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16.1 Introduction

The human auditory system is, in a way, an engineering marvel. It is able to do wonderful
things that powerful modern machines find extremely difficult. For instance, our auditory
system is able to follow the lyrics of a song when the input is a mixture of speech and
musical accompaniments. Another example is a party situation. Usually there are multiple
groups of people talking, with laughter, ambient music and other sound sources running in the
background. The input our auditory system receives through the ears is a mixture of all these.
In spite of such a complex input, we are able to selectively listen to an individual speaker,
attend to the music in the background, and so on. In fact this ability of ‘segregation’ is so
instinctive that we take it for granted without wondering about the complexity of the problem
our auditory system solves.

Colin Cherry, in the 1950s, coined the term ‘cocktail party problem’ while trying to describe
how our auditory system functions in such an environment [12]. He did a series of experiments
to study the factors that help humans perform this complex task [11]. A number of theories have
been proposed since then to explain the observations made in those experiments [11,12,70].
Helmhotz had, in the mid-nineteenth century, reflected upon the complexity of this signal by
using the example of a ball room setting [22]. He remarked that even though the signal is
“complicated beyond conception,” our ears are able to “distinguish all the separate constituent
parts of this confused whole.”

So how does our auditory system solve the so-called cocktail party problem? Bregman tried
to give a systematic account in his seminal 1990 book Auditory Scene Analysis [8]. He calls
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the process “scene analysis” by drawing parallels with vision. It has been argued that the goal
of perception is to form a mental description of the world around us. Our brain analyzes the
scene and forms mental representations by combining the evidence that it gathers through
the senses. The role of audition is no different. Its goal is to form a mental description of the
acoustic world around us by integrating sound components that belong together (e.g., those
of the target speaker in a party) and segregating those that do not. Bregman suggests that the
auditory system accomplishes this task in two stages. First, the acoustic input is broken down
into local time-frequency elements, each belonging to a single source. This stage is called
segmentation as it forms locally grouped time-frequency regions or segments [79]. The second
stage then groups the segments that belong to the same source to form an auditory stream. A
stream corresponds to a single source.

Inspired by Bregman’s account of auditory organization, many computational systems
have been proposed to segregate sound mixtures automatically. Such algorithms have im-
portant practical applications in hearing aids, automatic speech recognition, automatic music
transcription, etc. The field is collectively termed Computational Auditory Scene Analysis
(CASA).

This chapter is about CASA and automatic speech recognition in noise. In Section 16.2, we
discuss some of the grouping principles of auditory scene analysis (ASA), focusing primarily
on the cues that are most important for the auditory organization of speech. We then move on
to computational aspects. How to combine CASA and ASR effectively is, in itself, a research
issue. We address this by discussing CASA in depth, and introducing an important goal of
CASA - Ideal Binary Mask (IBM) - in Section 16.3. As we will see, the IBM has applications
to both speech segregation and automatic speech recognition. We will also discuss a typical
architecture of CASA systems in Section 16.3. This will be followed by a discussion of
strategies used for IBM estimation in Section 16.4. In the subsequent section, we address the
topic of robust automatic speech recognition, where we will discuss some of the methods to
integrate CASA and ASR. We note that this topic will also be addressed in other chapters
(see Chapters 14 and 15 for detailed descriptions on missing-data ASR techniques). Finally,
Section 16.6 offers a few concluding remarks.

16.2 Auditory Scene Analysis

CASA-based systems use ASA principles as a foundation to build computational models. As
mentioned in the introductory section, Bregman described ASA to be a two stage process
which results in integration of acoustic components that belong together and segregation of
those that do not. In the first stage, an acoustic signal is broken down into time-frequency (T-F)
segments. The second stage groups segments formed in the first stage into streams. Grouping
of segments can occur across frequency or across time. They are called simultaneous grouping
and sequential grouping, respectively.

A number of factors influence the grouping stage which results in the formation of coherent
streams from local segments. Two distinctive schemes have been described by Bregman:
primitive grouping and schema-based grouping.

Primitive grouping is an innate bottom-up process that groups segments based on acoustic
attributes of sound sources. Major primitive grouping principles include proximity, periodicity,
continuity, common onset/offset, amplitude and frequency modulation, and spatial location [8,
79]. Proximity refers to closeness in time or frequency of sound components. The components
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of a periodic signal are harmonically related (they are multiples of the fundamental frequency
or F 0), and thus segments that are harmonically related are grouped together. Periodicity is a
major grouping cue that has also been widely utilized by CASA systems. Continuity refers to
the continuity of pitch (perceived fundamental frequency), spectral and temporal continuity,
etc. Continuity or smooth transitions can be used to group segments across time. Segments
that have synchronous onset or offset times are usually associated with the same source
and hence, grouped together. Among the two, onset synchrony is a stronger grouping cue.
Similarly, segments that share temporal modulation characteristics (amplitude or frequency)
tend to be grouped together. If segments originate from the same spatial location, there is a
high probability that they belong to the same source and hence should be grouped.

Unlike primitive grouping, schema-based grouping is a top-down process where grouping
occurs based on the learned patterns of sound sources. Schema-based organization plays an
important role in grouping segments of speech and music, as some of their properties are
learned over time by the auditory system. An example is the identification of a vowel based on
observed formants. Note that both schema-based and primitive grouping play important roles
in organizing real-world signals like speech and music.

The grouping principles introduced thus far were originally found though laboratory ex-
periments using simple stimuli such as tones. Later experiments using more complex speech
stimuli have established their role in speech perception [2,8]. Figure 16.1 shows some of
the primitive grouping cues present for speech organization. Cues like continuity, common
onset/offset, harmonicity are marked in the figure.

16.3 Computational Auditory Scene Analysis

Wang and Brown define CASA as ([79], p. 11):

. . . the field of computational study that aims to achieve human performance in ASA by using one
or two microphone recordings of the acoustic scene.

This definition takes into account the biological relevance of this field by limiting the number
of microphones to two (like in humans) and the functional goal of CASA. The mechanisms
used by CASA systems are perceptually motivated. For example, most systems make use of
harmonicity as a grouping cue [79]. But this does not mean that the systems are exclusively
dependent on ASA to achieve their goals. As we will see, modern systems make use of
perceptual cues in combination with methods not necessarily motivated from the biological
perspective.

16.3.1 Ideal Binary Mask

The goal of ASA is to form perceptual streams corresponding to the sound sources from the
acoustic signal that reaches our ears. Taking this into consideration, Wang and colleagues
suggested the Ideal Binary Mask as a main goal of CASA [24,27,76]. The concept was largely
motivated by the masking phenomenon in auditory perception, whereby a stronger sound
masks a weaker sound and renders it inaudible within a critical band [49]. Along the same
lines, the IBM defines what regions in the time-frequency representation of a mixture are
target dominant and what regions are not. Assuming a spectrogram-like representation of an
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Figure 16.1 Primitive grouping cues for speech organization (reproduced from Wang and Brown [79]).
The top panel shows a broadband spectrogram of the utterance “pure pleasure”. Temporal continuity,
onset and offset synchrony, common amplitude modulation and harmonicity cues are present. The bottom
panel shows a narrow-band spectrogram of the same utterance.

acoustic input, the IBM takes the form of a binary matrix with 1 representing target dominant
T-F units and 0 representing interference dominant units.

Mathematically, the IBM is defined as:

IBM (t, f ) =

{
1 if SNR(t, f ) ≥ LC

0 otherwise.
(16.1)

Here, SNR(t, f ) represents the signal-to-noise ratio (SNR) within the T-F unit of time index
t and frequency index (or channel) f . LC stands for a local criterion, which acts as an SNR
threshold that determines how strong the target should be over the noise for the unit to be
marked target dominant. The LC is usually set to 0 dB which translates to a simple rule of
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whether the target energy is stronger than the noise energy. Note that, to obtain the IBM, we
need access to the premixed target and interference signals (hence the term “ideal”). According
to them, a CASA system should aim at estimating the IBM from the mixture signal. It should
be pointed out that the IBM can be thought of as an “oracle” binary mask. Oracle masks,
binary or otherwise, have been widely used in the missing-data ASR literature to indicate the
ceiling recognition performance of noisy speech.

The reasons why the IBM is an appropriate goal of CASA include the following:

(i) Li and Wang studied the optimality of the IBM measured in terms of the improvement
in the SNR of a noisy signal (SNR gain) processed using binary masks [43]. They show
that, under certain conditions, the IBM with the LC of 0 dB is optimal among all binary
masks. Further, they compare the IBM with the ideal ratio (soft) mask, which is a T-F
mask with real values representing the percentages of target speech energy contained in
T-F units, similar to a Wiener filter. The comparisons show that, although the ideal ratio
mask achieves higher SNR gains than the IBM as expected, in most mixtures of interest
the difference in SNR gain is very small.

(ii) IBM-segregated noisy speech has been shown to greatly improve intelligibility for both
normal hearing and hearing impaired listeners [1,10,42,81]. Even when errors are intro-
duced to the IBM, it can still improve the intelligibility of noisy speech as long as the
errors are within a reasonable range [42,62]. Moreover, it has been found that the LC of
–6 dB seems to be more effective than the LC of 0 dB to improve speech intelligibility
[81] even though the latter threshold leads to a higher SNR of IBM processed signals.

(iii) Speech energy is sparsely distributed in a high-resolution T-F representation, and there is
little overlap between the components of different speakers in a speech mixture [63,86].
Under such circumstances, the IBM can almost segregate a mixture into its constituent
streams. Note that sparsity does not hold for broadband interferences such as speech
babble or when room reverberation is present.

(iv) Related binary masks have been shown to be effective for robust ASR [13,62]. Missing-
data techniques using IBM like masks have been discussed in detail in previous chapters
(see Chapters 14 and 15). Apart from missing-data ASR, other strategies have been
proposed that use the IBM to improve ASR results. We will look at a few of them later in
this chapter.

(v) Recently, Wang et al. [80] showed that IBM-modulated noise can produce intelligible
speech. In this experiment, speech-shaped noise (SSN) is modulated by the IBM created
for a mixture of speech and SSN. Speech shaped noise is broadband, and has a long-term
spectrum matching that of natural speech. Even with a coarse frequency resolution (e.g.,
16 bands), they observe nearly perfect intelligibility of IBM modulated noise.

Figure 16.2 shows an example of the IBM created for a two-talker mixture. The time-
frequency representation used in the figure is called a cochleagram, which is commonly used
in CASA [79]. Compared to the mixture in the middle left panel, the IBM-masked mixture
(shown in the bottom left panel) is more similar to the target utterance (shown in the top left
panel).

Apart from the IBM, research has also aimed at estimating the ideal ratio mask [3,73]. Note
that, the real values in a ratio (soft) mask can also be interpreted as the probability of a T-F unit
being target dominant. One can argue that estimating a ratio mask is computationally harder
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Figure 16.2 Illustration of the IBM. The top left panel shows a cochleagram of a target utterance where
brightness indicates energy. The top right panel shows a cochleagram of the interference signal. The
middle left panel shows a cochleagram of the mixture. The middle right panel shows the ideal binary
mask for the mixture where a white pixel indicates 1 and a black pixel 0. The bottom left panel shows
the cochleagram of the IBM-masked mixture.

than estimating a binary mask [77]. Nevertheless, the use of ratio masks has been shown to be
advantageous in some ASR studies [3,73].

16.3.2 Typical CASA Architecture

Figure 16.3 shows a typical architecture of CASA. All CASA systems start with a peripheral
analysis of the acoustic input (the mixture). Typically, the peripheral analysis converts the signal
into a time-frequency representation. This is usually accomplished by using an auditory filter
bank. The most commonly used is the gammatone filter bank [58]. The center frequencies of
the gammatone filter bank are uniformly distributed on the ERB-rate scale [18]. ERB refers to
the equivalent rectangular bandwidth of an auditory filter, which corresponds to the bandwidth



P1: TIX/XYZ P2: ABC
JWST201-c16 JWST201-Virtanen August 31, 2012 8:59 Printer Name: Yet to Come Trim: 244mm × 168mm

Computational Auditory Scene Analysis and Automatic Speech Recognition 439

Figure 16.3 Schematic diagram of a typical CASA system.

of an ideal rectangular filter that has the same peak gain as the auditory filter with the same
center frequency and passes the same total power for white noise. Similar to the Bark scale, the
ERB-rate scale is a warped frequency scale akin to that of human cochlear filtering. The ERB
scale is close to linear at low frequencies, but logarithmic at high frequencies. Figure 16.4
shows the responses of eight such filters, uniformly distributed according to the ERB-rate
scale from 100 to 2000 Hz. Although eight filters are sufficient to fully span a frequency range
of 50–8000 Hz, more filters (32 or 64) are typically used for a better frequency resolution.
To simulate the firing activity of auditory nerve fibers, the output from the gammatone filter
bank is further subjected to some nonlinear processing, where the Meddis hair cell model
is typically used [48]. It models the rectification, compression and the firing pattern of the
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Figure 16.4 A gammatone filter bank. The left panel shows impulse responses of eight gammatone
filters, with center frequencies equally spaced between 100 Hz and 2 KHz on the ERB-rate scale. The
right panel shows the corresponding magnitude responses of the filters.
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auditory nerve. Alternatively, a simple half wave rectification followed by some compression
(square root or cubic root) can be used to model the nonlinearity. Finally, the output at each
channel is windowed or downsampled. The result is the cochleagram of the acoustic signal as
it models the processing performed by the cochlea [79]. An element of a cochleagram is a T-F
unit, which represents the response of a particular filter at a time frame.

The next few stages vary depending on the specifics of different CASA systems. The
feature extraction stage computes features such as F 0, onset/offset, amplitude and frequency
modulation. The extracted features enable the system to form segments, each of which is a
contiguous region of T-F units. Segments provide a mid-level representation on which grouping
operates. The grouping stage utilizes primitive and schema-based grouping cues. The output
of the grouping stage can be an estimated binary mask or a ratio mask. Efficient algorithms
exist that can resynthesize the target signal using a T-F mask and the original mixture signal
[79,82].

16.4 CASA Strategies

Given the goal of estimating the IBM, we now discuss strategies to achieve it. The main
focus of this section will be on monaural CASA techniques which have seen most of the
development.

Monaural source segregation uses a single recording of the acoustic scene from which the
target is to be segregated. The most important cue utilized for this task is the fundamental
frequency. F0 estimation from clean speech is fairly accurate and many systems exist that
perform well; for example Praat is a freely available tool which is widely used [6]. The
presence of multiple sound sources in a scene adds to the complexity of the task as a single
frame may now have multiple pitch points. Perhaps the earliest system that used F0 for speech
segregation was proposed by Parsons [57]. He used the short-term magnitude spectrum of noisy
speech to estimate multiple F0s. A sub-harmonic histogram method, proposed by Shroeder
[64], was used to estimate the most dominant F 0 in a frame. He then removed the harmonics
of the estimated F 0 from the mixture spectrum and used the remainder to estimate the second
F 0. The estimated F 0s were finally used to segregate the mixture.

We start our discussion on IBM estimation in Section 16.4.1 by introducing strategies
based on noise-estimation techniques from the speech-enhancement literature. More recent
CASA-based strategies aim to segregate the target by extracting ASA cues like F 0, amplitude
modulation and onset/offset, which are then used to estimate the IBM. An alternative approach
is to treat mask estimation as a binary classification problem. We explain these approaches in
the subsequent subsections by treating two recent strategies in detail. The second subsection
focuses on the tandem algorithm proposed by Hu and Wang [26] that uses several ASA cues to
estimate the IBM. Section 16.4.3 focuses on a binary classification-based approach proposed
by Kim et al. [36]. The final subsection briefly touches upon binaural CASA strategies.

16.4.1 IBM Estimation Based on Local SNR Estimates

In this sub-section, we discuss mask estimation strategies that are based on local signal-to-
noise ratio estimates at each time-frequency unit. Such techniques typically make use of an
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estimate of the short-time noise power spectrum. The estimated noise power can be used to
obtain the SNR and in turn a T-F mask. It should be clear from Equation (16.1) that with the
true local SNR information, the IBM can be readily calculated. The noise estimate can also be
used to define masks based on alternative criteria, like the negative energy criterion used by
El-Maliki and Drygajlo [17]. We will first review a few noise-estimation techniques, followed
by a brief discussion on how they can be used to estimate the IBM.

Noise (and SNR) estimation is a widely studied topic in speech enhancement largely in
the context of spectral subtraction [5]. One commonly used technique is to assume that noise
remains stationary throughout the duration of an utterance and that the first few frames are
‘noise-only’. A noise estimate is then obtained by simply averaging the spectral energy of
these frames. Such estimates are, for instance, used in Vizinho et al. [75], Josifovski et al.
[34], Cooke et al. [13]. But noise is often nonstationary and therefore, such methods often
result in poor IBM estimates. More sophisticated techniques have been proposed to estimate
noise in nonstationary conditions. See, for example, voice-activity detection (VAD) [69] based
methods [40], Hirsch’s histogram based methods [23], recursive noise-estimation techniques
[23], etc. Seltzer et al. [65] use an approach similar to Hirsch’s to estimate the noise floor in
each sub-band, which is in turn used for mask estimation (see Section 16.4.3). A more detailed
discussion on noise estimation can be found in Chapter 4.

All noise-estimation techniques can be easily extended to estimate the SNR at each T-F unit
by using it to obtain an estimate of the clean speech power spectrum. A spectral subtraction
based approach [5,7] is commonly used, wherein the speech power is obtained by subtracting
the noise power from the observed noisy spectral power. Further, a spectral floor is set and any
estimate lower than the floor is automatically rounded to this preset value. Other direct SNR-
estimation techniques have also been proposed in the literature. For example, Nemer et al.
[53] utilize higher order statistics of speech and noise to estimate the local SNR, assuming
a sinusoidal model for band restricted speech and a Gaussian model for noise. A supervised
SNR-estimation technique was proposed by Tchorz and Kollmeier [74]. They use features
inspired from psychoacoustics and a multilayer perceptron (MLP)-based classifier to estimate
the SNR at each T-F unit. Interested readers are also referred to Loizou[46] for detailed reviews
on these topics.

If a noise estimate is used to calculate the SNR, the IBM can be estimated using Equation
(16.1) after setting the LC to an appropriate value. Although 0 dB is a natural choice here,
other values have also been used [13,60]. Soft (ratio) masks can be obtained from local SNR
estimates by applying a sigmoid function that maps it to a real number in the range [0, 1],
thereby allowing it to be interpreted as probability measures for subsequent processing. One
can also define masks based on a posteriori SNR, which is the ratio of the noisy signal power
to noise power expressed in dB [61]. This circumvents the need to estimate the clean speech
power and local SNR. Note that any a posteriori SNR criterion can be equivalently expressed
using a local SNR criterion. An even simpler alternative is to use the negative energy criterion
proposed by El-Maliki and Drygajlo [17]. They identify reliable speech dominant units as
those T-F units for which the observed noisy spectral energy is greater than the noise estimate.
In other words, T-F units for which the spectral energy after subtracting the noise estimate from
the observed noisy spectral energy is negative are considered noise dominant and unreliable.
Raj and Stern [59] note that a combination of an SNR criterion and a negative energy criterion
usually yields better quality masks.
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In practice, such noise-estimation-based techniques work well in stationary conditions but
tend to produce poor results in nonstationary conditions. Nonetheless, SNR-based techniques
are still used because of their simplicity.

16.4.2 IBM Estimation using ASA Cues

The tandem system by Hu and Wang [26] aims at voiced speech segregation and F0 estimation
in an iterative fashion. In describing the algorithm, we will explain how some of the ASA cues
can be extracted and utilized for computing binary masks.

The tandem system uses several auditory representations that are widely used for pitch
estimation. These representations are based on autocorrelation, which was originally proposed
by Licklider back in the 1950s to explain pitch perception [44]. Autocorrelation has been used
by other F 0 estimation techniques [24,38,85]. The tandem system first uses a gammatone
filter bank to decompose the signal into 128 frequency channels with center frequencies
spaced uniformly in the ERB-rate scale from 50 to 8000 Hz. The output at each channel is
divided into frames of length 20 ms with 10 ms overlap. A running autocorrelation function
(ACF) is then calculated according to Equation (16.2) at each frame to form a correlogram:

A(t, f, τ ) =

∑
n

x(tTt − nTn , f )x(tTt − nTn − τTn , f )√∑
n

x2(tTt − nTn , f )
√∑

n

x2(tTt − nTn − τTn , f )
. (16.2)

Here, A(t, f, τ ) denotes the normalized autocorrelation function at frequency channel f and
time frame t, and τ is the time delay in samples indexed by n. Tt = 10 ms and Tn = 1/fs ,
where fs is the sampling frequency, are the frame shift and the sampling time, respectively.
The function is normalized so that the peak value at τ = 0 is 1. An example of a correlogram is
shown in Figure 16.5. Usually, a peak in the ACF corresponds to the time delay that represents
a period of the signal. Since the target signal is speech, τ can be limited to the typical pitch
range between 70 and 400 Hz, or τTn between 2.5 and 15 ms [54]. Calculating the channel-
wise ACF after decomposing the signal using a filter bank, instead of directly calculating it
from the time domain signal, adds to the robustness of the F0 estimation process [14,85].
Additionally, a summary autocorrelation function (SACF) can be calculated by summing the
ACFs across all the channels:

SACF (T, τ ) =
∑
f

A(T, f, τ ). (16.3)

A peak in the SACF corresponds to the time period that has support from many frequency
channels. Since a periodic signal triggers responses in multiple channels, this peak likely
indicates the period of the signal.

The cross-channel correlation between neighboring channels has been used to identify
whether neighboring T-F units are dominated by the same source which can be used to group
the units to form a segment [9,78]. Normalized cross-channel correlation, C(t, f ), is calculated
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Figure 16.5 Autocorrelation and cross-channel correlation. (a) Correlogram at a frame for clean speech
(top left panel) and a mixture of speech with babble noise at 6 dB SNR (top right panel). The corre-
sponding cross-channel correlation and summary autocorrelation are shown on the right and the bottom
panel of each figure, respectively. A peak in the SACF is clearly visible in both cases. Note that corre-
lations of different frequency channels are represented using separate lines. (b) Corresponding envelope
correlogram and envelope cross-channel correlation for clean speech (bottom left panel) and the mixture
(bottom right panel). It can be clearly seen that the functions estimated from clean speech and noisy
speech match closely.

using the ACF as:

C(t, f ) =

∑
τ

[
A(t, f, τ ) − A(t, f )

] [
A(t, f + 1, τ ) − A(t, f + 1)

]
√∑

τ

[
A(t, f, τ ) − A(t, f )

]2
√∑

τ

[
A(t, f + 1, τ ) − A(t, f + 1)

]2
. (16.4)

Here, A(t, f ) denotes the mean of the ACF function over τ .
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As mentioned earlier, gammatone filters with higher center frequencies have wider band-
widths (see Figure 16.4). As a result, for a periodic signal, high-frequency filters will respond
to more than one harmonic of the signal. These harmonics are referred to as unresolved.
Unresolved harmonics cause filter responses to be amplitude modulated, and the envelope of
a filter response fluctuates at the fundamental frequency of the signal. This property has also
been used as a cue to group segments and units in high-frequency channels [24]. Amplitude
modulation or envelope can be captured by half wave rectification followed by band-pass
filtering of the response. The pass band of the filter corresponds to the plausible pitch range of
the signal. Replacing the filter responses in Equation (16.2) and Equation (16.4) with the ex-
tracted envelopes yields the normalized envelope autocorrelation, AE(t, f, τ ), and the envelope
cross-channel correlation, CE(t, f ), respectively. AE can be used to estimate the periodicity
of amplitude fluctuation. CE encodes the similarity of the response envelopes of neighboring
channels and aids segmentation. Figure 16.5 shows an example of a correlogram and an en-
velope correlogram for a single frame of speech (clean and noisy), and their corresponding
cross-channel correlations and SACFs.

For T-F unit labeling, the tandem algorithm uses the probability that the signal within a unit
is in agreement with a pitch period τ . This probability, denoted as P (T, f, τ ), is estimated with
the help of an MLP using a six-dimensional (6-D) pitch-based feature vector:

r(t, f, τ ) = [A(t, f, τ ), f̄ (t, f )τ − int(f̄ (t, f )τ ), int(f̄ (t, f )τ ),

AE(t, f, τ ), f̄E(t, f )τ − int(f̄E(t, f )τ ), int(f̄E(t, f )τ )], (16.5)

where the vector consists of ACFs and features derived using an estimate of the average
instantaneous frequency, f̄ (t, f ). In the equation, int(.) returns the nearest integer and the
subscript ‘E’ denotes envelope. f̄E is the instantaneous frequency estimated from the response
envelope. If a signal is harmonically related to the pitch period τ , then int(f̄ (t, f )τ ) and
int(f̄E(t, f )τ ) will indicate a harmonic number. The difference between these products and
their nearest integers in the second and the fourth terms quantifies a degree of this relationship.
An MLP is trained for each filter channel in order to estimate P (t, f, τ )1.

The algorithm first estimates initial pitch contours, each of which is a set of contiguous
pitch periods belonging to the same source, and their associated binary masks for up to two
sound sources. The main part of the algorithm iteratively refines the initial estimates. The final
stage applies onset/offset analysis to further improve segregation results. Let us now look at
these stages in detail.

The initial stage starts by identifying T-F units corresponding to periodic signals. Such
units tend to have high cross-channel correlation or envelope cross-channel correlation and,
therefore, are identified by comparing C(t, f ) and CE(t, f ) with a threshold. Within each frame,
the algorithm considers up to two dominant voiced sound sources. The identified T-F units of
a frame are grouped using a two step process. First, estimate up to two F 0s. Next, assign a T-F
unit to an F 0 group if it agrees with the F 0.

An earlier model by Hu and Wang [24] identifies the dominant pitch period of a frame as
the lag that corresponds to the maximum in the summary autocorrelation function (Equation
(16.3)). To check if a T-F unit agrees with the dominant pitch period, they compare the value

1 Note that this term is a convenient abuse of notation. It, in fact, represents the posterior probability of the T-F unit
being in agreement with the pitch period given the 6-D pitch-based features.
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of the ACF at the estimated pitch period to the peak value of the ACF for that T-F unit:

A(t, f, τD (t))
A(t, f, τP (t, f ))

> θP . (16.6)

Here, τD (t) and τP (t, f ) are the delays that correspond to the estimated F 0 and the maximum
in the ACF, respectively, for channel f at time frame t. If the signal within the T-F unit has a
period close to the estimated F 0, then this ratio will be close to 1. θP defines a threshold to
make a binary decision about the agreement.

The tandem algorithm uses a similar approach, but instead of the ACF it uses the probability
function, P (t, f, τ ), estimated using the MLPs. Having identified the T-F units of each frame
with strong periodicity, the algorithm chooses the lag, τ , that has the most support from these
units as the dominant pitch period of the frame. A T-F unit is said to support τ if the probability,
P (t, f, τ ), is above a chosen threshold. The T-F units that support the dominant pitch period
are then grouped together. The second pitch period and the associated set of T-F units are
estimated in a similar fashion, using those units not in the first group. To remove spurious
pitch estimates, if there are too few supporting T-F units, the estimated pitch is discarded.

To form pitch contours from these initial estimates, the algorithm groups the pitch periods
of any three consecutive frames if their values change by less than 20% from one frame to the
next. The temporal continuity of the sets of T-F units associated with the pitch periods is also
considered before grouping pitch estimates together; at least half of the frequency channels
associated with the pitch periods of neighboring frames should match for them to be grouped
into a pitch contour. After the initial stage, each pitch contour has an associated T-F mask.
Since pitch changes rather smoothly in natural speech, each of the formed pitch contours and
its associated binary mask usually belong to a single sound source. Isolated pitch points after
this initial grouping are considered unreliable and discarded.

These initial estimates are then refined using an iterative procedure. The idea is to use
obtained binary masks to obtain better pitch contours, and then use the refined pitch estimates
to re-estimate the masks. Each iteration of the tandem algorithm consists of two steps:

(i) The first step expands each pitch contour to its neighboring frames, and re-estimates its
pitch periods. Since pitch changes smoothly over time, the pitch periods of the contour
can be used to estimate potential pitch periods in the contour’s neighboring frames.
Specifically, for the kth pitch contour τk , that extends from frame t1 to t2 , the corresponding
binary mask, Mk (t) (t = t1 , . . . , t2), is extended to frames t1 − 1 and t2 + 1 by setting
Mk (t1 − 1) = Mk (t1) and Mk (t2 + 1) = Mk (t2). Using this new mask, the periods of the
pitch contour are reestimated. A summary probability function, SP (t, τ ), which is similar
to SACF (t, τ ) but uses P (t, f, τ ) values instead of A(t, f, τ ), is calculated at each frame
for this purpose. The SP function tends to have significant peaks at multiples of the pitch
period. Therefore, an MLP is trained to choose the correct pitch period from among the
multiple candidates. The expansion stops at either end when the estimated pitch violates
temporal continuity with the existing pitch contour. Note that, as a result of contour
expansion, pitch contours may be combined.

(ii) The second step reestimates the mask corresponding to each of the pitch contours. This
is done by identifying T-F units of each frame that are in agreement with the estimated
pitch period of that frame. Given the pitch period τD (t), P (t, f, τD ) can be directly used to
make this decision at each T-F unit. But this does not take into consideration the temporal
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continuity and the wide-band nature of speech. If a T-F unit is in agreement with τD ,
its neighboring T-F units also tend to agree with τD . For added robustness, the tandem
algorithm trains an MLP to perform unit labeling based on a neighboring set of T-F units.
It takes as input the P (t, f, τ ) values of a set of neighboring T-F units, centered at the unit
for which the labeling decision has to be made. The output of this MLP is finally used to
label each T-F unit.

The algorithm iterates between these two steps until it converges or the number of iterations
exceeds a predefined maximum (20 is suggested).

The final step of the tandem algorithm is a segmentation stage based on onset/offset analysis,
which may be viewed as post processing. The stage forms segments by detecting sudden
changes in intensity as such a change indicates an onset or offset of an acoustic event. As
discussed earlier, onset and offset are prominent ASA principles (see Figure 16.1). Segments
are formed using multiscale analysis of onsets and offsets (see Hu and Wang [25] for details).
The tandem algorithm further breaks each segment down to channel wise subsegments, called
T-segments as they span multiple time frames but are restricted to a single frequency channel.
Each T-segment is then classified as a whole as target dominant if at least half its energy is
contained in the voiced frames of the target and at least half of the energy in these voiced
frames is included in the target mask. If the conditions are not satisfied, the labeling from the
iterative stage remains unchanged for the units of the T-segment.

Figure 16.6 illustrates the results of different stages of the tandem system. The mask
obtained at the end of the iterative stage (Figure 16.6(e)) includes most of the target speech. The
subsequent segmentation stage improves the segregation results by recovering a few previously
masked (mask value 0) T-F units, for example toward the end of the utterance in Figure 16.6(g).
These units were identified from the onset/offset segments. The final resynthesized waveform,
shown in Figure 16.6(h), is close to the original signal (Figure 16.6(b)).

There are two important aspects of CASA that the tandem algorithm does not consider.
The first one is sequential organization. The outputs of the tandem system are multiple pitch
contours and associated binary masks. The pitch track (and therefore the mask) of a target
utterance need not be continuous as there are breaks due to silence and unvoiced speech.
Sections before and after such discontinuities have to be sequentially grouped into the target
stream. The tandem system assumes ideal sequential grouping, and therefore ignores the
sequential grouping issue. Methods for sequential grouping have been proposed. Barker et al.
[4] proposed a schema based approach using ASR models to simultaneously perform sequential
integration and speech recognition (more about this in Section 14.4.3). Ma et al. [47] later
used a similar approach to group segments that were formed using correlograms in voiced
intervals and a watershed algorithm in unvoiced intervals. Shao and Wang [67] proposed a
speaker model-based approach for sequential grouping. Recently, Hu and Wang [30] proposed
an unsupervised grouping strategy based on clustering and reported results comparable to the
model-based approach of Shao and Wang.

The second issue with the tandem algorithm is that it does not deal with unvoiced speech.
An analysis by Hu and Wang [28] shows that unvoiced speech accounts for more than 20%
of spoken English, measured in terms of both frequency and duration of speech sounds.
Therefore, unvoiced speech segregation is important for improving the intelligibility and
ASR of the segregated target signal. Dealing with unvoiced speech is challenging as it has
noise-like characteristics and lacks strong grouping cues such as F 0. Hu and Wang [28]
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Figure 16.6 Different stages of IBM estimation using the tandem system. (a) Cochleagram of a female
target utterance. (b) Corresponding waveform. (c) Cochleagram of a mixture signal obtained by adding
crowd noise to the target utterance. (d) Corresponding waveform. (e) Mask obtained at the end of
the iterative stage of the algorithm. (f) Waveform of the resynthesized target using the mask. (g) The
final mask obtained after the segmentation stage. (h) The resynthesized waveform. (i) The IBM. (j)
Resynthesized signal using the IBM. Reproduced by permission from Hu and Wang [26] © 2010 IEEE.

suggest a method to extract unvoiced speech using onset/offset based segments. They first
segregate voiced speech. Then, acoustic-phonetic features are used to classify the remaining
segments as interference dominant or unvoiced speech dominant. A simpler system was later
proposed by Hu and Wang [29]. Their system first segregates voiced speech and removes
other periodic intrusions from the mixture. It then uses a spectral subtraction based scheme
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to obtain segments in unvoiced intervals (an unvoiced interval corresponds to a contiguous
group of unvoiced frames); the noise estimate for each unvoiced interval is estimated using
the mixture energy in the masked T-F units of its neighboring voiced intervals. Together with
an approximation of the target energy obtained by subtracting the estimated noise from the
mixture, the local SNR at each T-F unit is calculated. The segments themselves are formed by
grouping together neighboring T-F units that have estimated SNRs above a chosen threshold.
The obtained segments are then classified as target or interference dominant based on the
observation that most of the target dominant unvoiced speech segments reside in the high-
frequency region. The algorithm works well if the noise remains fairly stationary during the
duration of an unvoiced interval and the neighboring voiced intervals.

16.4.3 IBM Estimation as Binary Classification

The tandem algorithm exemplifies a system that uses ASA cues and supervised learning to
estimate the IBM. When it comes to direct classification, the issues lie in choosing appropriate
features that can discriminate target speech from interference, and an appropriate classifier.
To explain how direct classification is applied, we describe the classification-based approach
of Kim et al. [36] in detail.

The system by Kim et al. uses amplitude modulation spectrograms (AMS) as the feature to
build their classifier. To obtain AMS features, the signal is first passed through a 25 channel
filter bank, with filter center frequencies spaced according to the mel-frequency scale. The
output at each channel is full-wave rectified and decimated by a factor of 3 to obtain the
envelope of the response. Next, the envelope is divided into frames 32 ms long with 16 ms
overlap. The modulation spectrum at each T-F unit is then calculated using the FFT2. The
FFT magnitudes are finally integrated using 15 triangular windows spaced uniformly from
15.6 to 400 Hz, resulting in 15 AMS features [39]. Kim et al. augment the extracted AMS
features with delta features calculated from the neighboring T-F units. The delta features are
calculated across time and frequency, and for each of the 15 features separately. They help
capture temporal and spectral correlations between T-F units. This creates a 45-dimensional
feature representation for each T-F unit, AMS(t, f ).

Given the 45-dimensional input, a Gaussian mixture model (GMM)-based classifier is
trained to do the classification. The desired unit labels are set using the IBM created using
an LC (see Equation (16.1)) of –8 dB for low-frequency channels (channels 1 through 15)
and –16 dB for high-frequency channels (channels 16 through 25). This creates a group of
masked T-F units, represented as λ0 , and unmasked (mask value 1) T-F units, λ1 . The authors
chose a lower LC for high-frequency channels to account for the difference in the masking
characteristics of speech across spectrum. Each group, λi , where i = 0, 1, is further divided into
two smaller subgroups, λ0

i and λ1
i , using a second threshold, LCi . The thresholds (LC0 < LC

and LC1 > LC) are chosen such that the amount of training data in the two subgroups of
a group are the same. This second subdivision is done mainly to reduce the training time
of the GMMs. A 256-mixture, 45-dimensional, full-covariance GMM is trained using the
expectation-maximization algorithm to model the distribution of each of the 4 subgroups.

2 A T-F unit, here, refers to a 32 ms long frame at a particular frequency channel.
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Given a T-F unit from a noisy utterance, a Bayesian decision is then made to obtain a binary
label that is 0 if and only if P (λ0 | AMS(t, f )) > P (λ1 | AMS(t, f )), where

P (λ0 | AMS(t, f )) =
P (λ0 , AMS(t, f ))

P (AMS(t, f ))

=
P (λ0

0)P (AMS(t, f ) | λ0
0) + P (λ1

0)P (AMS(t, f ) | λ1
0)

P (AMS(t, f ))
.

The equation calculates the a posteriori probability of λ0 given the AMS features at the T-F
unit. P (λ0

0) and P (λ1
0) are the a priori probabilities of subgroups λ0

0 and λ1
0 , respectively,

calculated from the training set. The likelihoods, P (AMS(t, f ) | λ0
0) and P (AMS(t, f ) | λ1

0),
are estimated using the trained GMMs. P (AMS(t, f )) is independent of the class label and,
hence, can be ignored. P (λ1 | AMS(t, f )) is calculated in a similar fashion.

One advantage of using the AMS feature is that it can handle both voiced and unvoiced
speech, as opposed to the 6-D pitch based feature used by the tandem algorithm which can be
used only to classify voiced speech. As a result, the mask obtained using Kim et al.’s algorithm
includes both voiced and unvoiced speech.

Figure 16.7 shows an estimated binary mask using Kim et al.’s algorithm. The authors evalu-
ated their system using speech intelligibility tests and reported substantial improvements in the
intelligibility of segregated speech for normal-hearing listeners [36]. It is worth emphasizing
that this is the first monaural segregation system that produces improved speech intelligibility.

One of the main disadvantages of Kim et al.’s system is that training is noise dependent.
Although it works well when tested on speech corrupted with the same noise types, the perfor-
mance degrades significantly when previously unseen noise types are used during the testing
stage. A second disadvantage of the system is that it can handle only nonspeech intrusions
because AMS features mainly distinguish speech and nonspeech signals. By avoiding com-
peting talkers, the problem of sequential organization is avoided because all detected speech
belongs to the target.

Jin and Wang [32] also proposed a classification-based approach to perform voiced speech
segregation in reverberant environments. For T-F unit classification, they use the 6-D pitch-
based features given in Equation (16.5), and an MLP-based classifier. In order to utilize
global information that is not sufficiently represented at the T-F unit level, an additional
segmentation stage is used by their system. Segmentation is performed based on cross-channel
correlation and temporal continuity in low-frequency channels—adjacent T-F units with high
cross-channel correlation are iteratively merged to form larger segments. In high-frequency
channels, they are formed based on onset/offset analysis [25]. The unit level decisions are then
used to group the formed voiced segments either with the target stream or the nontarget (or the
background) stream. Their system produced good segregation results under various reverberant
conditions. Since pitch-based features are derived using the pitch of the target, classifiers
trained on such features tend to generalize better than those trained using AMS features.

More recently, Kun and Wang proposed an SVM-based binary mask estimation model [19].
Inspired by Jin and Wang [32] and Kim et al. [36], they propose to combine pitch-based and
AMS features along with the use of an SVM based classifier. Their system performs well in a
variety of test conditions and is found to have good generalization to unseen noise types.

In the context of robust ASR, Seltzer et al. [65] proposed a similar Bayesian classification
based approach to mask estimation. They extract the following features at the T-F unit level to
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Figure 16.7 IBM estimation using classification. (a) A spectrogram of a target utterance from the IEEE
corpus. (b) Spectrogram of the noisy mixture obtained by adding babble noise to the target utterance. (c)
The estimated binary mask. (d) The spectrogram of the resynthesized signal obtained using the estimated
binary mask. Reprinted with permission from Kim et al. [36] © 2009, Acoustical Society of America.

build GMM based Bayesian classifiers: comb filter ratio (CFR), which is the log ratio of the
total energy at the harmonics of the fundamental frequency estimated for a frame to the total
energy in between those frequencies; autocorrelation peak ratio (APR), which is the ratio of
height of the largest secondary peak in the ACF to the height of the main peak; the log ratio
of the energy within the T-F unit to the total energy at that time frame; kurtosis, calculated
from sample averages in each subband at each time frame; spectral flatness, measured in
terms of the variance of the subband energy within the spectrographic neighborhood of the
T-F unit; the ratio of the subband energy at each time frame to the noise floor estimated for
that subband; and spectral subtraction based local SNR estimate. The features are chosen such
that they capture the characteristics of speech in noise without making assumptions about the
underlying noise type. Except for the first two features, viz. CFR and APR, the remaining ones
can be used to characterize properties of T-F units in both voiced and unvoiced time frames.
CFR and APR are used only for the T-F units in voiced frames. GMMs are trained for voiced
and unvoiced speech separately, and also at each subband and are in turn used to obtain soft
T-F masks. The obtained masks improve ASR performance when used in conjunction with
missing-data-based strategies. Seltzer et al. [65] use speech mixed with white noise to train the
classifiers. This can be limiting when it comes to generalization to unseen noisy conditions.
To overcome this, Kim and Stern [37] suggest training each frequency band separately, using
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artificial colored noise signals generated specifically for each band. They show that this can
yield better generalization results as compared to using white noise alone for training.

In a way, classification-based strategies simplify the task of speech segregation, at least
conceptually. It bypasses the steps of a typical CASA system which extracts perceptually
motivated cues and applies the ASA stages of segmentation and grouping to obtain a binary
mask. The potential downside of relying on supervised learning is the perennial issue of
generalization to unseen conditions.

16.4.4 Binaural Mask Estimation Strategies

Binaural CASA systems use two microphone recordings to segregate the target from the mix-
ture. Most binaural systems try to extract localization cues, for example azimuth, which are
encoded in the differences between the signals that reach the two ears (or microphones). In
this regard, interaural time difference (ITD) and interaural intensity difference (IID) are the
two most important cues. ITD is the difference between the arrival times of the signal at the
two ears. ITD is ambiguous at high frequencies (> 1.5 KHz) because of short wavelengths
as compared to the distance between the ears. IID is the difference in the intensity of the
sound that reaches the two ears, usually expressed in decibels, and it occurs because of the
‘shadow’ effect of the human head. Contrary to ITD, IID is not useful at low frequencies
(< 500 Hz) because such low-frequency sound components diffract around the head overcom-
ing the shadow effect in the process.

Two classical strategies strongly influenced binaural segregation: the cross-correlation based
model for ITD estimation proposed by Jeffress [31] and the equalization-cancellation (EC)
model of Durlarch [16]. The EC model tries to segregate the target in a two stage process.
In the first stage, the noise levels in the signals arriving at the two ears are equalized. This
is followed by subtraction of the signals at the two ears in the cancellation stage. The noise
equalized in the first stage gets canceled during the second stage, producing a cleaner target.
The Jeffress model is based on the similarity of the signals that arrive at the two ears. The
neural firing patterns of the two ears are passed through delay lines; the delay that maximizes
the correlation between the two patterns is identified as the ITD of the signal.

To compute ITD, a normalized cross-correlation function, C(t, f, τ ), is typically used

C(t, f, τ ) =

∑
n

xL (tTt − nTn , f )xR (tTt − nTn − τTn , f )√∑
n

x2
L (tTt − nTn , f )

√∑
n

x2
R (tTt − nTn − τTn , f )

. (16.7)

The above equation calculates cross-correlation at frequency channel f and time frame t, for
a time lag τ . xL and xR correspond to the left and right ear response, respectively. Tt and
Tn have the same meanings as in Equation (16.2). Similar to the normalized autocorrelation
function, the cross-correlation function will have a peak at a delay that relates to ITD. IID can
be calculated as the ratio of the mean power of the signals that arrive at the two ears:

IID(t, f ) = 10 log10

( ∑
n x2

L (tTt − nTn , f )∑
n x2

R (tTt − nTn , f )

)
. (16.8)



P1: TIX/XYZ P2: ABC
JWST201-c16 JWST201-Virtanen August 31, 2012 8:59 Printer Name: Yet to Come Trim: 244mm × 168mm

452 Techniques for Noise Robustness in Automatic Speech Recognition

An IBM estimation strategy based on classifying ITD and IID estimates was proposed by
Roman et al. [62], which is probably the first classification-based system for speech segrega-
tion. They observed that, given a predefined configuration of the target and the interference
(configuration here refers to the azimuths of the target and the interference), ITD and IID
values vary smoothly and systematically with respect to the relative strength of the target
and the mixture. This prompted them to model the distribution of target dominant units and
interference dominant units of each frequency channel in the ITD-IID space. Their system
models the distributions using a nonparametric kernel-density estimator. For an unseen test
utterance, the binary decision at each T-F unit is made by comparing the probabilities of the
unit being target dominant and interference dominant, given the observed ITD and IID at that
unit. The binary masks estimated by their model are very close to the IBM, with excellent
performances in terms of SNR gains, speech intelligibility and ASR accuracies. The main
drawback of the model is that ITD-IID distributions are configuration dependent. A similar
system was proposed by Harding et al. [20], which assumes that only the target azimuth is
known a priori. It then learns the joint distribution of ITD and IID for target dominant T-F
units using a histogram-based method. These distributions are used to predict the probability
of a unit being target dominant from the observed ITD and IID. The estimated probabilities
are directly used in the form of a ratio mask, to improve ASR results in reverberant conditions.

The above strategies are based on modeling the distribution of the binaural cues in the ITD-
IID space. An alternative approach was proposed by Palomaki et al. [55]. This approach first
estimates target and interference azimuths. It then classifies a T-F unit as target or interference
dominant by comparing the values of the cross-correlation function at the estimated azimuths
of the target and the interference. In order to deal with room reverberation, their system models
the precedence effect [45] by using the low-pass filtered envelope response of each channel
as an inhibitor. This reduces the effect of late echoes in reverberant situations by preserving
transient and suppressing sustained responses. Palomaki et al. reported good ASR results in
reverberant situations using the above algorithm to estimate binary masks.

Recently, Woodruff and Wang [84] proposed a system that combines monaural and binaural
cues to estimate the IBM. Their system uses a monaural CASA algorithm to first obtain simul-
taneous streams, each occupying a continuous time interval. They use the tandem algorithm,
described earlier, for this purpose. Binaural cues are then used to jointly estimate the azimuths
of the streams that comprise the scene and their corresponding sets of sequentially grouped
simultaneous streams.

16.5 Integrating CASA with ASR

The CASA strategies discussed in Section 16.4 provide us several perceptually inspired ways
of segregating the target from a mixture. The main focus has been on estimating the ideal binary
mask. Although IBM-based strategies produce good segregation results, integrating CASA and
ASR has not been as straightforward a task as it seems. A simple way of combining CASA
with ASR is to use CASA as a preprocessor. ASR models trained in clean conditions can
then be used to perform recognition on the segregated target speech. This can be problematic.
Even when the IBM is used, the resynthesized signal will have artifacts that may pose chal-
lenges to recognition. Errors in IBM estimation will further degrade the performance of such
systems.
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Nevertheless, CASA has been used as a preprocessor in some systems and has been shown
to produce good results. One such model was proposed by Srinivasan et al. [73]. Their system
uses a ratio T-F mask to enhance a noisy utterance. A conventional HMM-based ASR system
trained using the mel-frequency cepstral coefficients (MFCC) of clean speech is used to
recognize the enhanced speech. For mask estimation, they use the binaural segregation model
by Roman et al. [62]. Srinivasan et al. compared their system with the missing-data ASR
approach [13] and found that using such a CASA-based preprocessor can be advantageous
as the vocabulary size of the recognition task increases. The limitation of missing-data ASR
in dealing with larger vocabulary tasks had been reported earlier [60]. The use of a ratio
mask instead of a binary mask coupled with accurate mask estimation helped their system in
overcoming some of the limitations of using CASA as a preprocessor.

More recently, Hartmann and Fosler-Lussier [21] compared the performance of an ASR
system that simply discards masked T-F units, which is equivalent to processing the noisy
speech with a binary mask, with a system that reconstructs those units based on the information
available from the unmasked T-F units. Such feature-reconstruction strategies have been used
to improve noise robust ASR [60]. An HMM based ASR system trained in clean conditions
is used to perform recognition. They observe that the direct use of IBM-processed speech
performs significantly better than the reconstructed speech, and yields ASR results only a
few percentage points worse than those in clean conditions. When noise is added to the IBM
by randomly flipping 1s and 0s, only after the amount of mask errors exceeds some point
does reconstruction work better. This is a surprising observation, considering the conventional
wisdom that the binary nature of a mask is supposed to skew the cepstral coefficients (they
used PLP cepstral coefficients to build their ASR system). This study points to the need of a
deeper understanding of the effects of using binary masks on ASR performance.

The above methods somehow modify the features so that they can be used with ASR
models trained in clean conditions. Such strategies have been called feature compensation
or source-driven methods. Feature compensation includes techniques that use CASA based
strategies for segregating the target [21,73] and reconstructing unreliable features [60]. An
alternative approach would be to modify ASR models so that they implicitly accommodate
missing or corrupt speech features. Such strategies have been termed model compensation or
classifier compensation methods. The missing-data ASR techniques are examples of model
compensation strategies [13]. There are also strategies that combine feature compensation and
model compensation [15,71], and simultaneously perform CASA and ASR [4,72].

A much simpler strategy for integrating CASA and ASR was proposed by Narayanan and
Wang [50] and Karadogan et al. [35]. They interpret IBMs as binary images and use a binary
pattern classifier to do ASR. The idea of using binary pattern recognition for ASR is radically
different from the existing strategies that use detailed speech features like MFCCs. Their work
was motivated by the speech perception study showing that modulating noise by the IBM
can produce intelligible speech for humans [80, also see Section 16.3]. Since noise carries no
speech information, intelligibility must be induced by the binary pattern of the IBM itself.
This indicates that the pattern carries important phonetic information. The system described
in Narayanan and Wang [50] is designed for an isolated digit recognition task. The ASR
module is based on convolutional neural networks [41,68], which have previously been used
successfully for handwritten digit and object recognition. Their system obtains reasonable
results even when the IBM is estimated directly from noisy speech using a CASA algorithm.
They extend their system further in Narayanan and Wang [51] to perform a more challenging
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phone classification task, and show that IBMs and traditional speech features like MFCCs
carry complimentary information that can be combined to improve the overall classification
performance. The combined system obtains classification accuracies that compare favorably
to most of the results reported in recent phone classification literature. It is quite interesting to
note that features that are based on binary patterns can obtain good results on complex ASR
tasks. Such CASA inspired features may eventually be needed for achieving robust ASR.

In the following subsection we discuss in greater detail an example of a CASA-inspired
ASR framework. The subsection focuses on the uncertainty transform model proposed by
Srinivasan and Wang [71] that combines feature compensation and model compensation to
improve ASR performance.

16.5.1 Uncertainty Transform Model

Using a speech-enhancement algorithm to obtain features for ASR does not always yield good
recognition results. This is because, even with the best enhancement algorithms, the enhanced
features remain somewhat noisy, as far as the ASR models trained in clean conditions are
concerned. Moreover, the variance of such features, with respect to the corresponding clean
features, varies across time and frequency. Uncertainty decoding has been suggested as a
strategy to modify ASR model parameters to take into account the inherent uncertainty of
such enhanced features (see Chapter 17 for a more detailed handling of uncertainty decoding
strategies). It has been shown that feature uncertainties contribute to an increase in the variance
of trained acoustic variables and accounting for it during the recognition (decoding) stage can
significantly improve ASR performance [15].

A mismatch in the domain of operation between speech enhancement or segregation and
ASR can pose problems in effectively adjusting ASR model parameters based on estimated
uncertainty. Such a mismatch exists for most CASA-based techniques as they operate either
in the spectral or T-F domain, as opposed to ASR models that operate in the cepstral domain.
Training ASR models in the spectral domain is known to produce suboptimal performance. In
order to overcome this mismatch problem, Srinivasan and Wang [71] suggested a technique
to transform the uncertainties estimated in the spectral domain to the cepstral domain.

The uncertainty transform model by Srinivasan and Wang consists of a speech-enhancement
module, an uncertainty transformer, and a traditional HMM-based ASR module that operates
in the cepstral domain. The enhancement module uses a spectrogram reconstruction method
that is similar to [60] but operates in the linear spectral domain. To perform recognition,
the enhanced spectral features are transformed to the cepstral domain. The corresponding
uncertainties, originally estimated in the spectral domain, are transformed using a supervised
learning method. Given the enhanced cepstral features and associated uncertainties, recognition
is performed in an uncertainty decoding framework. Details about these stages are discussed
below.

The speech-enhancement module starts by converting a noisy speech signal into the spectral
domain using the FFT. The noisy spectrogram is then processed using a speech-segregation
algorithm that estimates the IBM. A binary mask partitions a noisy spectral vector, y, into its
reliable components, yr , and the unreliable components, yu . Assuming that yr sufficiently
approximates the corresponding clean speech spectral values, xr , the goal of reconstruction
is to approximate the true spectral values, xu , of the unreliable components. It uses a speech
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prior model for this purpose, implemented as a large GMM, where the probability density of
a spectral vector of speech (x) is modeled as

p(x) =
K∑

k=1

P (k)p(x | k).

Here, K represents the number of Gaussians in the GMM, k is the Gaussian index, P (k) is the
prior probability of the kth component (or the component weight), and p(x | k) = N (x; μk ,Θk )
is the conditional probability density of x given the kth Gaussian. In the Gaussian, μk and Θk

denote the mean vector and the covariance matrix, respectively. Such a GMM can be trained
by pooling the entire training data and using an expectation maximization algorithm to learn
the parameters. The mean and the covariance matrix of the kth Gaussian are also partitioned
into its reliable and unreliable components using a binary mask:

μk =
[

μr,k

μu,k

]
,Θk =

[
Θrr,k Θru,k

Θur,k Θuu,k

]
,

where μr,k and μu,k are the reliable and the unreliable components of the mean vector of the
kth Gaussian, respectively; Θrr,k and Θuu,k are the corresponding covariances of the reliable
and the unreliable components; and Θru,k and Θur,k are the cross-covariances.

The unreliable components are reconstructed by first estimating the a posteriori probability
of the kth Gaussian using only the reliable components, xr , of the frame:

P (k | xr ) =
P (k)p(xr | k)

K∑
k=1

P (k)p(xr | k)

. (16.9)

Next, the conditional mean of the unreliable components given the reliable components is
approximated as

μ̂u,k = μu,k + Θur,kΘ−1
rr,k (xr − μr,k ). (16.10)

Note that this is the standard formula for calculating the conditional mean of random variables
that follow a multivariate normal distribution.

Given the a posteriori component weights and the conditional mean, a good approximation
of the unreliable components is the expected value of xu given xr , which is also the minimum
mean-squared estimate (MMSE) of xu . The MMSE estimate can be calculated as

x̂u = Exu |xr
(xu ) =

K∑
k=1

P (k | xr )μ̂u,k (16.11)

Finally, a measure of uncertainty in the estimation of the reconstructed spectral vector, x̂
(xr

⋃
x̂u ), is calculated as

Θ̂x̂ =
K∑

k=1

P (k | xr )

⎧⎨⎩
([

xr

μ̂u,k

]
− μk

)
.

(
xr

μ̂u,k
− μk

)T

+

[
0 0
0 Θ̂u,k

]⎫⎬⎭ (16.12)
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where

Θ̂u,k = Θuu,k − Θur,kΘ−1
rr,kΘru,k .

Equation (16.12) is based on the idea of adapting the trained GMM using the reconstructed
spectral vector as an incomplete observation [83]. Even though yr is considered reliable dur-
ing feature reconstruction, the above equation associates a positive, albeit small, measure of
uncertainty to it. This helps the uncertainty transformation model to learn the subsequent
transformation of these quantities to the cepstral domain, since cepstral uncertainties de-
pend on both xr and xu . If a diagonal covariance matrix is used to model the speech prior,
Equation (16.11) and Equation (16.12) can be modified to [66]

x̂u,k =
K∑

k=1
P (k | xr )μu,k , (16.13)

θ̂x̂ =
K∑

k=1
P (k | xr )

⎧⎨⎩
([

xr

x̂u,k

]
− μk

)2

+

[
0

θu,k

]⎫⎬⎭ , (16.14)

where squaring is done per element of the vector. θ̂x̂ and θu,k denote the measure of uncer-
tainty in estimation of x̂ and the unreliable components of the variance of the kth Gaussian,
respectively. This simplification is due to the fact that all the cross-covariance terms will have
the value 0 when the covariance matrix is diagonal. The use of a diagonal covariance matrix
reduces the training time and simplifies the calculations.

To perform ASR, the uncertainty transform approach converts the enhanced spectral feature
(x̂) to the cepstral domain. This is straightforward as we have a fully reconstructed feature
vector. The main step is to transform the estimated uncertainties to the cepstral domain. In
Srinivasan and Wang [71], regression trees are trained to perform this transformation as the
true parametric form of this relationship is unknown. If we assume that the cepstral features
consist of 39 MFCCs (including the delta and acceleration coefficients), and that the ASR
module is based on HMMs that use Gaussians with diagonal covariance matrices to model the
observation probability, the goal of the transformation is to estimate the squared difference,
θẑ , between the reconstructed cepstra, ẑ, and the corresponding clean cepstra, z [15]. The
input to the system is the estimated spectral variance (θ̂x̂ or diag(Θ̂x̂), depending on whether
diagonal or full covariance matrices are used by the feature reconstruction module). Srinivasan
and Wang additionally use the reconstructed cepstral values corresponding to that frame, a
preceding frame and a succeeding frame, as input features as they were found to be useful
in learning the transformation. The cepstral uncertainties of each of the 39 dimensions are
learned using separate regression trees.

Having obtained the enhanced cepstral features and the associated uncertainties, ASR is
performed in an uncertainty decoding framework. Since we only have access to the enhanced
cepstra, ẑ, the observation probability in an HMM-based decoder is calculated by integrating
over all possible clean speech cepstral values, z, as shown below:∫ ∞

−∞
p(z | q, k)p(ẑ | z)dz = N (ẑ; μq ,k , θq ,k + θẑ). (16.15)

In the equation, q denotes a state in the HMM and k indexes the Gaussians used to model
the observation probability. μq ,k and θq ,k are the corresponding mean and the variance vector
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Table 16.1 Word error rates (WER) of the uncertainty transform and the multiple prior based
uncertainty transform methods, as well as the reconstruction-based approach. Baseline results of
directly recognizing the noisy speech are also shown. MP abbreviates multiple priors. The last column
shows the average WER of each of the systems across all the noise types. Reproduced by permission of
Narayanan et al. [52] © 2011 IEEE.

Test Set

System Car Babble Restaurant Street Airport Train Average

Baseline 44.9 43.7 43.2 52.0 44.1 55.2 47.2

Reconstruction 21.5 38.5 42.6 41.5 41.5 39.4 37.5
Uncertainty decoding 18.9 34.2 41.2 40.6 37.0 39.0 35.2

MP reconstruction 19.6 34.8 41.0 38.3 41.1 36.5 35.2
MP uncertainty decoding 18.4 32.8 39.1 37.4 36.9 36.5 33.5

of the kth Gaussian. If the observation probability is modeled using Gaussians and if the
enhancement is unbiased, this probability can be calculated as shown in the equation [15].
Essentially, the learned variance of a Gaussian component is modified during the recognition
stage by adding the estimated cepstral uncertainty to it.

An extension to Srinivasan and Wang’s uncertainty transform framework was recently
proposed by Narayanan et al. [52]. They propose using multiple prior models of speech,
instead of a single large GMM, to better model spectral features. Specifically, they train prior
models based on the voicing characteristic of speech by splitting the training data into voiced
and unvoiced speech. While reconstructing a noisy spectrogram, frames that are detected as
voiced by their voiced/unvoiced (V/UV) detection module are reconstructed using the voiced
prior model. Similarly, unvoiced frames are reconstructed using the unvoiced prior model.
The V/UV detector is implemented as a binary decision problem, using GMMs to model the
underlying density of voiced and unvoiced frames. Like in the uncertainty transform model
of Srinivasan and Wang, reconstructed spectral vectors and their corresponding uncertainties
are finally transformed to the cepstral domain, and recognition is performed in the uncertainty
decoding framework.

The word error rates obtained using the uncertainty transform and the extension by
Narayanan et al. [52] on the Aurora-4 5000 word closed vocabulary speech recognition task
[56] are shown in Table 16.1. This task is based on the Wall Street Journal (WSJ0) database.
The IBM is estimated using a simple spectral subtraction based approach [71]; the spectral
energy in the first and last 50 frames is averaged to create an estimate of the noise spectrum,
which is then simultaneously used to ‘clean’ the noisy spectrogram and to estimate the IBM
by comparing it with the energy in each T-F unit. From the table, we can see that, compared
to the baseline, uncertainty transform clearly reduces the word error rate in all of the testing
conditions. An average improvement of 12 percentage points is obtained over the baseline
of directly recognizing noisy speech. Compared to feature reconstruction, an improvement of
2.3 percentage points is obtained. Using multiple prior models further improves the average
performance by 1.7 percentage points.

The results show that the uncertainty transform and the use of multiple prior models are
effective in dealing with noisy speech utterances. One of the main advantages of the uncertainty
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transformation is that it enables CASA-based speech enhancement techniques that operate in
the spectral domain to be used as a front-end for uncertainty decoding based ASR strategies.
The supervised transformation technique can be used whenever the enhancement and the
recognition modules operate in different domains. Uncertainty transform techniques provide
a clear alternative to missing-data and reconstruction approaches to robust ASR.

16.6 Concluding Remarks

In this chapter, we have discussed facets of CASA and how it can be coupled with ASR to
deal with speech recognition in noisy environments. To recapitulate, we discussed perceptual
mechanisms that allow humans to analyze the auditory scene. We then looked at how such
mechanisms are incorporated in computational models with the goal of achieving human-like
performance. Most of the systems discussed in the chapter try to estimate the ideal binary
mask, which is an established goal of CASA. Finally, in Section 16.5, we described how
CASA can be integrated with ASR.

Although clear advances have been made in the last few years in improving CASA and
ASR, challenges remain. CASA challenges lie in developing effective strategies to sequentially
organize speech and to deal with unvoiced speech. Apart from additive noise, recent studies
have started addressing room reverberation [20,33]. Advances in CASA will have a direct
impact on ASR. ASR systems have been demonstrated to perform excellently when the IBM
is used. Improvements in IBM estimation will lead to more robust ASR. Over the last decade,
attempts at integrating CASA and ASR have yielded fruitful results. Strategies like missing-
data ASR, uncertainty transform, and missing feature reconstruction go beyond using CASA
as preprocessor for ASR. Further progress in robust ASR can be expected from even tighter
coupling between CASA and ASR.

Achieving human-level performance has been the hallmark of many AI endeavors. In CASA,
this translates to a meaningful description of the acoustic world. Therefore, recognizing speech
in realistic environments is a major benchmark of CASA. Our understanding of how we analyze
the auditory scene may eventually pave the way to truly robust ASR.
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