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Abstract—Recently, supervised classification has been shown
to work well for the task of speech separation. We perform
an in-depth evaluation of such techniques as a front-end for
noise-robust automatic speech recognition (ASR). The proposed
separation front-end consists of two stages. The first stage removes
additive noise via time-frequency masking. The second stage
addresses channel mismatch and the distortions introduced by the
first stage; a non-linear function is learned that maps the masked
spectral features to their clean counterpart. Results show that
the proposed front-end substantially improves ASR performance
when the acoustic models are trained in clean conditions. We
also propose a diagonal feature discriminant linear regression
(dFDLR) adaptation that can be performed on a per-utterance
basis for ASR systems employing deep neural networks and
HMM. Results show that dFDLR consistently improves perfor-
mance in all test conditions. Surprisingly, the best average results
are obtained when dFDLR is applied to models trained using
noisy log-Mel spectral features from the multi-condition training
set. With no channel mismatch, the best results are obtained
when the proposed speech separation front-end is used along
with multi-condition training using log-Mel features followed by
dFDLR adaptation. Both these results are among the best on the
Aurora-4 dataset.

Index Terms—Aurora-4, deep neural networks, feature map-
ping, robust ASR, time-frequency masking.

I. INTRODUCTION

A UTOMATIC speech recognition systems are finding
applications in an array of tasks. Although these sys-

tems have become fairly powerful, the inherent variability of
an acoustic signal can still pose challenges. The sources of
variability are many, ranging from speaker idiosyncrasies to
recording channel characteristics. A widely studied problem
is the variability caused by background noise; ASR systems
that work well in clean conditions suffer from a drastic loss
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of performance in the presence of noise. In most cases, this
is caused due to the mismatch in training and testing condi-
tions. Techniques have been developed to handle this mismatch
problem. Some focus on feature extraction using robust features
like RASTA [19] and AFE [13], or feature normalization [3].
In feature-based methods, an enhancement algorithm modifies
noisy features so that they more closely follow the distributions
of the training data [32], [9]. Alternatively, one could train
models using features extracted from multiple ‘noisy’ condi-
tions. Feature-based techniques have the potential to generalize
well, but do not always produce the best results. Inmodel-based
approaches, the ASR model parameters are adapted to match
the distribution of noisy or enhanced features [15], [45].
Model-based methods work well when the underlying assump-
tions are met, but typically involve significant computational
overhead [45]. The best performances are usually obtained by
combining feature-based and model-based approaches (e.g., an
uncertainty decoding framework [8]).
The current work focuses on feature-based methods. Such

methods can be classified into two groups depending on
whether or not they use stereo training data1. When stereo
data is unavailable, prior knowledge about speech and/or noise
is used to perform feature enhancement. Examples include
spectral reconstruction based missing feature methods [32],
direct masking methods described in [18], [28], and feature
enhancement methods [1]. When stereo data is available,
feature mapping methods like SPLICE [7] and recurrent neural
networks [25] have been used. Even though generalization to
unseen conditions is a challenge when using stereo training
data, such methods work well when the training and test noises
are similar. We can also generate psuedo-clean signals directly
from noisy signals for training such stereo systems [10].
Stereo training data is also used by supervised classification

based speech separation algorithms [33], [36], [22], [17],
[43]. Such algorithms typically estimate the ideal binary mask
(IBM)–a binary mask defined in the time-frequency (T-F)
domain that identifies speech dominant and noise dominant T-F
units [40]. Our recent work extends this approach to estimate
the ideal ratio mask (IRM) [29]. The IRM represents the ratio
of speech to mixture energy at each T-F unit [38]. Results show
that using the estimated IRM as a front-end to perform feature
enhancement significantly improves ASR performance, and
works better than using the estimated IBM. Only additive noise
is addressed in [29]. In this work, we address both additive
noise and convolutional distortion due to recording channel
mismatch. They are dealt with in two separate stages: Noise

1By stereo we mean noisy and the corresponding clean signals.
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Fig. 1. Block diagram of the proposed speech separation front-end. The different stages of the front-end, namely time-frequency masking and feature mapping,
and their corresponding inputs are shown in the figure. The ASR module may be implemented either using GMMs or DNNs.

removal followed by channel compensation. Noise is removed
via T-F masking using the IRM. To compensate for channel
mismatch and the errors introduced by masking, we learn a
non-linear mapping function that undoes these distortions.
Estimation of the IRM and learning the mapping function are
both accomplished using deep neural networks (DNNs) [21].
In feature-based robust ASR methods, the enhanced features

are passed on to the back-end ASR system for final decoding.
Acoustic modeling in ASR has traditionally been done using
Gaussian mixture models (GMMs). Our first set of evaluations
uses GMM based acoustic models to measure how the pro-
posed separation front-end affects performance. Next, we study
how the front-end performs with DNN based acoustic models,
which are now the state-of-the-art [5]. We also propose a feature
adaptation technique for DNN-based systems. Unlike previous
adaptation techniques like feature discriminant linear regression
(FDLR) [35], the proposed method can be used on a per-utter-
ance basis. As shown in our results, feature adaptation can partly
address the generalization issue of supervised learning systems
like the DNNs.
The rest of the paper is organized as follows. The components

of our system are described in detail in the next section. Evalua-
tion results are presented in Section III.We discuss in Section IV
our results and future research directions.

II. SYSTEM DESCRIPTION

A block diagram of the proposed system is shown in Fig. 1.
The IRM is estimated using a group of features extracted specif-
ically for the purpose. As shown, feature mapping is done using
both the log-mel transformed noisy features and the features ob-
tained after masking. The mapped feature may or may not be
transformed to the cepstral domain, depending on the type of
acoustic models used. The acoustic models are implemented ei-
ther using GMMs or DNNs. The different stages of the system
are described in detail below.

A. Time-Frequency Masking

We perform T-Fmasking in the mel-frequency domain unlike
some of the recent systems that operate in the gammatone fea-
ture domain [17], [42]. When using conventional ASR features
like mel-frequency cepstral coefficients (MFCC), this lets us by-
pass the signal resynthesis step after masking (e.g., see [18]).

Since the mel-domain lies in the pathway of MFCC/log-mel
feature extraction, masking only adds a single step (point-wise
matrix multiplication). Further, the number of frequency bands
used in the mel-domain (20–26) is typically lower than those
in the gammatone domain (32–64). When using subband classi-
fiers for mask estimation [17], this reduces the number of clas-
sifiers that needs to be trained.
To obtain the mel-spectrogram of a signal, it is first pre-em-

phasized and transformed to the linear frequency domain using a
320 channel fast Fourier transform (FFT). A 20 msec Hamming
window with an overlap of 10 msec is used. The 161-dimen-
sional spectrogram is then converted to a 26-channel mel-spec-
trogram using triangular mel filters that span frequencies in the
range Hz Hz . The RASTAMAT toolkit is used to per-
form these operations [12].
We use DNNs2 to estimate the IRM as they show good perfor-

mance [43] and training using stochastic gradient descent scales
well compared to other nonlinear discriminative classifiers, such
as SVMs, as the size of the dataset increases [2]. Below we de-
scribe the three components of this supervised learning method:
the IRM, the features, and the learning strategy.
1) Target Signal: The ideal ratio mask is defined as the ratio

of the clean signal energy to the mixture energy at each time-
frequency unit. Assuming speech and noise are uncorrelated,
the mixture energy can be approximated as the sum of clean
and noise energy. This limits the values in the IRM in the range
[0, 1]. The IRM can now be defined in terms of the instantaneous
signal-to-noise ratio (SNR) at each T-F unit:

(1)

Here, and denote the instantaneous speech
and noise energy, respectively, at time frame and frequency
channel . denotes the instantaneous SNR in dB.
As can be seen, there is a one-to-one correspondence between

and . In our earlier work, we observed
that estimating a transformed version of the SNR, instead of the
IRM directly, works better [29]. This is probably because the

2We call a neural network with a single hidden layer a multi-layer perceptron
(MLP), and with more than one hidden layer a DNN.
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transformation gives a better representation to the SNR values
in the range close to 0 dB. The sigmoidal transformation that
we use is of the following form:

(2)

denotes the desired target that is used during training.
and are the parameters that control the slope and the bias,

respectively, of the sigmoid. Indirectly, they control the range of
SNR to be focused during training. Following our preliminary
work, we set to roughly have a 35 dB SNR span3 centered at
, which is set to dB (see [41]). During testing, the values
output from the DNN are mapped back to their corresponding
IRM values using the inverse of Eqs. (2) and (1). The resulting
mask is used for T-F masking.
2) Features: Feature extraction is performed both at the full-

band (signal) and the subband level. To extract subband fea-
tures, the original fullband signal is filtered using a 26-channel
mel filterbank that spans frequencies from 50 Hz to 7000 Hz.
The filterbank is implemented using sixth order Butterworth fil-
ters, with the same cutoff frequencies used when transforming
the signal to its mel-spectrogram. Note that the output of filter-
bank is the continuous subband signals sampled at the same fre-
quency as the input signal. Subband features are extracted fol-
lowing the same processing steps as for fullband features, but
using the subband filtered signals.
We use a combination of features, similar to that used in [42]

for IBM estimation. The following base features are extracted:
• 31 dimensional MFCCs, derived from a 64 channel mel-
spectrogram. A frame length of 20 msec and an overlap of
10 msec are used. MFCC features are extracted for both
subband and fullband signals.

• 13 dimensional RASTA filtered PLP cepstral coefficients
(RASTA-PLPs). A frame length of 20 msec and an overlap
of 10msec are used. RASTA-PLP features are extracted for
both subband and fullband signals.

• 15 dimensional amplitude modulation spectrogram (AMS)
features. AMS features are extracted only for subband sig-
nals. Features are extracted after downsampling the sub-
band signals to 4000 Hz. A frame length of 32 msec with
22 msec overlap (corresponding to 10 msec hop size) is
used.

Using these base features, the following derived features are
obtained:
• Fullband features: The fullband features are derived by
splicing together fullband MFCCs and RASTA-PLPs,
along with their delta and acceleration components, and
subband AMS features. The dimensionality of this feature
is 522 ( ).

• Subband features: The subband features are derived
by splicing together subband MFCCs, RASTA-PLPs,
and AMS features. Delta and acceleration components are
added to MFCCs and RASTA-PLPs; temporal and spectral
deltas are added to the AMS features. The dimensionality
of this feature is 177 ( ).

3We define SNR span as the difference between the instantaneous SNRs cor-
responding to the desired target values of 0.95 and 0.05.

Note that subband features are obtained for each of the 26
subband signals.

Global mean and variance normalization and a second order
moving average smoothing [3] is applied to both fullband and
subband features to improve robustness.
3) Supervised learning: IRM estimation is performed in two

stages. In the first stage, multiple DNNs are trained using full-
band and subband features. The final estimate is obtained using
an MLP that combines the output of the fullband and the sub-
band DNNs.
The fullband DNN is trained using the fullband features and

learns to estimate the desired target (see Eq. 2) corresponding to
the 26 frequency channels. The DNN uses 2 hidden layers, each
with 1024 nodes. The output layer consists of 26 nodes corre-
sponding to the 26 mel-frequency channels. Sigmoid activation
function is used for both hidden and output nodes. The weights
of the hidden units are initialized layer-by-layer using restricted
Boltzmann machine (RBM) pretraining. A learning rate of 0.01
is used for the first hidden layer; it is set to 0.1 for the second
hidden layer. A momentum of 0.9, and a weight decay of 0.0001
are used. Each layer is pretrained for 50 epochs. The output layer
is then added to the network and the weights of the full net-
work are fine-tuned using supervised backpropagation. While
fine-tuning, we use adaptive gradients with a global learning
rate of 0.05 [11]. Momentum is initially set to 0.5 and then in-
creased to 0.9 after the network trains for half the total number
of epochs, which is set to 100. The cross-entropy error criterion
is used. Throughout the training procedure we use minibatch
gradient descent with the minibatch size set to 2048.
The subband DNNs are individually trained for each of the 26

frequency channels. Each of these DNNs consists of 2 hidden
layers just like the fullband DNNs, but has only 200 nodes per
layer. The output layer has a single node. The training schedule
is the same as for training the fullband DNN.
Although the outputs from the fullband and the subband

DNNs strongly correlate, we expect both these networks to
learn useful information not learned by the other. The fullband
DNNs would be cognizant of the overall spectral shape of the
IRM and the information conveyed by the fullband features,
whereas the subband DNNs are expected to be more robust to
noise occurring at frequencies outside their passband. There-
fore, the final prediction is made by combining the outputs of
the fullband and the subband classifiers. An additional purpose
of this combination is to utilize the information contained in
the neighboring T-F units surrounding each unit in an explicit
fashion–the fullband and the subband DNNs estimate the
output at each unit mostly using temporally local features. We
train a simple MLP to perform this combination. This MLP has
26 output nodes, corresponding to the 26 frequency channels,
and 512 hidden nodes. Its input is created by splicing together
the outputs of the fullband and the subband DNNs from five
leading and five trailing frames surrounding the current frame
for which the final output is to be estimated. This results in a
572 dimensional input feature ( ). The MLP is trained
for 250 epochs to minimize the cross-entropy error, as before.
Instead of using adaptive gradients, we use a more conventional
method to set the learning rate–it is linearly decreased from 1
to 0.001 over the training time. It is worth mentioning that in
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Fig. 2. (Color online) Example of T-F masking. (a) Mel spectrogram of a clean signal from the Aurora-4 corpus. (b) Mel spectrogram of the same signal mixed
with babble noise. (c) Map of the true instantaneous SNRs, expressed in dB. (d) Instantaneous SNRs estimated using subband features and the corresponding DNNs.
The mean absolute SNR estimation error for this mask is 2.9 dB. (e) Instantaneous SNRs estimated using fullband features. SNR estimation error for this mask is
2.5 dB. (e) Instantaneous SNR estimates obtained after combining the masks in (d) and (e). It can be noticed that the mask in (f) is smoother than those in (d) and
(e). SNR estimation error for this mask is 2.1 dB. Note that the SNR estimates are rounded to the range dB before calculating the mean absolute error.

preliminary experiments not reported in the paper, we observed
that the above combination worked the best compared to using
the output of only the fullband or the subband classifier as
input to the MLP. Further, on a noisy development set, the
‘combined’ mask worked 11% (relative) better than the sub-
band masks and 5% (relative) better than the fullband masks, in
terms of averaged word error rates (WER), when using GMM
based acoustic modes trained in clean conditions.
All networks are trained using the noisy subset of the training

set of the Aurora4 corpus. Of the 2676 utterances in this subset,
2100 are used for training and the remaining for cross valida-
tion; the network that gives the least mean squared error on the
cross validation set is chosen in each case.
Fig. 2 shows an example of T-F masking. As can be seen,

the mask estimated by the fullband and the subband DNNs look
similar, but the one estimated by the fullband DNN is spectrally
smoother. As expected, the output obtained by combining the
two masks results in a temporally smooth mask. The local SNR
estimation error is also lower by about 0.4 dB for the combined
mask.

B. Feature mapping

Time-frequency masking only addresses additive noise. As
we will show in Section III-A, even after T-F masking, channel
mismatch can still significantly impact performance. This hap-
pens for two reasons. Firstly, our algorithm learns to estimate the
ratio mask using mixtures of speech and noise recorded using a
single microphone. Secondly, because channel mismatch is con-
volutional, speech and noise, which now includes both back-
ground noise and convolutive noise, are clearly not uncorre-
lated. So even if the training set used to estimate the IRM in-
cluded examples with channel distortions, the masking func-
tion will still be ill-defined: The residual noise obtained after

subtracting the clean signal from a noisy channel-mismatched
signal will have speech-like characteristics.While recent studies
in speech perception have shown that binary masking can be
used to improve intelligibility of noisy reverberant mixtures
[34], it is not straightforward to set the target in our case since
we assume no access to the clean signals recorded using every
microphone in our dataset. Therefore, we use an alternative
strategy to deal with channel mismatch that directly maps the
noisy/masked signals to their ‘clean’ version. The clean ver-
sion here corresponds to the signals in the clean datasets of the
corpus.
Feature mapping has already been used for enhancing noisy

features for speech recognition [7], [25], [46] and speech sepa-
ration [44]. The goal of feature mapping in this work, however,
is to learn spectro-temporal correlations that exist in speech to
undo the distortions introduced by unseen microphones and
the first stage of our algorithm. Our feature mapping function
operates in the log-mel spectral domain, unlike the earlier
works which operate in the cepstral or other feature domains.
The target, the features, and the learning strategy are described
below.
1) Target Signal: The goal of mapping is to transform the

input spectra to its clean log-mel spectra. This sets the target to
be the clean log-mel spectrogram (LMS). The ‘clean’ LMS here
corresponds to those obtained from the clean signals recorded
using a single microphone in a single filter setting. Since we use
Aurora-4 for our experiments, this corresponds to the data in the
clean training set of the corpus recorded using a Sennheiser mi-
crophone and processed by a P.341 filter. Instead of using the
LMS directly as the target, we apply a linear transform to limit
the target values to the range [0, 1] to allow us to use the sig-
moidal transfer function for the output layer of the DNN. Ex-
perimentally, we found this to make learning easier compared
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to using linear output neurons and unscaled targets. The trans-
formation, which is scale invariant, has the following form:

(3)

Here, is the desired target while learning,
corresponds to the log-mel spectral energy at time frame and
frequency channel . The and operations are over
the entire training set. During testing, the output of the DNN is
mapped back to the dynamic range of the utterances in training
set using the inverse of the above transformation. It should be
noted that even though and operations are typically
affected by outliers, it worked well for our task as the training
set was created in controlled conditions.
2) Features: As features we use both the noisy and the

masked LMS. This was found to work better than using either
the noisy LMS or the masked LMS. Since the DNNs that
estimate the IRM are trained using signals recorded using a
single microphone, it is possible that T-F masking introduces
unwanted distortions in the presence of a channel mismatch.
We believe that using both the noisy and masked LMS as
input helps the DNN learn a mapping function robust to such
distortions. We also append the log-mel features with their
delta components. The final feature at a particular time frame is
obtained by splicing together the spectrogram and the deltas of
the current frame with those of five leading and trailing frames.
This results in a 1144 ( ) dimensional input.
The features are global mean-variance normalized.
3) Supervised learning: For learning the mapping function,

we use a three-layer DNN with 1024 nodes in each layer. The
output layer consists of 26 nodes corresponding to the number
of frequency channels. Unlike the DNNs used for IRM estima-
tion, the hidden layers of the DNN for this task use rectified
linear units (ReLU) [27]. ReLU has been shown to work well in
a number of vision tasks [24], and has also been used in ASR [4].
We found ReLU to work at least as well as the sigmoidal units
even without any pretraining; they also converged faster. The
output layer uses sigmoid activations. The learning rate is lin-
early decreased from 1 to 0.001 over 50 epochs. A momentum
of 0.5 is used for the first 10 epochs after which it is set to 0.9.
Weight decay is set to 0.00001. The network is trained to min-
imize the squared error loss. We use all the utterances, 7138 of
them, in the multi-condition training set of Aurora4 for training.
A cross-validation set, which was created by randomly sam-
pling 100 utterances in each condition from the development
set of Aurora4 is used for early stopping–we chose the model
that gave the least mean squared error on the cross-validation
set during training.
Fig. 3 shows an example of how feature mapping reduces

channel distortion. It can be clearly seen that, even though T-F
masking removes some noise, the masked LMS still contains
distortions. The LMS obtained after feature mapping looks
much closer to the clean spectrogram; feature mapping is able
to reconstruct the high frequency spectral components that
are masked in the original signal. It should be noted that the
microphone used to record the example shown in Fig. 3(b) is

Fig. 3. (Color online) Example of feature mapping. (a) Mel spectrogram of
the clean signal recorded using a Sennheiser microphone and processed with
P.314 filter. (b) Mel spectrogram of the signal recorded using an alternative
microphone and mixed with babble noise. The microphone attenuates the high
frequency components of the signal. (c) Themel spectrogram after T-Fmasking.
Noise has largely been removed but the high frequency components are still
attenuated. (d) The mel spectrogram after feature mapping. As can be seen, the
high frequency components are reconstructed reasonably well.

not used while training the DNN; in other words, the DNN does
a reasonable job at generalizing to unseen microphones.

C. Acoustic modeling

The acoustic models are trained using the Aurora-4 dataset
[30]. Aurora-4 is a 5000-word closed vocabulary recognition
task based on the Wall Street Journal database. The corpus has
two training sets, clean and multi-condition, both with 7138
utterances. The clean training set consists of signals recorded
using a Sennheiser microphone and processed using a P.314
filter. The multi-condition set consists of both clean and noisy
signals (SNR between 10 and 20 dB) recorded either using the
Sennheisermicrophone or one of 18 other microphones. The test
set consists of 14 subsets, each with 330 utterances. Sets 1 to 7
and 8 to 14 contain utterances with and without channel mis-
match, respectively. Sets 2 to 7 and 9 to 14 are noisy, whereas
1 and 8 are clean. Six noise types are considered: car, babble,
restaurant, street, airport, and train. The noise types are the same
as those used in the training set, but they are mixed at lower
SNRs (SNR between 5 and 15 dB). The microphones used to
create mixtures in sets 8 to 14 are different from those used in
the training set.
We explore two types of acoustic models: the traditional

GMM-HMM based systems and the more recent DNN-HMM
based hybrid systems [5]. They are described in detail below.
1) Gaussian Mixture Models: The GMM based systems are

trained using 12th order MFCCs, which are obtained after ap-
plying the discrete cosine transform and liftering to the LMS,
along with their delta and acceleration coefficients. The features
aremean and variance normalized at the sentence level. Normal-
izing the variance in addition to the mean significantly improves
performance when using cepstral features [28]. The acoustic
models consist of state-tied cross word triphones modeled as
a 3-state HMM. The observation probability is implemented as



NARAYANAN AND WANG: INVESTIGATION OF SPEECH SEPARATION AS A FRONT-END FOR NOISE ROBUST SPEECH RECOGNITION 831

a 16-component GMM with diagonal covariances. The training
recipe is adapted from [39]. Based on the tree pruning parame-
ters used for state-tying, the final models have 3319 tied-states
or senones [5]. The HMMs and the GMMs are initially trained
using the clean training set. The clean models are then used to
initialize the multi-condition models; both clean and multi-con-
dition models have the same structure and differ only in transi-
tion and observation probability densities.
2) Deep Neural Networks: The DNN based models are de-

rived from the clean GMM-HMM system. We first align the
clean training set to obtain senone labels at each time-frame for
all utterances in the training set. DNNs are then trained to predict
the posterior probability of senones using either clean features
or features extracted from the multi-condition set.
We experimented with DNNs trained using cepstral and

log-mel features. For either of those features we look at the
following alternatives:
• Features extracted from the clean training set. While we
expect models trained using clean features to generalize
poorly, this will clearly show how effective the proposed
speech separation front-end is. The input is formed by
adding the cepstral/log-mel features with their delta and
acceleration coefficients, and splicing together the features
of 11 contiguous frames (5 leading and trailing frames sur-
rounding each frame). This results in a 429-dimensional
representation when the features are defined in the cepstral
domain, and an 858-dimensional representation when they
are defined in the log-mel domain.

• Features extracted from the multi-condition training set.
These features are created just like the clean features, but
since they are extracted from the multi-condition set they
are expected to generalize much better. They have the same
dimensionality as the clean features.

• Features generated after speech separation (masking
followed by feature mapping) concatenated with noisy
features from the multi-condition training set. To gen-
erate these features we perform speech separation on all
utterances from the multi-condition training set using the
models described in the previous sections. We found that
adding the noisy features to the features after separation
results in better performance compared to using only the
latter. This trend is similar to that found while learning
the feature mapping function (see Section II-B). The
dimensionality of this feature is 858 when it is defined in
the cepstral domain, and 1716 when defined in the log-mel
domain.

The cepstral features are mean and variance normalized at
the sentence level, like before. The log-mel features are mean
normalized at the sentence level; an additional global variance
normalization is also applied as suggested in [48].
The DNNs trained using cepstral features have an archi-

tecture similar to that described in [5]. It consists of 5 hidden
layers, each with 2048 hidden units. The output layer has 3319
nodes. All hidden nodes use sigmoidal activation function.
The output layer uses the softmax function. The weights of the
hidden layers are initialized using RBM pretraining. The first
hidden layer is pretrained for 100 epochs, the subsequent layers
are pretrained for 35 epochs each. The learning rate for the first

layer is set to 0.004. It is set to 0.01 for the remaining layers.
The momentum is linearly increased from 0.5 to 0.9 over 10
epochs, and kept at 0.9 for the remaining epochs. Weight decay
is set to 0.0001. After pretraining, the network is fine-tuned
for 20 epochs using a learning rate of 0.08 for the first 10
epochs and 0.002 for the remaining ones. The momentum is
set in the same way as in pretraining. The cross-entropy error
criterion is used. Minibatch gradient descent with a batch size
of 256 is used all through. A development set is used for early
stopping based on the frame-level classification error. The
network always stopped within the last 2-3 epochs; therefore
early stopping did not affect performance.
The DNNs in the log-mel domain are trained using the recipe

in [48]. The networks have 7 layers, each with 2048 nodes. The
output layer has 3319 nodes, as before. For weight initializa-
tion, RBM pretraining is used. The first layer is pretrained for
35 epochs, and the remaining layers for 8 epochs. A constant
learning rate and weight decay of 0.004 and 0.0001, respec-
tively, are used. The minibatch size is set to 256. The network
is fine-tuned based on the cross-entropy error criterion for 25
epochs with no early stopping. The minibatch size is set to 256
for the first 5 epochs. For the remaining 20 epochs, it is set to
1024. The learning rate is set to 0.08 for the first 5 epochs, 0.32
for the next 10 epochs and then reduced to 0.008 for the final
10 epochs. Momentum is fixed to 0.9 in the pretraining and
fine-tuning stages.
It should be pointed out that training recipes have not been

fully optimized, mainly due to the huge parameter search space
and the amount of training/cross validation time required to
evaluate each setting. A better way to choose parameters, e.g.
using a Bayesian search strategy [4], could potentially be used
in the future. Nevertheless, the performance trends obtained
using the above networks are in line with those reported in other
studies in the literature.
The senone posteriors estimated by the DNN are converted

to likelihoods by normalizing using their priors calculated from
the training set. The likelihoods are then passed on to the HMMs
for decoding.
For both GMM-HMM and DNN-HMM systems, we use the

CMU pronunciation dictionary and the standard bigram lan-
guage model during decoding. The ASR systems are imple-
mented using the HTK [47], which is adapted to also function
as a hybrid system.

D. Diagonal Feature Discriminant Linear Regression

Feature adaptation techniques for DNN-HMM systems
have largely been aimed at developing speaker-specific trans-
forms. This generally requires a speaker-specific adaptation set
with multiple utterances. While most studies try to reuse the
adaptation methods developed for GMM-HMM systems like
fMLLR (feature space maximum likelihood linear regression)
and VTLN (vocal tract length normalization) with limited
success [35], [48], DNN-specific adaptations like feature
discriminant linear regression have also been proposed [35].
FDLR essentially learns an affine transformation of the fea-
tures, like fMLLR, by minimizing the cross-entropy error of the
labeled adaptation data. When FDLR is used on a per-utterance
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basis, it will likely cause overfitting as the number of param-
eters to learn is almost in the same range of, and sometimes
greater than, the number of labeled examples available. Here,
we propose a constrained version that gives us performance
improvements in almost every test condition.
The motivation for developing dFDLR is to address the

problem of generalization to unseen microphone conditions in
our dataset, which is where the DNN-HMM systems perform
the worst. dFDLR is a semi-supervised feature adaptation tech-
nique. To apply dFDLR, we first obtain an initial senone-level
labeling for our test utterances using the unadapted models.
Features are then transformed to minimize the cross-entropy
error in predicting these labels. The adaptation takes the fol-
lowing form:

(4)

Here, is the feature obtained after transforming ,
the original features. indexes the time frame and the fea-
ture dimension. and are the total number of time frames
and features dimensions, respectively. is the error function
to be minimized, which is cross-entropy in our case. is the
senone label obtained in the first step of the adaptation process.

is the output of the DNN when its input is . and
are the parameters of the transformation. As can be seen,

dFDLR simply scales and offsets the unadapted feature. When
the input to the DNN consists of multiple feature streams, like in
the case of DNNs that use features obtained after speech sepa-
ration concatenated with noisy features, separate transforms are
learned for each stream.
The parameters can easily be learned within the DNN frame-

work by adding a layer between the input layer and the first
hidden layer of the original DNN. We initialize and , for

, to 1 and 0, respectively, and run the standard back-
propagation algorithm for 10 epochs to learn these parameters.
During backpropagation, weights of the original hidden layers
are kept unchanged and only and are updated. Note that
the parameters are tied across the 11 frames that are spliced to-
gether to create the input feature for the DNN. The parameter
matrix and their updates have a form similar to the block diag-
onal weight matrices used by FDLR, but every block is addi-
tionally constrained to be diagonal in dFDLR. The learning rate
and the momentum are set to 0.1 and 0.9, respectively, while
learning these parameters. Before each update, the gradients are
averaged across the frames of the sentence for which adaptation
is being performed.

III. EVALUATION RESULTS

A. Gaussian Mixture Models

The averaged WER obtained using the GMM-HMM systems
are tabulated in Table I. Using the models trained in clean con-
ditions we obtain an average WER of 32.8% across the four
conditions. Using the advanced front-end (AFE), an ETSI stan-
dardized feature representation [13], performance improves to
29.2 percent. AFE has a feature enhancement module to counter

TABLE I
WORD ERROR RATES ON THE AURORA-4 CORPUS USING THE GMM-HMM

SYSTEMS. THE COLUMNS CLEAN, NOISY, CLEAN + CHANNEL, AND
NOISY + CHANNEL CORRESPOND TO THE WER AVERAGED ON TEST SETS
1, 2 TO 7, 8, AND 9 TO 14, RESPECTIVELY. THE BEST PERFORMANCE
IN EACH CONDITION IS MARKED IN BOLD. RESULTS OBTAINED USING

VTS-BASED MODEL ADAPTATION IS ALSO SHOWN

noise to an extent. Using a DNN that maps noisy log mel fea-
tures directly to clean features gives a significant improvement,
reducing the WER to 21.4 percent. Using T-F masking alone
results in an average WER of 24.5 percent, but performs better
than only using feature mapping when there is no channel mis-
match. Using the proposed front-end with both masking and
feature mapping, as described in Section II, gives the best av-
erage performance of 20.6 percent, a 37.2% relative improve-
ment over the noisy baseline and a 29.5% improvement over
the performance obtained using AFE features.
Using the multi-condition models results in a much better

baseline of 23 percent. AFE does not provide any performance
improvements in this case. This is expected as the mean-vari-
ance normalized MFCC features are fairly robust [28]. Direct
feature mapping and the proposed front-end now have similar
performance, which in turn is similar to theWER obtained using
the clean models with the proposed front-end. Compared to the
noisy baseline, the proposed front-end obtains a relative im-
provement 11.3%. Interestingly, the best performance in noisy
conditions is obtained when only T-F masking is used (14.3 per-
cent, a 16.8% relative improvement compared to the baseline).
Although not directly comparable because of modeling

differences, we note that the results obtained by the proposed
front-end are significantly better than those obtained using
MMSE/MMI-SPLICE on this corpus [9]. The ASR models
used in [9] are similar to ours. Feature enhancement is per-
formed by learning transformations using the stereo training
data; the transformation is constrained to be an offset. The
results in [9] show that MMSE SPLICE improves clean and
averaged noisy performance from 8.4 to 8.3 and 33.9 to 29.2
percent, respectively, when using clean models. MMI SPLICE,
which works better than MMSE SPLICE, improves clean and
noisy performance from 14.0 to 13.4 and 19.2 to 18.8 percent,
respectively, when using multi-condition models. Results on
sets 8 to 14 are not presented in [9]. For the sake of comparison,
Table I also shows the performance reported in [45] using VTS
based model adaptation. The proposed front-end reduces the
gap in performance between model-based and feature-based
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TABLE II
WORD ERROR RATES ON THE AURORA-4 CORPUS USING THE

DNN-HMM SYSTEMS TRAINED IN CLEAN CONDITIONS. THE BEST
PERFORMANCE IN EACH CONDITION IS MARKED IN BOLD

techniques; in noisy conditions masking based front-end even
outperforms VTS adaptation.

B. Deep Neural Networks

We first present the results obtained using models trained
in clean conditions. The results obtained using both cepstral
and log-mel features, with and without dFDLR adaptation, are
shown in Table II. Using cepstral features, the baseline perfor-
mance improves by 22.6% compared to GMMs. This improve-
ment is similar to those reported in other DNN studies. Using
dFDLR improves the baseline WER when there is channel mis-
match, but the average performance remains unchanged. Using
feature mapping alone improves the WER to 15.1 percent. The
proposed front-end improves it further to 14.5 percent. dFDLR
improves performance in every condition and further reduces
the WER to 14.1 percent. Compared to the baseline, this is a
44.5% relative improvement. Similar trends are observed when
the models are trained using log-mel features. An average WER
of 14.9% is obtained using the proposed front-end with dFDLR
adaptation, a 49.5% relative improvement compared to the base-
line. It can also be noticed that the models trained using cepstral
features work better than those trained using log-mel features.
The performance obtained using the models trained from the

multi-condition set are shown in Table III. The table shows re-
sults using models trained directly using the noisy features, and
those trained using the features obtained after speech separation
concatenated with noisy features (Concat-features). For the sake
of comparison, we also show the results obtained only using
the features after separation (Proposed frontend). As has been
noted earlier, this performs worse than Concat-features. When
using cepstral models, Concat-features improves performance
from 15.3% to 13.6 percent. Using dFDLR improves it further
to 13.3 percent, a 13.1% relative improvement compared to the
baseline. Contrary to the above trends, when models are trained
in the log-mel domain, the noisy baseline performs the best.
The average improvement is mainly due to the strong perfor-
mance on test sets 9 to 14 that have both additive noise and
channel mismatch. On those sets, the WER of the noisy base-
line is 2 percentage points better than Concat-features, on av-
erage. In all other conditions, Concat-features works slightly

TABLE III
WORD ERROR RATES ON THE AURORA-4 CORPUS USING THE DNN-HMM

SYSTEMS TRAINED ON THE MULTI-CONDITION SET. THE BEST
PERFORMANCE IN EACH CONDITION IS MARKED IN BOLD

better. The trend remains unchanged after applying dFDLR. To
the best of our knowledge, the average WER of 12.1% obtained
by the noisy baseline after dFDLR adaptation is the best pub-
lished result on Aurora-4. Further, our results in clean, noisy
and noisy + channel mismatched conditions (marked in bold-
face in the table) either match or outperform the best previously
published results on these subsets.

IV. DISCUSSION

The best performing systems on Aurora-4 typically use
strategies like multiple iterations of model adaptation, speaker
specific adaptation using batch updates [45], and discriminative
training of GMM-HMM systems [14]. Our systems compare
well with such methods even without using the proposed
dFDLR feature adaptation. To the best of our knowledge,
the only studies that evaluate DNN based acoustic models
on this task are [48], [37]. These very recent studies obtain
performance close to those reported in the current work using
a recently introduced training strategy for the DNNs called
dropout training [20]. Although the performance obtained by
our system is slightly better, we expect dropout to further
improve performance of the systems described in this work.
Several interesting observations can be made from the re-

sults presented in the previous section. Firstly, the results clearly
show that the speech separation front-end is doing a good job at
removing noise and handling channel mismatch. In most cases,
when the proposed front-end is used, the performance obtained
with clean models is close to those obtained with models trained
from the multi-condition data. When using GMMs, the differ-
ence in performance is only 0.2 percent. With DNNs this dif-
ference is a little larger: 0.7% with cepstral features and 1.9%
with log-mel features. Secondly, with no channel mismatch, T-F
masking alone worked well in removing noise as can be inferred
from the results in Table I. Even though masking improves per-
formance compared to the baseline in the presence of both noise
and channel mismatch, its performance is found to be insuffi-
cient. In such conditions, feature mapping provides significant
gains. Finally, directly performing feature mapping from noisy
features to clean features performs reasonably, but it does not
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perform as well as the proposed front-end. We have also ob-
served in experiments not reported here that directly using the
masked features as input to perform feature mapping or acoustic
modeling does not perform as well as using them in conjunc-
tion with the noisy features. We believe this is because of the
distortions introduced by masking, especially in the presence of
channel mismatch, and possibly the reduced variability in the
training data as noted in [37].
One surprising result from our experiments is that when the

DNN models are trained in clean conditions, cepstral features
worked better than log-mel features. This trend is reversed when
the models are trained using the multi-condition training set.
It is likely that in the presence of severe mismatch in training
and testing conditions, cepstral features generalize better. Other
studies have observed that in matched conditions, log-mel fea-
tures work better [26], [37].
It has been noted in prior work that DNN-HMM systems

work really well when the training and testing conditions do not
differ much [48]. We believe that robust feature representations
and enhancement techniques will be really helpful if a mismatch
in training and testing conditions is anticipated and cannot be
handled at the time of training the acoustic models. Background
noise can be highly unpredictable and can pose such problems
to well trained ASR systems. It should be pointed out that al-
though the speech separation front-end is trained, in this work,
using the same dataset as used by the acoustic models, it can also
be trained independently using a separate set. Such a training set
will not need word-level transcriptions, unlike the data used to
train the ASR models.
Generalization to unseen conditions is a perennial issue for

supervised learning algorithms, and exists in both acoustic mod-
eling and speech separation. In the case of supervised separa-
tion, this problem has been addressed in previous studies and is
vigorously pursued currently [23], [43]. Advances on this topic
would clearly help improve performance of feature-based sys-
tems like the one described in this work.
It is interesting to note that the best average performance of

12.1% is obtained using noisy log-Mel features, with dFDLR
adaptation, as input to a DNN based ASR system. Surprisingly,
this result also improves upon the previous best result reported
on this corpus either using DNNs [37] (which uses only one
recognition pass unlike our final system) or GMMs [45].
As in other ASR tasks [5], when the amount of mismatch
between training and testing is not significant, DNNs seem
to capture sufficient information with good generalization
characteristics [48]. Unless a system has ideal knowledge (e.g.,
the true instantaneous SNR at each T-F unit), any front-end
processing is bound to introduce some distortions. In the case
of DNNs, such distortions seem to have a detrimental effect on
performance [37]. A very recent study on the role of speech
enhancement when using DNN based acoustic models makes
similar observations [6]. This study shows improvements in
performance on a small vocabulary task at much lower SNRs
using an enhancement front-end and cepstral features as input
to the DNN. It is likely that the improvements will be lower
using log-mel features, as shown in our experiments.
This work leads to several interesting research directions.

Clearly, better DNN training strategies like dropout and net-

work architectures like maxout [16] are expected to improve
performance of all components of the proposed system. From
the results in Table III, it can be seen that feature mapping intro-
duces some distortion in the presence of both noise and channel
mismatch, resulting in a drop in performance using log-mel
features. Future work should focus on developing better feature
mapping strategies, e.g., using recurrent neural networks or
bidirectional long-short term memories [46]. It will also be
interesting to study if alternative feature representations, like
the AFE features, are more suitable for feature mapping. The
different components of our system are all trained independent
of each other. It is possible to treat the whole system, including
T-F masking, feature mapping, and acoustic modeling, as a
single deep network interconnected through layers with static
weights. The static layers correspond to operations like mel fil-
tering, cepstral transformation, calculation of delta components,
and mean-variance normalization. With such a formulation, it
may be possible to adjust the weights of the entire network,
leading to a system that learns to handle the errors made by
the layers preceding it. Initial attempts at training the feature
mapping function and the acoustic model jointly resulted in
improved frame classification performance, but it did not trans-
late to improved WER. One could potentially use posterior
modeling [31] to translate the frame level improvements into
ASR performance. Future work will explore this idea further.
Finally, it may be worth exploring alternative ways of using the
output of speech separation when using DNN based acoustic
models. For example, [37] proposed passing a crude noise
estimate as an additional feature to the DNNs. A more accurate
noise estimate from a separation front-end would help improve
performance of such a system.
To conclude, we have proposed a speech separation front-end

based on T-F masking and feature mapping that significantly
improves ASR performance. A semi-supervised feature adapta-
tion technique called dFDLR is proposed which can be applied
on a per-utterance basis. The final system produces state-of-
the-art performance on the Aurora-4 medium-large vocabulary
recognition task. The results show that supervised feature-based
ASR techniques have considerable potential in improving per-
formance.
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