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Improving Robustness of Deep Neural Network
Acoustic Models via Speech Separation
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Abstract—Although deep neural network (DNN) acoustic
models are known to be inherently noise robust, especially with
matched training and testing data, the use of speech separation
as a frontend and for deriving alternative feature representations
has been shown to improve performance in challenging environ-
ments. We first present a supervised speech separation system
that significantly improves automatic speech recognition (ASR)
performance in realistic noise conditions. The system performs
separation via ratio time-frequency masking; the ideal ratio mask
(IRM) is estimated using DNNs. We then propose a framework
that unifies separation and acoustic modeling via joint adaptive
training. Since the modules for acoustic modeling and speech
separation are implemented using DNNs, unification is done by
introducing additional hidden layers with fixed weights and ap-
propriate network architecture. On the CHiME-2 medium-large
vocabulary ASR task, and with log mel spectral features as input
to the acoustic model, an independently trained ratio masking
frontend improves word error rates by 10.9% (relative) compared
to the noisy baseline. In comparison, the jointly trained system
improves performance by 14.4%. We also experiment with alter-
native feature representations to augment the standard log mel
features, like the noise and speech estimates obtained from the
separation module, and the standard feature set used for IRM
estimation. Our best system obtains a word error rate of 15.4%
(absolute), an improvement of 4.6 percentage points over the next
best result on this corpus.

Index Terms—CHIME-2, joint training, ratio masking, robust
ASR, time-frequency masking.

I. INTRODUCTION

HE introduction of deep neural network based acoustic
models (DNN-AM) [11] has had a substantial impact on
improving current ASR systems. Not only has DNN-AMs im-
proved performance in relatively clean conditions [34], it has
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also boosted noise robustness [47], [35]. Our recent study inves-
tigates a feature based technique to improve ASR performance
in noise [29]. In contrast to model adaptation, feature based ASR
techniques keep the ASR backend unchanged during recogni-
tion, and perform speech/feature enhancement to handle noise.
Such techniques can therefore be used with any ASR backend,
be it Gaussian mixture model (GMM) based or DNN based.

The systems presented in [29] uses a time-frequency (T-F)
masking based speech separation frontend. In T-F masking, the
mixture energy at each T-F unit of the signal is weighted using
a gain that is inversely proportional to the amount of noise it
contains. The matrix of gains, typically called a time-frequency
mask, is estimated directly from the input signal. The ideal ratio
mask, which is defined as the ratio of the clean signal energy
to the noisy signal energy at each T-F unit [37], is used in
[29], and is estimated using DNNs. The results show that using
such a speech separation system with DNN-AMs works reason-
ably well, but improvements compared to GMM based acoustic
models (GMM-AM) are not as large.

With DNNS, it has also been observed that using a speech
separation frontend does not always improve performance [35],
[29]. This is especially true when log mel-spectral fea-
tures, which have been shown to work better than cepstral
features [25], [29], are used as input and when testing conditions
are similar to the training conditions. A strategy commonly
used with GMMs is retraining the ASR system using the
enhanced features to minimize mismatch [44]. But frontends
invariably introduce distortions, and with DNN-AMs retraining
can sometimes negatively affect performance [35], [29]. An
alternative strategy with GMM-AMs has been joint or adaptive
training—the enhancement and the recognition modules are
optimized jointly [2], [23], [15]. A probabilistic formulation of
both the enhancement frontend and the GMM-AMs lends itself
to expectation maximization (EM) style iterative training.

In adaptive training, the acoustic models are trained in a
‘canonical’ feature space. The frontend feature/model trans-
formation morphs the original input features to this canonical
space. This has two advantages. First, the canonical acoustic
models are more amenable to adaptation. If the feature/model
transforms are learned at test time, like in the case of vector
Taylor series (VTS) model adaptation, transforming the canon-
ical models performs better than transforming the models
trained in the original input space [2], [15]. Second, the errors
made by the frontend are modeled much better.
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An example of joint/adaptive training is VTS based noise
adaptive training (VTS-NAT), which uses VTS model adapta-
tion to deal with noise and channel mismatch [15]. VTS-NAT is
an iterative two-stage EM algorithm. It first trains a GMM-AM
using clean or noisy data. In the first stage of the algorithm, the
parameters of the GMM-AM are kept fixed and the distortion
parameters (noise and channel statistics) for VTS-model adapta-
tion are learned from the data. In the second stage, the distortion
parameters are kept fixed and the parameters of the GMM-AM
are updated so as to maximize the likelihood of the data given
the adapted models. The algorithm iterates between these two
stages until convergence.

Most adaptive training algorithms are tailored for
GMM-AMs. In the context of DNN-AMs, a speaker adaptive
training strategy was proposed in [1], where a discriminative
speaker code and a non-linear feature transform are learned to
transform the original features to the representation in the first
hidden layer of the DNN-AM. The acoustic model parameters
remain unchanged during adaptive training. The canonical
feature space is implicitly defined by the representation learned
by the first hidden layer of the DNN-AM. Such joint adaptive
training strategies, to the best of our knowledge, have not been
proposed in the context of noise robustness.

This paper proposes a strategy for jointly training a
ratio-masking based speech separation frontend and a
DNN-AM. We call the proposed framework joint adaptive
training for DNN-AMs (DNN-JAT). Even though the model
parameters are not updated during test time, we call the pro-
posed training strategy ‘adaptive’ to differentiate it from the
simpler approach of retraining the acoustic model using the
transformed features without modifying the transformation
in itself—an approach that has been classified as joint training
[20]. Joint training schemes have been used successfully with
GMM-AMs [44], but not so much with DNN-AMs [35], [7].

Since separation as a frontend gives limited performance
gains when using DNN-AMs, we also study how ASR per-
formance can be improved by augmenting the traditional log
mel spectra with additional features when training the acoustic
models. For example, noise-aware training (NAT) proposed in
[35] uses a crude estimate of noise obtained by averaging the
first and the last few frames of each utterance as an additional
input. This improved performance on the Aurora-4 corpus [31]
by 3.9% (relative). It was shown in [30] that instead of using
such an estimate, speech separation can be used to obtain a
more accurate estimate of noise. Additionally, features like
speech estimate and residual noise estimate, which can both be
derived from speech separation, are shown to further improve
performance. We analyze the performance that can be obtained
using these alternative feature representations in the context of
joint adaptive training. We also study whether the feature set
that is traditionally used as input by supervised mask estimation
algorithms adds any further information when they are used
for acoustic modeling. We note that [30] presents a preliminary
version of this work. Apart from studying additional features
for acoustic modeling, this article presents extended analysis
and results compared to [30].
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Fig. 1. (Color online) A block diagram of joint noise adaptive training. The
two main components of the system, speech separation and acoustic modeling,
are shown along with how they are joined into a single framework.

This paper is organized as follows. The proposed systems are
presented in Section II, followed by an in-depth evaluation in
Section III. We conclude with a discussion in Section I'V.

II. SYSTEM DESCRIPTION

For the DNN-JAT system that we present here, it is assumed
that there is not a lot of channel mismatch between training
and testing, and that speech separation primarily addresses
background noise. Channel mismatch, like those caused by
microphone characteristics and room reverberation, is typically
addressed by learning the channel impulse response within
a model based probabilistic framework when using GMMs
[21]. With DNNs, channel effects can, arguably, be handled
by collecting more training data (see, e.g., [47]). For example,
additional recordings can be made using a new cell phone
with previously unseen microphone characteristics if an ASR
system has to be deployed on it. Alternatively, feature mapping
can also be used [29]. Unlike channel mismatch, background
noise can be more uncertain and harder to deal with.

We present joint adaptive training in the context of a speech
separation frontend that handles background noise via time-
frequency masking. A block diagram of the proposed system
is shown in Fig. 1. The goal of the frontend is to estimate a
time-frequency mask, an ideal ratio mask in our case, which is
used to weight the energy at each T-F bin of the noisy spectra.
The ideal mask is defined as the ratio of the speech to mix-
ture energy at each T-F bin, assuming that speech and noise are
uncorrelated [35], [7]:

.

= X0+ N, 1



94 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 1, JANUARY 2015

Here, M) s the IRM, X and N are the clean and the noise
(mel) spectrogram, respectively, and ¢ and ¢ index time and
frequency; and we assume that the mixture energy Y¢(c) =
Xi(e) + N¢(c). It is easy to see that, with perfect estimation,
masking using the IRM restores the clean spectra. The compo-
nents of the system are described in detail below.

A. Speech separation

As mentioned, speech separation is done in a supervised
fashion via ratio masking using DNNs. DNNs have now be-
come the standard in supervised speech separation [24], [29],
[44], [19], [45], [41], [13]. Apart from mask estimation, binary
[42] or ratio [27], [29], [13], they have also been used in other
ways. In [24], recurrent neural networks (RNNs) are used to
denoise cepstral features. Weninger et al. use bidirectional
long short-term memories, a more sophisticated variety of
recurrent nets, for denoising and show that they work better
than plain RNNs [44]. Xu ef al. use DNNs to estimate the log
power spectral coefficients and found them to work better than
statistical speech enhancement algorithms [45]. In [41], it was
shown that, in the context of speech separation, ratio masking
is perhaps the most effective way to handle background noise
when using DNNs. This is largely because 1) ratio masks are
inherently normalized and bounded targets, and 2) denoising
via masking is less sensitive to estimation errors.

We perform IRM estimation in the 26-channel mel spectro-
gram domain spanning frequencies in the range 50 Hz to 7 kHz.
A window size of 20 msec and a hop size of 10 msec are used.
The IRM is estimated using a system similar to the one pre-
sented in [29], but is simplified so that it can be easily incor-
porated into the joint framework. The following feature set is
extracted at every time frame from the noisy input signal:

* 13 dimensional relative spectral filtered perceptual linear
predictive cepstral coefficients (RASTA-PLP) [10]. The
features for 7 contiguous frames are spliced together to add
context.

* Amplitude modulation spectrograms (AMS) [18]. 15-di-
mensional AMS features are extracted separately for each
of the 26 frequency bands in the mel spectrogram. They
are then concatenated to form the input feature for a time-
frame.

* 31 dimensional broadband and narrowband mel frequency
cepstral coefficients (MFCC). Narrowband MFCCs, which
are extracted using an analysis window of 200 msec [5],
add a lot more context than broadband MFCCs, which use
a 20 msec window. Similar to RASTA-PLPs, the MFCC
features of 7 contiguous frames are spliced together to form
the input representation.

The context size while forming features is fixed to 7 to keep

a check on the input dimensionality. The above features when
concatenated together forms a 915-dimensional (13 x 7+ 15 X
26 + 31 x 2 x 7) input feature, which is fed to a 3 hidden
layer DNN that simultaneously estimates the IRM for all 26 fre-
quency channels. Each hidden layer has 1024 nodes. Through
cross-validation, we found 3 layers and 1024 nodes to be suf-
ficient; decreasing the number of layers increased estimation
error, and increasing both the number of layers and the number

of nodes did not significantly improve performance. The DNN
is trained with a dropout rate of 0.3 for both the input and the
hidden layers. The hidden nodes use rectified linear activations
(ReLU) [26] and the output nodes sigmoidal activations. The
weights are learned using mini-batch stochastic gradient descent
with AdaGrad [8] and momentum. The momentum is linearly
increased from 0.1 to 0.5 over the first 5 epochs after which
it is set to 0.9. Mini-batch size is set to 256. The weights are
initialized to small random values. We also normalize the L,
norm of incoming weights of the hidden nodes to 1 after each
update [12]. The DNN is trained for 50 epochs to minimize the
cross-entropy error criterion. The learning rate is set to 0.01 for
the first 10 epochs, 0.005 for the next 20 epochs, and 0.001 for
the last 20 epochs.

Note that the IRM estimation algorithm in [29] estimates
masks at the subband and the fullband levels, and then com-
bines these estimates over a window in the post-processing stage
to explicitly incorporate context. The proposed system, on the
other hand, incorporates context at the feature level.

B. Acoustic Modeling

Motivated by the studies in [35], [30], we experiment with
multiple input feature representations apart from the commonly
used noisy log mel spectrogram (NMS). Some of these features
are derived using the IRM estimated by the speech separation
module. Given an estimated IRM, M) , We can obtain an esti-
mate of both speech and noise as follows:

N,=(1-M"ov,
X, = Moy,

2
)

Here, X and N correspond to estimates of the clean and noise
mel spectrogram. A tunable parameter o (< 1) exponentially
scales-up IRM estimates to reduce the speech-distortion intro-
duced by masking at the expense of retaining some noise. Note
that to obtain noise estimate, the mask is not scaled. Exponenti-
ation is done point-wise. & denotes point-wise multiplication.

We use the following input feature representations based on

the above estimates:

* NMS: Noisy log-compressed mel spectrogram along with
deltas and double deltas. After sentence level mean nor-
malization, features from 11 contiguous time frames are
spliced together, as is commonly done, to incorporate con-
text. The dimensionality of this feature is 858.

* NMS + SNE: This feature uses the NMS feature and ap-
pends it with a ‘stationary’ noise estimate obtained by aver-
aging the first and the last 15 frames of the noisy mel spec-
trogram. This feature set replicates the system proposed in
[35]. The dimensionality of this feature is 884.

* NMS + DNE: This feature uses the NMS feature and ap-
pends it with a ‘dynamic’ noise estimate obtained using
the estimated IRM. The noise estimate is obtained as per
Eq. (2), and is smoothed using a 9th order ARMA filter
[4]. A 9th order filter roughly smooths over a window of
19 time-frames, which is the same as the number of frames
needed to create an input feature representation for NMS
features after the context for deltas and double deltas are
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taken into consideration. The dimensionality of this fea-
ture is 884.

* NMS + DNE + SE: Same as above, but also appends an
estimate of speech obtained by smoothing X in Eq. (3)
using a 2nd order ARMA filter. 2nd order filters were sug-
gested in [4], [5]. The dimensionality of this feature is 910.

*+ NMS + fIRM: The NMS feature appended with the fea-
tures defined in Section II-A for IRM estimation. The di-
mensionality of this feature is 1773.

« NMS + fIRM + DNE + SE: Same as above, but with
smoothed speech and noise estimates as additional fea-
tures. The dimensionality of this feature is 1825.

The DNN-AMs consist of 7 hidden layers, each with 2048
nodes, and are trained in a way similar to the DNNs used for
IRM estimation. Dropout rate is fixed to 0.3 for all layers. The
hidden nodes use ReL.U activations and the output layer uses
softmax activation. Mini-batch stochastic gradient descent with
AdaGrad and momentum is used for weight optimization, and
the L2 norm of the weights of each node is normalized to 1.
The network is trained for 50 epochs. The learning rate is set to
0.005 for the first 30 epochs and 0.001 for the final 20 epochs.
Momentum is linearly updated from 0.1 to 0.5 over the first
5 epochs, and is set to 0.9 starting the 6th. The weights are
initialized to random values; no pre-training is used. A subset
of the development set was chosen for cross-validation during
training, to ensure that the models converge and that they do not
overfit to the training data. We found that both AdaGrad and
dropout are necessary when training 7-layer ReLU models as
they tend to overfit easily. In general, obtaining an appropriate
hyper-parameter setting for the simpler stochastic gradient de-
scent based optimization was found to be especially hard.

C. Joint Adaptive Training

The main goal behind joint adaptive training is to unify sep-
aration and acoustic modeling. Typically, the output of separa-
tion undergoes further processing before it is fed to the acoustic
model. In our joint system, we model these processing steps as
fixed hidden layers of a single deep network. They are shown
in darker gray in Fig. 1 and includes operations like log-com-
pression, feature normalization, delta calculation, and feature
splicing. Interestingly, all of these operations can be performed
within a DNN framework using appropriate weights and/or net-
work architecture. For example, delta features can be calculated
using a linear activation layer with weights as below [39]:

0: 1
o, _[o 10
[AOJ[I 0 I} O - “)
~————— Ot+1
Wa

Here, O, is the static feature at time ¢, I is the identity matrix,
and W, is the weight matrix of the hidden layer. The above
formulation calculates deltas over a window of 3 frames, but
it can be extended trivially to more than 3 frames and for cal-
culating double-deltas. Further, the connections from the pre-
ceding layer can be modified so that this layer receives static
features from multiple, consecutive time frames as is necessary

for delta calculation. The other fixed layers can be modeled in a
similar fashion. We outline the steps briefly below, assuming an
NMS based input feature representation for the acoustic model:

1) Given the noisy mel spectrogram, Y, and the estimated
IRM, M()| we start with masking to obtain an estimate
of the clean (log compressed) mel spectrogram, )/i, using
Eq. (3).

2) Next, we append deltas and double-deltas by multiplying
the features with the delta weight matrix, W A . Since delta
components are a temporal feature, the static features from
contiguous time-frames are spliced together before multi-
plying them with W a .

3) Finally, we do sentence level mean and global variance
normalization followed by a another splicing operation to
form the input to the DNN-AM. The mean and the variance
are re-estimated after every epoch.

With the above formulation, it is easy to see that the two mod-
ules can now be trained jointly; with the fixed hidden layers cast
as a ‘neural network,’ the error gradients from the DNN-AM can
flow through them back to the speech separation module. While
training such a system, we initialize both the acoustic model and
the IRM estimator using the independently trained DNNs. The
trainable weights of both networks are then tuned together for a
few additional epochs. The number of additional epochs is set
using cross-validation. In our recipe, we run the joint DNN for
10 epochs; the WER on the development set is calculated after
every epoch and the model that gives the least WER is chosen.
We found that DNN-JAT converges within the 7-9 epochs in
most of our experiments. Training the joint DNN with randomly
initialized weights is an extremely difficult optimization task; it
is unreasonable to expect a randomly initialized network to im-
plicitly learn an appropriate masking function. An important de-
tail that needs to be considered during training is the gradient of
the masking operation. This gradient involves a term that is in-
versely proportional to Mtr) because of log compression. This
value can easily dominate the gradients that reach the mask es-
timation module of the joint framework, especially when the
estimated IRM values are close to zero. To prevent such a sce-
nario, we explicitly clip the gradients so that they do not exceed
a preset maximum. Via cross-validation, we found this param-
eter to be not too critical in terms of final performance; most
values between 2 and 100 seem to work reasonably well. In our
experiments, we set it to 5. The other hyperparameters during
joint adaptive training are the same as those used during the final
epoch of independent training.

III. RESULTS

A. Experimental Setup

The proposed system is evaluated on the CHiME-2 corpus
[40], which is a medium-large vocabulary corpus based on
WSJO0-5k. The corpus simulates a family living room; the
utterances are reverberant, and are artificially mixed with real
recorded noise at signal-to-noise ratios (SNRs) in the range
[—6, 9] dB. Even though the corpus is binaural, our system is
monaural; we simply average the left and right ear recordings
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for all experiments!. The IRM estimator needs noisy and the
corresponding clean recordings to define the targets at the time
of training. Since such recordings are not provided with the
corpus, we artificially mix the reverberant noise-free utterances
in the training set with randomly selected segments of the noise
recordings provided with the corpus. The fraction of recordings
at each SNR is the same as in the official noisy-reverberant
training set. This new set is used only to train the IRM estimator
when it is trained independent of the DNN-AM.

In order to obtain senone (or tied-triphone state) labels
for training the DNN-AM, a maximum-likelihood trained
GMM-HMM system is used. The clean training set of WSJO is
used to train and subsequently align the utterances. Based on the
pruning parameters, the system ended up with 3298 senones.
The DNN-AMs are trained using the official noisy-reverberant
training set. The same set is also used for joint adaptive
training—after initialization the joint model is optimized solely
to improve the ASR criterion (i.e., cross-entropy).

All systems are implemented using the HTK Toolkit [46].
During decoding, we use a bigram language model unless stated
otherwise, and the CMU pronunciation dictionary. The standard
GMM-based Viterbi decoder implemented in HTK is modified
to function as a hybrid decoder.

B. Development Set Results

We first present results on the development set (si_dt_05) of
CHiIME-2. Experiments on this set are used to 1) choose an ap-
propriate value for «v in Eq. (3), 2) decide whether or not to
retrain the system using masked features, 3) finalize what ad-
ditional features to include as input to the DNN-AM, and 4) fi-
nalize the setup of the joint adaptive training framework. All
parameters are chosen to optimize performance on the develop-
ment set. Note that the recipe for training the DNNSs is fixed as
described before. No attempt was made to optimize it separately
for each subtask.

Choosing an Appropriate Value for o : The parameter o con-
trols how the estimated ratio mask is scaled. Values > 1 would
shrink the estimated IRM closer to 0, thereby increasing noise
suppression while at the same time introducing some distortion
to speech. On the other hand, values < 1 will scale IRM es-
timates towards 1, reducing speech distortion at the expense of
leaving some noise in the masked mel-spectrogram. The chosen
value reflects a tradeoff between residual noise and speech dis-
tortion. The WER obtained for various values of o are shown in
Table I. The NMS feature is used to train the DNN-AM for the
systems described in this section.

Our baseline, which is to directly use the noisy features as
input, corresponds to the system that uses a value of 0 for a. An
average WER of 28.9% is obtained using such a system. With
masking used in the traditional fashion, i.e., with &« = 1, an
average WER of 27.8% is obtained; an improvement of 1.1 per-
centage points over the baseline. But more interestingly, using
a smaller value for « further improves performance. Although
most values between 0 and 1 give improvements, the value 0.5

IThe target azimuth is always 0°, so averaging the left and right ear record-
ings improves SNR.

TABLE 1
WER ON THE DEVELOPMENT SET (SI_DT_05) OF THE CHIME-2 CORPUS
FOR VARIOUS VALUES OF ¢. THE NMS FEATURE REPRESENTATION IS
USED. NOTE THAT ¢ = O CORRESPONDS TO DIRECTLY USING NOISY
FEATURES, WHICH FORMS THE BASELINE. THE BEST PERFORMANCE
IN EACH CONDITION IS MARKED IN BOLD

o si_dt_05

-6dB -3dB 0dB 3dB 6dB 9 dB Average
00 433 343 29.0 254 21.6 19.6 28.9
0.3 39.7 31.8 27.1 234 206 18.7 26.9
0.5 394 31.2 27.0 23.0 204 18.8 26.6
07 394 30.8 27.0 237 20.5 19.2 26.8
1.0 409 32.6 27.6 24.2 21.5 19.9 27.8

is found to be the best; & = 0.5 improves the WER by 2.3 per-
centage points compared to the baseline. As has been noted in
other studies, using separation as a frontend does not always
yield performance gains with DNN-AMs [35], [29]. This is per-
haps because of the distortions introduced in speech while at-
tempting to remove noise. Reducing distortion at the expense of
retaining residual noise seems more helpful when using DNN-
AMs. Setting « to a value < 1 also has the added advantage of
shrinking the gradients of the log operation during joint adaptive
training. For the rest of the systems that we present, unless oth-
erwise stated, the value of o will be set to 0.5 while performing
masking.

Next, we experiment with the conventional joint training
framework which simply retrains the acoustic models using
masked features. We obtain masked features for training using
Eq. (3) with «x set to 0.5. As is typically done, the same training
recipe as was used to train the original acoustic models is
used but with masked features instead of the noisy ones. The
cross-validation set is used to ensure that there was no overfit-
ting. The WERs obtained after retraining is shown in Table II.
As before, we measure WERs as a function of «. When «
= 0.5, the value used for obtaining masked features while
training, we get an average WER of 27.3 percent. It improves
to 26.6 when « is set to 0.7. The difference in performance is
mainly in the lower SNR conditions. In general, it is observed
that when « is set to a value between 0.5 and 1, better results
are obtained. While it is surprising that & s other than 0.5
perform better, it may be because, when trained using masked
features, it is better to remove more noise during testing. From
the results it is clear that retraining using masked data does
not outperform the system that is trained on noisy data, when
using masked features. The noisy dataset contains signals
at (long-term) SNRs ranging from —6 dB to 9 dB. And we
can see from the results that, as the input SNR of the signal
improves, the WER decreases. When we use masked features
with a carefully tuned «, it is likely that some noise gets re-
moved without significantly distorting speech. In other words,
masking improves SNR of the input signal without introducing
additional speech distortions. We believe this is the reason
why using masked features with noisy acoustic models yields
similar performance as the retrained models. Based on these
results, the acoustic models are not retrained using masked
features in the rest of the experiments.

From the presented results, it is clear that estimated IRMs
significantly improve performance. To check whether masking
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TABLE II
WER ON THE DEVELOPMENT SET (SI_DT_05) OF THE CHIME-2 CORPUS
USING ACOUSTIC MODELS RETRAINED ON MASKED DATA, WITH & SET TO
0.5. THE NMS FEATURE REPRESENTATION IS USED. THE BEST
PERFORMANCE IN EACH CONDITION IS MARKED IN BOLD

o si_dt_05
-6dB -3dB 0dB 3dB 6dB 9 dB Average
0.3 439 34.7 29.1 25.7 21.1 19.4 29.0
0.5 41.0 32.7 27.6 23.8 20.3 18.5 273
0.7 398 31.5 27.1 23.0 203 18.3 26.6
1.0 39.7 31.7 269 233 20.3 18.6 26.7
1.5 43.1 33.7 28.9 24.5 21.8 19.6 28.6
TABLE III

WER ON THE DEVELOPMENT SET (SI_DT_05) OF THE CHIME-2
CORPUS WHEN THE SAME DATA IS USED TO TRAIN THE
MASK ESTIMATOR AND THE ACOUSTIC MODEL

si_dt_05
a -6dB -3dB 0dB 3dB 6dB 9 dB Average
0.0 42.7 33.9 28.9 25.2 21.7 19.2 28.6
0.5 38.4 30.5 26.5 229 20.8 18.9 26.3
TABLE IV

WER ON THE DEVELOPMENT SET (SI_DT_05) OF THE CHIME-2 CORPUS
USING AN 8-LAYER DNN FOR ACOUSTIC MODELING

o si_dt_05

-6dB -3dB 0dB 3dB 6dB 9 dB Average
0.0 432 347 294 251 21.9 19.7 29.0
0.5 39.5 31.4 26.7 23.3 20.6 19.4 26.8

helps because it is trained on data that the acoustic model has not
seen, we trained the acoustic model using the same data that was
used to train the IRM estimator. Results are shown in Table III.
As can be seen, the obtained performance is very similar to those
obtained using the original system (see Table I). Masking still
improves performance when the same data is used to train the
DNN-AM.

Finally, to confirm that improvements due to masking is not
because the full model now has more tunable parameters, we
trained an 8 hidden layer DNN-AM instead of a 7 layer model
that was used to generate the results in Table I. Adding another
layer to the DNN-AM adds more parameters than what gets
added by having a masking frontend. From the results, which are
shown in Table IV, we can see that simply making the system
more complex does not improve performance, and that masking
still provides gains. Based on these results we can conclude that
masking, by itself, adds value to the system. It is likely because
masking, conceptually, is an apt frontend ‘feature transforma-
tion’ to remove noise; it is hard to discover it by simply using
more data and (or) additional parameters.

Performance with Additional Features: Given that masking
improves performance, we now experiment with the additional
features described in Section II-B. The results are shown in
Table V.

It can be seen from the results that when using SNE, no sig-
nificant improvements are obtained over the baseline in Table I,
with and without masking. Using DNE performs slightly better.
This is expected as the noises in CHiME-2 are highly non-sta-
tionary. It is unlikely that the first and the last 15 frames are

representative enough of the noise characteristics in the middle
of an utterance. Adding speech estimate in addition to DNE
performs the best, improving performance by 1.7 and 0.7 per-
centage points, respectively, compared to the baseline. When
the features used for IRM estimation are appended to NMS, a
WER of 26.3% is obtained which is close to the performance
obtained after masking when only the NMS feature is used.
After enhancing the NMS feature, performance of ¢ NMS +
fIRM” further improves to 25.2 percent. Adding speech and
noise estimates derived from the separation frontend does not
improve performance any further. It is worth noting that using
only the ‘fIRM’ features resulted in an average WER of 37.1%
(not shown in the table), which is worse than the systems pre-
sented here.

From the results, we can conclude that: 1) Masking consis-
tently helps improve performance in all conditions. 2) Using
fIRM features in combination with the traditional NMS features
performs the best; adding speech and noise estimates further
does not help reduce WER.

Joint Adaptive Training: We now apply joint adaptive
training to the following systems:

* DNN-AM that uses the ‘NMS’ feature as its input. The
IRM estimated by the separation module enhances the
NMS features using Eq. (3) which is then used as input
to the DNN-AM. Joint adaptive training is used to further
enhance the NMS feature and adapt the DNN-AM (NMS
+ JAT)2.

* DNN-AM that uses the ‘NMS + DNE + SE’ feature as its
input. The noise and speech estimates are obtained using
the initial IRM estimator that is trained independent of the
DNN-AM. Joint adaptive training is used to enhance the
NMS feature and the DNN-AM (NMS + DNE + SE +
JAT(1)).

* DNN-AM that uses the ‘NMS + DNE + SE’ feature as its
input. Joint adaptive training is used to enhance all three
input features and the acoustic model (NMS + DNE + SE
+ JAT(2)).

+ DNN-AM that uses the ‘NMS + fIRM’ feature as its input.
Joint adaptive training is used to enhance the NMS feature
and the DNN-AM (NMS + fIRM + JAT).

All joint systems improve performance over their indepen-
dently trained counterparts, as can be seen from the results in
Table VI. As before, using additional features continues to per-
form better than only using the NMS feature as input to the
DNN-AM. Interestingly, using the noise and speech estimates
obtained from the initial estimate of the IRM (‘NMS + DNE
+ SE + JAT(1)’ in the table) performs better than recalculating
them from the mask estimated by the joint system (‘NMS +
DNE + SE + JAT(2)’ in the table). The reason for this becomes
clear when we look at the masks generated by the joint system.
An example is shown in Fig. 2. As can be seen, the mask gen-
erated by the jointly trained model (Figs. 2(f) and (h)) attenu-
ates noise a lot more than those generated by the independently
trained models (Figs. 2(e) and (g)). Since joint adaptive training

2Whenever the suffix ¢ + JAT’ is used, it means that the NMS component of
the feature is enhanced via masking and that the mask is obtained through joint
adaptive training.
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TABLE V
WER ON THE DEVELOPMENT SET (SI_DT_05) OF THE CHIME-2 CORPUS USING ADDITIONAL FEATURES

System si_dt_05
-6dB -3dB 0dB 3dB 6dB 9dB Average
NMS + SNE 432 34.0 29.1 250 217 19.0 28.7
Masked NMS + SNE 38.8 30.9 26.8 228 203 18.4 26.3
NMS + DNE 42.1 33.8 28.5 247 215 19.1 28.3
Masked NMS + DNE 38.3 30.3 26.5 227 20.1 18.4 26.0
NMS + DNE + SE 40.3 33.0 274 231 21.0 18.2 27.2
Masked NMS + DNE + SE 38.3 31.0 26.5 224 19.7 17.8 25.9
NMS + fIRM 39.6 31.7 26.7 225 19.9 17.5 26.3
Masked NMS + fIRM 37.9 29.9 252 219 19.4 17.2 25.2
NMS + fIRM + DNE + SE 40.7 329 27.3 232 202 18.1 27.0
Masked NMS + fIRM + DNE + SE 379 29.9 252 216 19.1 17.5 25.2
TABLE VI

WER ON THE DEVELOPMENT SET (SI_DT_05) OF THE CHIME-2 CORPUS USING JOINT ADAPTIVE TRAINING

System si_dt_05

6dB -3dB 0dB 3dB 6dB 9dB Average
NMS + JAT 379 30.5 26.1 220  20.0 18.2 25.8
NMS + DNE + SE + JAT(1) 372 29.5 258 215 19.4 17.5 25.1
NMS + DNE + SE + JAT(2) 374 29.8 256 219 19.8 17.8 254
NMS + fIRM + JAT 37.1 29.4 249 209 18.8 17.3 24.7

improves IRM estimation by optimizing the ASR loss, the re-
sultant mask preserves spectro-temporal patterns that are most
important for recognition. The independently trained model, on
the other hand, tries to estimate a mask that can transform the
noisy spectrogram to the clean spectrogram as closely as pos-
sible. Note that these two criteria are neither mutually exclu-
sive nor the same: Even signals that do not ‘sound’ the same
as the underlying clean speech signal may be perfectly recog-
nizable by an ASR system just as binary masked noise signals
are recognizable to both humans and machines [17], [28]. Given
that the IRM estimated by the joint system retains only the es-
sential spectro-temporal patterns, the quality of the speech and
noise estimate obtained using it will not necessarily be as good
as those obtained from the original estimated IRM. This is likely
the reason why ‘NMS 4 DNE + SE 4 JAT(1)’ performs slightly
better than ‘NMS + DNE + SE + JAT(2)’. Consistent with the
results presented in the previous section, ‘NMS + fIRM + JAT’
performs the best with an average WER of 24.7% on the devel-
opment set.

C. Test Set Results

We now report performance on the test set using the best per-
forming systems on the development set. The first set of results
is generated using a bigram language model, which was also
used for evaluations on the development set. The results are
shown in Table VII. As can be seen, our baseline system trained
using the NMS features gives an average WER of 25.0 percent,
which is in itself better than the previous best results on this
corpus using a GMM-HMM system by 6.7% (relative) [44].
The system in [44] uses bidirectional long short-term memory
based feature enhancement and a discriminatively trained,
speaker adapted GMM-HMM system. Using the estimated
ratio mask to enhance the noisy speech improves performance
by 2.4 percentage points compared to the baseline (‘Masked

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Time (s)

(2)

Fig. 2. (Color online) Example of masking: (a) Log-mel spectrogram of a
clean utterance. (b) Log-mel spectrogram of the utterance with reverberation.
(c) Log-mel spectrogram of the utterance with noise and reverberation. The
SNR, with respect to reverberant speech, is —3 dB. (d) The ideal ratio mask.
(e) The IRM estimated by the independently trained mask estimator. (f) The
IRM estimated by the joint model. (g) The noisy log-mel spectrogram enhanced
using the estimated IRM. (h) The noisy log-mel spectrogram enhanced using
the IRM estimated by the joint model.
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TABLE VII
WER ON THE TEST SET (SI_ET_05) OF THE CHIME-2 CORPUS USING A BIGRAM LANGUAGE MODEL

System si_et_05

6dB -3dB 0dB 3dB 6dB 9dB Average
NMS 379 30.1 259 21.1 18.3 16.5 25.0
Masked NMS 33.0 26.6 239 19.5 16.6 15.8 22.6
NMS + JAT 32.1 25.6 23.1 18.6 16.1 15.1 21.7
Masked NMS + DNE + SE 332 26.7 224 18.7 154 14.5 21.8
NMS + DNE + SE + JAT(1) 314 24.8 214 18.1 15.1 14.1 20.8
NMS + fIRM 329 25.6 21.8 18.5 155 14.2 21.4
Masked NMS + fIRM 312 249 20.7 18.0 15.0 13.6 20.6
NMS + fIRM + JAT 30.5 24.5 21.2 17.5 14.4 13.5 20.3

TABLE VIII

WER ON THE TEST SET (SI_ET_05) OF THE CHIME-2 CORPUS USING A TRIGRAM LANGUAGE MODEL
System si_et_05

6dB -3dB 0dB 3dB 6dB 9 dB Average
NMS 31.8 25.0 21.0 16.5 13.9 12.9 20.2
Masked NMS 27.2 21.6 18.9 15.6 13.0 11.6 18.0
NMS + JAT 26.0 20.8 18.1 14.8 123 11.5 17.3
Masked NMS + DNE + SE 26.2 20.7 18.0 14.7 11.7 11.0 17.0
NMS + DNE + SE + JAT(1) 25.6 19.6 16.8 13.8 10.7 10.6 16.2
NMS + fIRM 26.6 20.7 16.8 14.2 11.3 10.4 16.7
Masked NMS + fIRM 25.6 19.9 15.4 13.4 10.8 10.1 15.9
NMS + fIRM + JAT 25.1 19.2 15.1 12.8 10.5 9.5 15.4

NMS?’ in the table). Note that the ASR models are not retrained
using masked speech. ‘NMS + JAT’, which jointly trains the
IRM estimator and the DNN-AM that is trained on the NMS
feature, improves performance by another 0.9% compared to
‘Masked NMS’. The ‘NMS + DNE + SE’ system obtains
WERSs similar to ‘NMS + JAT’ on average, after the NMS
features are enhanced using the estimated IRM. NMS + JAT
seems to do better in low SNR conditions (—6 dB and —3 dB)
and ‘NMS + DNE + SE’ works better in high SNR conditions
(0dB, 6 dB and 9 dB). ‘NMS + DNE + SE + JAT(1)’ produces
an average WER of 20.8 percent, 1 percentage point better
than the corresponding system that does not use joint adaptive
training. NMS + fIRM performs comparably to ‘NMS + DNE
+ SE + JAT(1)’, obtaining an average WER of 21.4 percent.
Masking and joint adaptive training improves performance to
20.6% and 20.3 percent, respectively. ‘NMS + fIRM + JAT’
obtains the lowest WER and is 18.8% (relative) better than our
baseline (19.5% (relative) better at —6 dB).

Table VIII shows the performance obtained when a trigram
language model is used. Performance of each system improves
by roughly 5 percentage points. The baseline WER improves
from 25% to 20.2 percent. ‘NMS + DNE + SE + JAT(1)’ ob-
tains a WER of 16.2 percent. ‘NMS + fIRM + JAT’ improves
it further to 15.4 percent, 23.8% better (relative) than the base-
line. Upon comparing performance at different SNR conditions,
it can be inferred that the final system improves SNR by 3 to
6 dB in terms of ASR performance: The WERs that ‘NMS +
fIRM + JAT’ obtains at —6 dB and 3 dB are similar to those
obtained by the baseline at —3 dB and 9 dB, respectively.

IV. DiIscUSSION

We list a few results from literature on the CHiME-2
corpus in Table IX. The systems described in [38] and [44]
are GMM-HMM systems, and use a feature enhancement

frontend, along with discriminative features and discriminative
acoustic modeling [32]. As can be seen, the system proposed
in this paper outperforms them by a large margin. The recently
proposed system in [3] uses recurrent nets and NMS features
without any enhancement. The joint system outperforms it by
7.4 percentage points, highlighting the utility of the proposed
robust feature frontend. It is likely that RNNs and discrimi-
native training strategies can further improve performance of
the proposed framework. The system in [9] proposes model
combination—it uses an NMF feature enhancement frontend
and discriminatively trained GMM-AMs, and combines it with
a long short-term memory based acoustic model. It obtains an
average WER 0f 20.0, 4.6 percentage points worse than the pro-
posed system. We note that, the system described in this paper,
and those in [44] and [3] make use of aligned clean and noisy
data which was disallowed in the original CHiME-2 challenge.
To overcome this limitation, it will be worth investigating in
the future whether mask estimators trained using other speech
corpora can be used for initializing the joint systems; joint
adaptive training can then be performed only using the noisy
utterances.

As we noted before, the masks generated by the jointly trained
model attenuate noise a lot more than those generated by the in-
dependently trained models, while preserving spectro-temporal
patterns that are important for recognition. There appears to be
a disconnect between the objectives commonly used for mask
estimation (SNR improvement) and ASR (WER reduction), and
our past work has shown that SNR improvements and ASR im-
provements (or speech intelligibility) are not fully correlated
[28]. Joint adaptive training, on the other hand, directly opti-
mizes a criterion that is important to improve ASR. Since ASR
and speech intelligibility tend to correlate [28], such joint adap-
tive training schemes may provide an alternative, more appro-
priate criterion to optimize for speech separation algorithms that
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TABLE IX
A FEW PUBLISHED RESULTS ON THE CHIME-2 TEST SET (SI_ET_05). ALL SYSTEMS USE A TRIGRAM LANGUAGE MODEL,
EXCEPT FOR [38] WHICH USES DISCRIMINATIVE LANGUAGE MODELS AND MINIMUM BAYES RISK DECODING

System si_et_05

-6dB -3dB 0dB 3dB 6dB 9dB Average
Discriminative features, models, decoding [38] 44.1 35.5 28.1 21.2 174 14.8 26.9
BLSTM + discriminative models [44] 427 33.9 27.5 21.8 18.4 16.2 26.7
RNN [3] 38.1 29.1 23.0 17.9 15.0 13.6 22.8
LSTM + discriminative GMMs + NMF [9] 33.8 25.7 20.3 15.5 13.0 11.9 20.0
DNN-JAT (this paper) 25.1 19.2 15.1 12.8 10.5 9.5 154

focus on intelligibility. Moreover, the proposed joint adaptive
training strategy is quite flexible, and can easily be adapted to
work with other separation frontends like feature mapping [24],
[44], [29].

The fact that an IRM estimator can be optimized using an
ASR criterion may be leveraged to adapt an already trained
mask estimator to unseen conditions. With minimal noisy
adaptation data and no aligned clean utterances, the weights of
the IRM estimator can be updated by using the joint framework.
Note that the necessary senone labels for training the joint
system can be obtained by aligning the adaptation data using
an unadapted ASR model-a commonly used strategy in ASR.
In the event that the mask labels for training the IRM estimator
can be obtained or generated from data, the loss function can
be easily modified to weight the contribution of the acoustic
model loss and the mask estimator loss during adaptation.
With limited adaptation data, model adaptation with additional
regularization as has been proposed for speaker adaptation [22]
will also be an interesting approach to consider.

An interesting future study will be the incorporation of
discriminative training [16], [14] into our framework to allow
higher-level sequence structure to influence separation and
acoustic modeling. Having language model level sequence
information influence speech separation has always been a
challenge. Systems like convolutional NMF [36] and struc-
ture-preserving models [43] only account for short term
sequence structure. Discriminative modeling, on the other hand,
improves performance by optimizing model parameters to max-
imize the posterior probability of the correct word sequence.
With joint adaptive training, it becomes fairly straightforward
to use such well studied sequence training strategies to improve
performance of speech separation.

The senone labels for training DNN-AMs were obtained by
aligning the clean training data. When only the noisy data is
available, such high quality labels cannot be directly obtained
from the training set. An alternative is the iterative procedure
outlined in [6]: First, train the best GMM-HMM system from the
data, and use it to generate senone labels and train a DNN-AM.
Next, use the trained DNN-AM to re-align the training data and
update senone labeling. The DNN-AM can now be retrained
with the revised alignments. Training can iterate between the
last two steps multiple times, as long as improvements in per-
formance are observed. Using such a strategy, we were able to
train a DNN-AM that closely matched the performance obtained
by the system presented here using the scripts provided with the
KALDI ASR toolkit [33]. Compared to the baseline error rate
0f20.2% as shown in Table VIII, the system obtains an average
WER of 21.4 percent. With off-the-shelf sequence discrimina-

tive training [33], [14], the performance further improves to 19.5
percent. Note that a similar strategy was proposed in [3].

To conclude, we have proposed novel ways for improving
the state-of-the-art in noise robust ASR using time-frequency
masking. The results show that by using speech separation to
provide smooth estimates of speech and noise to a DNN-AM,
substantial improvements in performance can be obtained.
Moreover, appending the features that are commonly used
for separation and acoustic modeling to form the input of a
DNN-AM also helps improve performance. Finally, a joint
adaptive training framework is proposed for DNN-AMs.
DNN-JAT unifies separation and acoustic modeling and
consistently improves performance over the corresponding
independently trained models.
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