (i.e.,
the target speech was closer to the right ear of

the �listener�).
Table 1 shows the speech recognition accuracy

for each room condition. Results are given for the
MFCC baseline system, and for missing data recog-

nition in which masks have been estimated by the

binaural processor (BINAURAL) or by the a priori

heuristic (A PRIORI). For all room conditions at

SNRs of 20 dB and below, the binaural missing

data system achieves substantial improvements in

recognition accuracy compared to the baseline sys-

tem. Additionally, in the anechoic case the binaural
processor yields masks which are very close to the

a priori masks, giving near-ceiling performance

at all SNRs except the lowest (0 dB).

For the 200 dB SNR case, the MFCC baseline

system outperforms the binaural missing data rec-

ognizer in anechoic and reverberant conditions.

However, for this condition there is little difference

in performance between the baseline system and
missing data recognition with a priori masks. This

suggests that binaural mask estimation could be

improved to a level that would match the perform-

ance of the MFCC system at high SNRs.

As expected, the performance of all three ap-

proaches degrades as the reverberation time in-

creases, although the missing data approaches

remain relatively robust compared to the baseline
system. The largest drop in performance occurs

between the 0 and 0.3 s conditions; further increase
Table 1

Speech recognition accuracy (%) in the presence of interfering male sp

0.45 s

T60 (s) Method 0 dB

0 MFCC 5.9

BINAURAL 92.9

A PRIORI 96.3

0.3 MFCC 14.3

BINAURAL 54.9

A PRIORI 91.6

0.45 MFCC 13.0

BINAURAL 53.8

A PRIORI 91.2

Results are shown for SNRs of 0, 10, 20 and 200 dB, and for the MFCC

and missing data recogniser with a priori masks (A PRIORI).
of the reverberation time to 0.45 s has a smaller ef-

fect. Again, we note that with a priori masks the

recognition accuracy of the missing data approach

remains almost at ceiling in the presence of rever-

beration, suggesting that mask estimation could be
improved to give a higher level of performance.

3.4. Experiment 2: spatial separation

The second experiment investigated the effect of

the spatial separation between speech and noise

sources on recognition performance, using angular

separations of 10�, 20� and 40�. In each condition,
target speech and interfering male speech were pre-

sented symmetrically about the median plane at

azimuth angles of (�5, 5), (�10, 10) and (�20,
20), and were scaled to give SNRs of 0, 10 and

20 dB. Recogniser performance was assessed using

feature vectors for the favourable ear (i.e., the

right ear, which was closest to the target speech),

for the non-favourable (left) ear, and for the mean
feature vectors from both ears. In all conditions,

the T60 reverberation time was fixed at 0.3 s.

Table 2 shows recognition accuracy for each

spatial separation, and for each of nine recogniser

configurations (left, right and mean feature vectors

for the MFCC baseline system, binaural mask esti-

mation and a priori masks). Increasing the spatial

separation between target speech and interfering
speech improves the recognition performance with

the binaural system, most notably in the 0 and 10
eech for three rooms with T60 reverberation times of 0, 0.3 and

10 dB 20 dB 200 dB

50.4 78.2 99.7

97.2 97.6 98.2

97.2 97.6 98.2

47.6 76.9 95.0

83.4 91.4 93.1

94.6 94.5 93.7

47.1 75.4 94.3

80.1 90.9 92.3

94.8 94.9 93.9

-based recogniser, binaural missing data system (BINAURAL)



Table 2

Speech recognition accuracy (%) for angular separations of 10�, 20� and 40� azimuth between target speech and interfering speech
sources, for SNRs of 0, 10 and 20 dB

Separation (�) Method 0 dB 10 dB 20 dB

10 MFCC LEFT 18.2 49.7 78.2

MFCC RIGHT 16.5 51.9 76.9

MFCC MEAN 17.1 48.5 76.6

BINAURAL LEFT 21.3 64.0 83.8

BINAURAL RIGHT 18.9 62.1 81.5

BINAURAL MEAN 21.4 63.4 84.0

A PRIORI LEFT 90.2 94.5 95.3

A PRIORI RIGHT 90.3 93.9 94.7

A PRIORI MEAN 90.7 93.9 95.0

20 MFCC LEFT 11.1 46.0 74.5

MFCC RIGHT 17.0 52.5 76.9

MFCC MEAN 14.3 48.2 76.2

BINARAL LEFT 36.0 70.7 86.4

BINAURAL RIGHT 39.4 73.2 87.6

BINAURAL MEAN 38.7 72.7 88.5

A PRIORI LEFT 88.3 93.0 95.0

A PRIORI RIGHT 91.7 94.1 95.1

A PRIORI MEAN 90.2 93.5 95.6

40 MFCC LEFT 8.6 40.6 71.8

MFCC RIGHT 23.1 56.2 80.9

MFCC MEAN 14.3 47.6 76.9

BINAURAL LEFT 51.4 81.3 89.6

BINAURAL RIGHT 54.1 82.6 90.8

BINAURAL MEAN 54.9 83.4 91.4

A PRIORI LEFT 91.4 94.3 95.0

A PRIORI RIGHT 91.4 94.2 94.6

A PRIORI MEAN 91.6 94.6 94.5

For each system, results are shown for conditions in which recognition is based on the left ear features (LEFT), right ear features

(RIGHT) or average of left and right features (MEAN).
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dB SNR conditions. Performance with a priori

masks is largely independent of the spatial separa-

tion between sources, since it is primarily deter-

mined by the SNR.

The performance of the binaural missing data

system exceeds that of the MFCC system in all

conditions. However, performance of the MFCC

system approaches that of the binaural system
with 10� angular separation at 0 dB SNR. In this

challenging case, the binaural system failed to pro-

duce an accurate estimate of the azimuth of the

target speech, often confusing it with the azimuth

of the interfering noise (see Section 3.5).

We assessed the performance of each system on

left ear, right ear and mean left–right feature vec-
tors in order to investigate the benefit gained by

using only the ear nearest to the target speech.

Recognition accuracy for the binaural missing

data system improves with angular separations of

20� or more when the excitation pattern for the

ear nearest to the location of the target speech is

used, rather than the opposite ear. The improve-

ment is largest at the widest angular separation
(40�), since the SNRs in the favourable and non-
favourable ears differ most in this condition. The

performance of the binaural system with averaged

left–right ratemaps is either slightly below or

above the performance in the right ear. A similar

pattern is also seen for the other systems. No

advantage was apparent for any system when the
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angular separation between sources was small

(10�), since the SNR in each ear will be similar.

3.5. Experiment 3: noise type

In the third experiment, the effect of intrusion

type was investigated using three different noise

intrusions from Cooke�s (1993) corpus; male

speech, female speech and rock music. For all con-

ditions, the T60 reverberation time was 0.3 s, and

the angular separation between speech and noise

sources was 40� (corresponding to a noise azimuth
of �20� and a target speech azimuth of 20�). Re-
sults were obtained for SNRs of 0, 10 and 20 dB.

Table 3 indicates that the performance of the

binaural missing data system was best with the

female speech intrusion and worst with rock mu-

sic, across all SNRs. The MFCC baseline system

shows a notably different pattern of results, per-

forming worst with the male speech intrusion at

all SNRs. These results suggest that the binaural
system has an advantage when the spectrum of

the noise intrusion significantly overlaps the spec-

trum of the target speech, as is the case when the

intrusion is another male speaker.
3.6. Experiment 4: localisation performance and

precedence effect model evaluation

In addition to speech recognition accuracy, we

evaluated the accuracy of azimuth estimation by
Table 3

Speech recognition accuracy (%) for male speech, rock music and fe

speech intrusion)

Noise type Method 0 d

Male speech MFCC 14.

BINAURAL 54.

A PRIORI 91.

Rock music MFCC 9.

BINAURAL 32.

A PRIORI 88.

Female speech MFCC 16.

BINAURAL 53.

A PRIORI 90.

The target speech and noise intrusion were mixed at SNRs of 0, 10 a
the binaural model. Furthermore, we investigated

the utility of the precedence effect model by com-

paring results obtained with and without prece-

dence processing. The bar charts in Fig. 5 show

the percentage of hits at each azimuthal angle,
quantised to 1�, for azimuth estimation during

experiment 2. Each plot represents a total of 240

estimates of the azimuth of the target speech, one

for each mixture in the test set. The mode (i.e.,

the azimuth angle which receives the greatest num-

ber of hits) and standard deviation are shown for

each distribution.

For SNRs of 10 dB and above, location esti-
mates from the model are distributed within 5�
of the correct azimuth. However, decreasing the

SNR causes the distribution to become broader,

most notably when the SNR drops from 10 to 0

dB.

The effect of decreasing the angular separation

between speech and noise sources results in more

scattered estimates of the azimuth, and the model
starts to confuse the location of the speech source

with that of the noise. This is especially evident at

0 dB SNR. For 10� spatial separation and 0 dB
SNR, the peaks in the pooled cross-correlogram

are so close to each other that they tend to fuse,

producing only a single location estimate which

in many cases corresponds to the direction of the

interfering utterance.
The left and right panels of Fig. 5 show compar-

isons between azimuth estimation with and with-

out precedence effect processing. Precedence and
male speech intrusions (see Table 1 for performance with male

B 10 dB 20 dB

3 47.6 76.9

9 83.4 91.4

6 94.6 94.5

5 50.3 86.7

7 78.8 91.9

5 91.6 93.2

5 47.7 80.2

9 84.3 92.8

5 93.5 93.7

nd 20 dB.
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Fig. 5. Comparison of the distribution of target speech azimuth estimates, both with (left) and without (right) precedence effect

processing. Each plot represents 240 data points, one for each utterance in experiment 2. Three angular separations of the speech and

noise sources are shown (10�, 20� and 40�). The legend in each plot shows the mode (MO) and standard deviation (SD) of the
distribution.
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non-precedence test conditions were achieved by

setting the inhibition gain G in (5) to 1.0 and 0.0

respectively. It is evident from Fig. 5 that the prec-
edence model is particularly helpful in the 0 and 10

dB SNR conditions, in which it helps to produce

azimuth estimates that are generally closer to the

correct value.
4. General discussion

In this study we have described a binaural

auditory preprocessor for missing data speech

recognition. In a series of experiments, we evalu-

ated the model with mixtures of speech and var-

ious types of spatially separated noise, at

different SNRs and in different simulated acous-

tic environments.

Taken together, the results of our experiments
suggest four main conclusions. Firstly, the binau-

ral missing data system is much more robust than

a conventional MFCC-based recogniser in the

presence of an interfering sound source in small

room acoustic conditions. Secondly, the perform-

ance of the binaural system depends on the angu-

lar separation between the speech and noise

sources, giving substantial improvements in recog-
nition accuracy at the largest separation (40�) but
little improvement at the smallest separation

(10�). Thirdly, the characteristics of the intrusive
noise influence the performance of the binaural
system; location cues appear to be particularly

helpful when the spectra of the speech and noise

substantially overlap. Finally, the performance of

the binaural system is close to that obtained with

a priori masks in anechoic conditions; perform-

ance in reverberation is lower, however, indicating

that there is still room for improvement in the bin-

aural mask estimation process.
On a related point, we also note that the

MFCC-based baseline system performed slightly

better than the binaural missing data recogniser

when no intrusion was present. This suggests that

the robustness of the binaural system to room

reverberation requires further improvement. It is

possible that an approach proposed by Palomäki

et al. (2002) could be combined with the current
system. They employed a reverberation masking

algorithm to identify time–frequency regions that

were not contaminated by echoes; these regions

were retained in a missing data mask, whereas

other spectral regions were discarded. Substantial

improvements in the performance of their missing

data recogniser over that of an MFCC based

front-end were reported for reverberation times
ranging from 0.7 to 2.7 s.
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Computational models of the precedence effect

have been proposed by a number of workers

(e.g., Lindemann, 1986; MacPherson, 1991; Mar-

tin, 1997). Although some of these models are in

good agreement with certain psychophysical find-
ings such as the echo threshold, they have typically

been tested in a rather limited context, and in some

cases only with a single echo (Lindemann, 1986;

Martin, 1997). In this study our intention was

not to develop a comprehensive computational

model of binaural precedence and its many com-

plex subphenomena; rather, we required a simpli-

fied approach that embodied the main principles
thought to underlie the precedence effect, and

which improved localisation accuracy in a range

of reverberant conditions. This goal was achieved,

although much more work is needed on this aspect

of the localisation model before its performance

will approach that of human listeners.

In this study we needed to address the problem

of convolutional distortion caused by room rever-
beration and HRIR filtering. Missing data recog-

nition is primarily a technique for handling

additive noise; the performance of previously de-

scribed missing data recognisers (e.g., Barker

et al., 2000a,b; Cooke et al., 2001) may be severely

degraded by spectral variation in the transmission

channel or even by a change of input gain. Con-

ventional spectral normalisation strategies (such
as that used with modulation filtered spectro-

grams; see Kingsbury, 1998) will not work within

the missing data framework, since unreliable

time–frequency regions will affect the way in which

reliable regions are normalised. Our solution is to

tightly integrate spectral normalisation and mask

estimation, such that normalisation is based only

on reliable (and relatively intense) speech regions
as indicated by the mask estimation process. In a

recent paper, we have combined this normalisation

method with single channel missing data systems,

and shown that the resulting recogniser is robust

against convolutional noise and spectral distortion

(Palomäki et al., 2004).

Azimuth estimation in this study was based only

on ITD, which does not provide sufficient informa-
tion to discriminate elevation or make front/back

decisions. However, it is known that discrimination

of elevation is poor when spatially separated noise
is present, and that the intelligibility of speech in

the presence of noise does not improve if the two

sources are separated only by elevation (Hawley

et al., 1999). In contrast, speech intelligibility im-

proves substantially when the noise is located at a
different azimuthal angle (Hawley et al., 1999; Spi-

eth et al., 1954). Hence, in this study we concen-

trated our efforts on azimuth estimation, and

avoided �cone of confusion� errors (Blauert, 1997)
that occur with ITD by restricting source locations

to the frontal plane only.

We also note that ITD plays an important role

in auditory scene analysis, in which it is used as a
cue for linking acoustic events from the same

sound source over time (Darwin and Hukin,

1999). It should be noted, however, that our model

may be at odds with some psychophysical findings

regarding the role of ITD in concurrent sound

separation, since we employ ITD for both simulta-

neous (across-frequency) and sequential (across-

time) grouping. For example, Hukin and Darwin
(1995) have shown that listeners only exhibit a

weak tendency to segregate a harmonic from a vo-

wel, when that harmonic is given a different ITD to

the remaining components of the vowel (see also

Culling and Summerfield, 1995). Hence, it appears

that across-frequency grouping is primarily medi-

ated by other cues, such as harmonicity. Future

work will address this issue by integrating harmo-
nicity and common onset cues into our system; this

might give rise to further performance gains, par-

ticularly since harmonicity is known to be a rela-

tively robust cue for auditory grouping in the

presence of reverberation (Darwin and Hukin,

2000; see also Shamsoddini and Denbigh, 2001).

Currently, the binaural system locates the

speech and noise sources automatically; however,
to ensure that the appropriate source is passed to

the recogniser, we inform the system that the

speech always lies to the right of the noise. This

constraint could be relaxed by integrating our

model with the multi-source decoder described

by Barker et al. (2000a). Their system applies

top–down constraints from speech models in order

to identify acoustic fragments which have a high
likelihood of resembling the training set. Hence it

could be determined, prior to speech recognition

per se, whether the acoustic features selected by a
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binaural missing data mask correspond to a speech

or non-speech sound source. We also currently

constrain the sound sources to be stationary in

space, so that an average source location can be

computed over the whole input signal. In future
work, we intend to adapt the model to deal with

moving sound sources (see Roman and Wang,

2003). Again, top–down constraints from a multi-

source decoder could help to track sources that

move rapidly in space.

Finally, the experiments described here simu-

lated an indoor acoustic environment in which

speech and a noise intrusion were presented from
spatially separated sources. This configuration is

quite challenging for a computational model, and

is not atypical of actual listening conditions.

Clearly, however, speech perception by human lis-

teners remains robust in environments containing

many interfering noises that are distributed in

auditory space. Future work on the binaural miss-

ing data system will focus on improving perform-
ance in multi-source environments of this kind.
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