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Abstract—We present a system for robust signal-to-noise ratio
(SNR) estimation based on computational auditory scene analysis
(CASA). The proposed algorithm uses an estimate of the ideal
binary mask to segregate a time—frequency representation of the
noisy signal into speech dominated and noise dominated regions.
Energy within each of these regions is summated to derive the
filtered global SNR. An SNR transform is introduced to convert
the estimated filtered SNR to the true broadband SNR of the noisy
signal. The algorithm is further extended to estimate subband
SNRs. Evaluations are done using the TIMIT speech corpus and
the NOISEX92 noise database. Results indicate that both global
and subband SNR estimates are superior to those of existing
methods, especially at low SNR conditions.

Index Terms—Computational auditory scene analysis (CASA),
broadband SNR, ideal binary mask (IBM), signal-to-noise ratio
(SNR), subband SNR.

I. INTRODUCTION

STIMATION of the signal-to-noise ratio has been studied

for decades, mostly in the context of noise estimation
and speech enhancement. Typical algorithms estimate local
or instantaneous SNR, i.e., the SNR at a particular time—fre-
quency (T-F) unit (also referred to as short-time subband SNR)
[23], which can then be directly used by speech enhancement
algorithms [2]. Two assumptions made by most algorithms
are: 1) the background noise is stationary, at least between
speech pauses and during the time interval when the noise
energy is estimated (or updated) and 2) regular speech pauses
occur in speech. For the estimation to be effective, the interval
size should be chosen wisely. Longer intervals are suited for
tracking stationary background noises. When noise statistics
change quickly, a shorter interval is preferred. But using a
shorter interval reduces the chance of seeing noise-only frames.
Recent techniques relax some of the above assumptions to deal
with non-stationary noise types [21], [10]. In realistic noise
conditions, such as the so called cocktail-party condition, most
techniques falter [26].
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While most algorithms perform short-time subband SNR es-
timation, knowledge of the SNR at other levels is also useful.
Global SNR of an utterance, for instance, can be used to devise
SNR specific speech and speaker recognition strategies [8], [32].
In many applications, speech processing algorithms are opti-
mized to function in certain specific SNR conditions. An SNR
estimator can be used in such applications during the model se-
lection process at runtime. Similarly, subband SNR estimates
are useful in many speech processing tasks.

The main theme of this paper is to estimate broadband and
subband global SNRs, i.e., SNRs at the utterance level. Typ-
ical utterance length is between 2—5 seconds (e.g., the utterances
in the TIMIT core test set [9]). Traditional SNR estimation al-
gorithms have difficulties dealing with such long intervals of
speech when the underlying noise is non-stationary. Algorithms
have been proposed for global broadband SNR estimation. They
are based on identifying the noise and speech energy distribu-
tions [1], [5], or signal statistics [17].

We take a CASA-based approach for SNR estimation. A main
goal of CASA is to estimate the ideal binary mask (IBM) [30],
which identifies speech dominated and noise dominated units
in a T-F representation of noisy speech. The IBM has been
shown to be effective in improving speech intelligibility and
robust automatic speech and speaker recognition in noise [31].
Motivated by this line of research, we investigate whether the
IBM can be used to calculate broadband and subband SNRs.
Although IBM estimation algorithms are commonly based on
short-time SNR estimation [15], [22], few have used the IBM to
estimate the global SNR of mixture signals. The proposed algo-
rithm works under the assumption that at the utterance level, the
total speech and noise energy can be well approximated using
only the speech dominant and the noise dominant T-F units,
respectively.

The remainder of the paper is organized as follows. In
Section II we discuss existing SNR estimation strategies from
the literature. A detailed description of our system is provided
in Section III. Evaluation results are described in Section IV.
We conclude with a discussion of our results in Section V.

II. PRIOR WORK

We first discuss short-time subband SNR estimation algo-
rithms. Herein, estimation of the noise level is an important sub-
problem and has been widely studied. Early methods include the
spectral histogram based method of Hirsch [11], and the low-en-
ergy envelope tracking method of Martin [23]. Other strate-
gies for SNR estimation include energy clustering to distinguish
speech and noise portions of the mixture [28], [5], and explicit
speech pause or voice-activity detection (VAD) [19]. Nemer
et al. [25] make use of higher order statistics of speech and
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Fig. 1. Schematic diagram of the proposed system. The input to the system is a noisy mixture. The outputs are the broadband SNR, filtered SNR and subband
SNRs. The system includes an IBM estimation module and an SNR estimation module.

noise, assuming a sinusoidal model for band restricted speech
and a Gaussian model for noise. Supervised classification based
methods have also been applied to this task. For example, fea-
tures inspired from psychoacoustics and an MLP based classi-
fier are used in [27], [18] to estimate broadband and subband
SNRs in short intervals. The a priori SNR, which is the ratio
of the speech and noise power, is widely used in speech en-
hancement algorithms and is typically estimated using the deci-
sion-directed approach of Ephraim and Malah [6]. Alternative
techniques are based on GARCH models [4] and cepstro-tem-
poral smoothing [3].

Global SNR estimation has also been studied, although not
as widely as short-time subband SNR estimation. A commonly
used algorithm from NIST [1] builds a histogram of short-time
signal power using the noisy utterance, which is used to infer
noise and noisy speech distributions. From these distributions,
the peak signal-to-noise ratio is calculated rather than the mean
SNR. The peak SNR is clearly an overestimate of the true SNR.
Dat et al. [5] use a similar approach, but instead of fitting the
histogram, they fit a 2-component Gaussian to the data using the
expectation maximization (EM) algorithm. A similar approach
was also used in [28] to model speech. Dat et al. extended the
idea by using the learned Gaussians in a principled way to de-
rive the SNR of the signal. Similar to [1], their approach would
have problems when the bimodal Gaussian assumption fails.
The method by Kim and Stern [17] is based on the waveform
amplitude distribution. It assumes that clean and noisy speech
have Gamma distributions, and noise a Gaussian distribution. It
infers the global SNR based on the parameter of the distribu-
tion estimated from noisy speech. Their algorithm works well
when these assumptions are met. Performance degradation oc-
curs at low SNR conditions and when the background noise has
non-Gaussian characteristics. An alternative, relatively straight-
forward approach would be to use speech enhancement algo-
rithms to estimate the noise power spectral density (PSD) [10]
and the squared-magnitude of speech in the DFT domain [7].
Assuming that the noise PSD approximates noise energy, which
is reasonable, both global broadband and subband SNRs can be
directly calculated by summating these estimates across time.

Long-term subband SNR estimation is not much studied, but
global SNR estimation algorithms can be extended to perform
subband SNR estimation. NIST [1] provides a subband SNR
estimation algorithm based on the same principle as broadband
SNR estimation. It is fairly easy to extend the methods in [17]
and [5], and speech enhancement based strategies to perform
subband SNR estimation. A supervised approach was proposed
by Kleinschmidt and Hohmann [18]. Being supervised, the al-
gorithm is likely dependent on training conditions.

A system related to ours is the one described in [14] (re-
ferred to as the Hu-Wang system). It estimates the SNR using
a binary mask for only the voiced speech frames, by making
the following assumptions: 1) the total voiced speech energy
is approximately equal to the total noisy signal energy under
the unmasked, speech dominant (1 s in the voiced IBM) T-F
units, 2) the total signal energy can be inferred from the total
voiced signal energy, and 3) the per-frame noise energy in both
voiced and unvoiced frames remains unchanged. Their system
produces reasonable results at SNRs close to 0 dB but biased
estimates at other conditions. Since only the voiced IBM is
used, estimating subband SNRs will be challenging, especially
at high frequencies. In addition to providing a novel framework
for SNR estimation, our algorithm differs from the Hu-Wang
system since we use an estimate of the IBM in both voiced and
unvoiced time frames.

III. SYSTEM DESCRIPTION

The architecture of the proposed system is shown in Fig. 1.
The input to the system is a noisy speech signal, which is first
processed using a 128-channel gammatone filterbank to per-
form T-F decomposition. The center frequencies of the filter-
bank are uniformly spaced in the ERB (Equivalent Rectangular
Bandwidth) rate scale from 50 Hz to 8000 Hz [31]. The sig-
nals are sampled at 16 kHz in our experiments, and the chosen
frequency range ensures that almost all useful speech informa-
tion is retained in the filtered signal. A typical gammatone fil-
terbank performs loudness equalization across frequencies to
match cochlear filtering. As a result, different frequency com-
ponents are scaled differently. This may alter the SNR of the
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Fig. 2. Aggregated magnitude response of the normalized and loudness equal-
ized gammatone filterbank. The gain for a specific frequency is calculated by
aggregating the gains across the 128 filters of the filterbank. Notice that most fre-
quency components undergo no attenuation/amplification when processed using
the normalized gammatone filterbank.

filtered signal compared to the original signal in the time do-
main, even if the signal is band limited to 50-8000 Hz. In order
to prevent this undesired effect, we normalize the gammatone
filterbank. The normalized filterbank scales the frequency com-
ponents covered by the filterbank so as to ensure that for speech
signals, the filtered signal energy approximately equals its total
time-domain energy. This may not be the case for noise and
noisy speech signals if the underlying noise has significant en-
ergy in the low-frequency range (e.g., the car interior noise from
the NOISEX92 corpus [29]). We will make use of the normal-
ized filterbank in the subsequent SNR transformation step to es-
timate the true broadband SNR of a noisy signal, given its fil-
tered SNR. Fig. 2 compares the aggregated magnitude responses
of the conventional gammatone filterbank and the normalized
gammatone filterbank.

After T-F decomposition, the filtered signal is windowed
using a 20 msec rectangular frame with a 10 msec frame shift.
A cochleagram [31] of the signal is then created by calculating
the signal energy within each of these windows. Because of the
50% overlap between adjacent frames, the total energy within
the cochleagram will roughly be twice the energy of the speech
signal in the time domain.

Let y(t), z(¢) and n(t) represent the noisy, clean and noise
signals, respectively, and Y, X and N their corresponding
cochleagrams. Noise is assumed to be additive in nature and
independent of speech:

y(t) = z(t) + n(t).

Here, t denotes a time sample. We define the following SNRs:

SNR, = 10logy, (%E E ?Z) 1)

t)
2m,c X(m 7C)>
(m

5., N(m.0) @)

SNR; = 10logy (
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SNR. = 10logy, (%) , 3)

where SNRy, SNR ¢ and SNR, denote the broadband SNR, the
filtered SNR and the subband SNR, respectively. m indexes a
time frame and ¢ a frequency channel. Each of the three SNRs
can be useful depending on the target application. The goal of
the proposed algorithm is to estimate these SNRs.

Since we only have access to y(¢) and Y in practice, to cal-
culate these SNRs, we approximate the total target speech and
noise energy using Y and an estimated IBM. The IBM is a
two-dimensional binary matrix, with the same dimensionality as
Y. An element in the matrix takes the value 1 if the speech en-
ergy within the corresponding T-F unit is greater than the noise
energy. Formally, the IBM is defined as:

TBM(m, ¢) = { 1 if X(m.7 ¢) > N(m,c) @)

0 otherwise

Note that the IBM can also be defined in terms of a local SNR
threshold at each T-F unit called the local criterion (LC). The
above formulation implies an LC of 0 dB. Under certain condi-
tions, the IBM obtained using an LC of 0 dB is the optimal bi-
nary mask in terms of SNR gain [20]. Given an estimated IBM
and the cochleagram of the input signal, the SNRs are estimated
by the SNR estimation module (Fig. 1) in the proposed system.
This module is described in detail in the following subsection.
IBM estimation itself is an important problem and is discussed
in Section III.B.

A. SNR Estimation

For SNR estimation, we assume that the total target energy,
both at the broadband and the subband level, can be estimated
using only the speech dominant T-F units and the total filtered
noise energy from the noise-dominant T-F units. As shown in
the evaluations, this assumption is reasonable for long-term
SNR estimation.

1) Global SNR Estimation: Given an estimated IBM (M),
the total speech and noise energy are estimated as follows:

speech ZY m, C m7c)7 (5)
Enoise = ZY m, C) . _'M(m7 0)7 (6)

where *” and ‘=" denote the pointwise multiplication and ‘NOT”
operations, respectively. The filtered SNR (SNR ) is then esti-
mated as shown below, using these estimates:

Ei eec
SNR; = 10log, < EP h) . )

noise

The true broadband SNR is estimated by transforming SNR ¥
using an SNR transformation step. We transform the SNR based
on the following observation. Recall that when speech signals
are processed using the normalized gammatone filterbank, the
total signal energy is not significantly altered since it applies a
unit gain to most of the useful bands. Therefore, the difference
between the energy of the noisy signal in the time domain and
its energy after T-F decomposition using the normalized gam-
matone filterbank can mostly be attributed to noise. This is true
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especially at low SNRs, where noise energy is comparable to
or greater than the target energy. With this observation, the true
broadband SNR can be calculated by compensating the noise
energy with this difference during SNR estimation:

AE =2 (y(t)* =Y Y(m,c), ®)

TN Es eech
SNR;, = 10log;, | = seech ) (9)
Fhoise + max(0, AE)

S/l\ﬁ{b is the estimated broadband SNR of the noisy signal. Note
that, AE compensates for the low frequency noise energy that
gets attenuated by the filterbank. The implications of the ap-
proximation in (8) to compensate the total noise energy are de-
scribed in Section IV.C.

2) Subband SNR Estimation: The subband SNRs are esti-
mated similar to (7), but the energy values are summated only
across time:

(10)

SNR. = 101og;, < Ln T .M(m,i)> '

Yo Y(m,c) - ~M(m

ST\I\RC denotes the estimated subband SNR for frequency
channel c.

B. IBM Estimation

We consider three methods for IBM estimation. The first one
is based on a recent CASA based IBM estimation algorithm de-
scribed in [15]. The second one is based on the state-of-the-art
speech enhancement algorithms in [7], [10]. With the goal of
generalization to different test conditions, the final method com-
bines the CASA and speech enhancement methods to estimate
the IBM.

1) CASA Based IBM Estimation: The CASA algorithm in
[15] uses the tandem algorithm [13] to estimate the voiced IBM
(the IBM in voiced frames) and a spectral subtraction based
method to estimate the unvoiced IBM. The tandem algorithm is
an iterative procedure that estimates both the target pitch and the
corresponding binary mask for up to two voiced sound sources
in the signal. The algorithm does not link disjoint pitch con-
tours, which is the task of sequential organization. Since we only
deal with non-speech noise, multiple pitch points are typically
detected only for a fraction of frames. In this work, sequential
organization is performed based on: 1) plausible pitch range of
speech, 2) length of a pitch contour, and 3) pitch continuity. The
binary masks corresponding to the sequentially grouped pitch
contours are then grouped to obtain an estimate of the voiced
IBM. The algorithm estimates the unvoiced IBM by first re-
moving periodic components from the mixture signal. It then
forms a noise estimate for each unvoiced interval by averaging
the energy within the noise dominant T-F units (0 s in the mask)
of its neighboring voiced intervals. These estimates are finally
used in spectral subtraction to obtain the estimated unvoiced
IBM. Fig. 3(d) shows an estimated IBM obtained in this fashion.
It captures most of the voiced segments (T-F regions) and a good
number of unvoiced segments. Comparing with the IBM shown
in Fig. 3(c), we can see that it still misses a few target-dominant
segments.
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Fig. 3. IBM estimation. (a) Cochleagram of the utterance ‘Straw hats are out

of fashion this year’ from the core test set of the TIMIT corpus. (b) Cochlea-
gram of the same utterance mixed with babble noise; the filtered SNR is set to
5 dB. (c¢) The IBM. (d) The mask estimated by the CASA system described in
Section III.B.1. (e) The mask estimated by the speech enhancement method de-
scribed in Section II1.B.2. (f) The mask obtained by combining the two methods.

2) Speech Enhancement Based IBM Estimation: The speech
enhancement mask estimation is based on a state-of-the-art
noise tracking algorithm described in [10]. The algorithm oper-
ates in the linear frequency domain, using the FFT to perform
T-F decomposition. To estimate the noise PSD, it uses an
MMSE estimator of noise magnitude-squared DFT coefficients
assuming that both speech and noise DFT coefficients follow
a complex-Gaussian distribution. The squared-magnitudes of
the speech DFT coefficients are estimated using the algorithm
in [7], which assumes that speech magnitude-DFT coefficients
follow a generalized Gamma distribution with parameters
v = 1 and v = 0.6. The algorithms use the decision-directed
method [6] to estimate the a priori SNR at each T-F unit.
Given these estimates, the noise and speech energy within a
T-F unit are approximated as the estimated noise power and
estimated squared-magnitude of the speech DFT coefficient,
respectively. These estimates are then transformed to the non-
linear frequency domain of the gammatone filterbank using the
frequency response of the individual gammatone filters:

K—-1
X(m,c) = (1/K) Y (Xppr(m, k) - |Ge(k)[*). (1)
k=0

Here, X is an estimate of X, XFFT the estimated speech energy
in the DFT domain and G the frequency response of the filter
channel c. Index k denotes a DFT coefficient and K the number
of DFT bins used for T-F analysis, which is set to 512 in our
experiments. A similar equation is used to estimate N. The IBM
is finally estimated by substituting X and N in (4). Fig. 3(e)
shows a binary mask estimated in this way.
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3) Combining CASA and Speech Enhancement for IBM Esti-
mation: The motivation behind combining the speech enhance-
ment method and the CASA method is that the former works
well when the SNR is high, whereas the latter algorithm is de-
signed for low SNR conditions. Moreover, from Figs. 3(a)—(c),
it can be seen that some target dominant units missed by one
method are identified by the other.

The CASA mask in the combined system is obtained using
the algorithm described in Section III.B.1 without any change.
The goal of the speech enhancement method in the combined
system is to identify units having high SNR. Therefore, the mask
is estimated by calculating the local SNR at each T-F unit using
X and N obtained as described in Section 1II.B.2, and com-
paring it to LC which is set to a value greater than O (unlike (4)).
This also helps to reduce false alarms (0 s wrongly labeled as
1 s) in the final mask. A reasonable value for LC is chosen using
a small development set of noisy mixtures (see Section IV.A for
details).

To combine the two masks, we use the simple logical ‘OR’
operation. Fig. 3(f) shows the mask estimated by this algorithm.
The final mask is more similar to the IBM than the masks esti-
mated using CASA and speech enhancement based methods.

IV. EVALUATION RESULTS

We start by describing the experimental setup in Section IV.A.
Results that highlight the role of the SNR transform are pre-
sented in Section IV.B. Since the idea of using binary masks for
SNR estimation is relatively new, we provide an initial set of re-
sults using the IBM directly in Section IV.C. This is followed by
a description of the results using the estimated IBMs and com-
parisons in Section IV.D. Finally, we compare an FFT based
representation for SNR estimation using binary masks with the
proposed method in Section IV.E.

A. Experimental Setup

All our experiments are conducted using the TIMIT speech
corpus [9] and the NOISEX92 noise database [29]. Specifically,
the experimental results are obtained on the core test set of the
TIMIT database which consists of 192 clean speech utterances
from 24 speakers recorded at 16 kHz. Four noises are chosen
from the NOISEX92 database—white noise, car noise, babble
noise and factory noise. The first two noises are stationary and
the last two relatively non-stationary. Car noise is chosen as it
has a considerable amount of low frequency energy as a result of
which the broadband and the filtered SNRs are quite different,
thereby enabling us to measure the performance of the proposed
algorithm in estimating these SNRs more thoroughly. The noise
signals are downsampled to 16 kHz to match the sampling rate
of the speech signals.

Two test sets—Set A and Set B—are created for evaluating
the performance of the proposed system in estimating the broad-
band SNR and the filtered SNR, respectively. Both test sets
consist of the 4 noises mixed with clean speech at 6 SNR condi-
tions ranging from —10 dB to 15 dB, in increments of 5 dB. To
create a noisy signal, a randomly selected segment of the noise
is scaled to the desired level and added to the speech signal. Test
Set A is created by scaling the signals so as to set the broadband
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TABLE I
MEAN ABSOLUTE ERROR IN ESTIMATING THE BROADBAND SNR WITH AND
WITHOUT THE SNR TRANSFORMATION STEP WITH THE TRUE FILTERED
SPEECH AND NOISE ENERGIES ASSUMED TO BE AVAILABLE

Noise SNR

-10dB -5dB 0dB 5dB 10dB 15dB

Without SNR Transformation
White 0.00 0.00 0.00 0.00 0.00 0.00
Car 7.66 7.78 7.64 7.68 7.77 7.78
Babble 0.12 0.07 0.05 0.12 0.09 0.06
Factory 0.86 0.89 0.89 0.95 0.89 0.91
With SNR Transformation

White 0.00 0.00 0.00 0.00 0.00 0.00
Car 0.00 0.00 0.00 0.00 0.01 0.08
Babble 0.00 0.00 0.00 0.00 0.00 0.00
Factory 0.00 0.00 0.00 0.00 0.01 0.04

SNR (SNRy) to the desired level. Similarly, Test Set B is cre-
ated by controlling the filtered SNR (SNR). Test Set B is also
used to evaluate subband SNR estimation performance.

The broadband and filtered SNR estimation results are pre-
sented for the following systems. The first one is the SNR esti-
mation algorithm (WADA) proposed in [17], which was shown
to significantly outperform the algorithm from NIST [1]. The
second system uses the noise power and speech squared-mag-
nitude estimate obtained as described in Section III.B.2 using
the speech enhancement algorithms [10], [7] directly to estimate
the SNR (HND). The frame length and the frame shift are set
to 20 msec and 10 msec, respectively, to match those used by
our algorithm. We use 512 DFT bins for T-F analysis. The re-
maining parameters are set as suggested in [10], [7]!. The SNR
is estimated by summating the estimated noise power and the
estimated squared-magnitudes of speech across time and fre-
quency in the DFT domain. The remaining approaches are based
on estimated IBMs. The Hu-Wang system [14] is the third, and
is slightly modified so as to make use of the normalized fil-
terbank and the SNR transform. These modifications improve
the performance reported in [14]. The forth method uses the
IBM estimated using the speech enhancement method described
in Section III.B.2. We denote this method HND_MOD. The
final method is based on the IBM estimated using the combined
method described in Section III.B.3. The method is denoted as
Proposed. Note that the only difference between HND_MOD
and Proposed is in the way the IBM is estimated.

WADA and HND make use of all the frequencies of the signal
to estimate the SNR. Therefore, before estimating the filtered
SNR using these algorithms for Test Set B, the original mix-
ture is processed using a filter that has a frequency response
similar to the aggregated response of the gammatone filterbank
(see Fig. 2). These algorithms then calculate the broadband SNR
using the filtered signal, which is equivalent to estimating the fil-
tered SNR of the signal.

A development set is created by randomly choosing 30 ut-
terances from the training set of the TIMIT corpus to tune the
LC value that is used to estimate the speech enhancement mask
in the combined system (Section III.B.3). Values ranging from

!An implementation of this algorithm is available at http:/siplab.tudelft.nl/

content/mmse-based-noise-psd-tracking-algorithm, which was used to generate
the results reported in this paper.
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TABLE II
MEAN ABSOLUTE ERROR AND STANDARD DEVIATION OF THE ERROR (IN PARENTHESIS) IN ESTIMATING
THE FILTERED SNR (SNR ;) AND THE BROADBAND SNR (SNR;) USING THE IBM

Noise SNR SNR Mean

type type -10 dB 5 dB 0 dB 5dB 10 dB 15 dB

White SNR; 0.16(£0.37) 0.00(£0.00)  0.00(£0.00) 0.09(£0.28) 0.55(£0.50)  0.99(£0.19)  0.30(+0.22)
SNR, 0.16(+0.37) 0.00(£0.00) 0.00(4+0.00) 0.07(+0.26) 0.51(£0.50)  0.98(40.25) 0.29(40.23)

Car SNRy 0.00(£0.00) 0.00(£0.00) 0.00(£0.00) 0.00(£0.00) 0.00(£0.00) 0.03(£0.17) 0.01(40.03)
SNR;, 0.00(£0.00) 0.00(£0.00) 0.00(£0.00) 0.00(£0.00) 0.02(£0.12) 0.09(£0.42) 0.02(%0.09)

Babble SNR; 0.89(£0.56) 0.05(£0.21) 0.09(£0.29) 0.79(+0.41) 1.10(£0.31) 1.72(£0.53) 0.77(£0.39)
SNR, 0.89(+0.55) 0.03(£0.16) 0.12(40.33) 0.74(+0.44) 1.09(£0.34) 1.79(40.51) 0.78(+0.39)

Factory SNR; 0.77(£0.47) 0.01(£0.07) 0.07(£0.26) 0.71(+0.45) 1.02(£0.20) 1.53(£0.51) 0.68(%0.33)
SNR, 0.55(+0.50) 0.01(£0.07) 0.10(£0.31) 0.71(£0.45) 1.01(£0.22) 1.47(40.54) 0.64(%0.35)

0 dB to 10 dB in 1-dB steps are tested. Based on the SNR esti-
mation performance on the development set across the 4 noise
conditions, the final value is set to 8 dB.

Subband SNRs are estimated across the frequency bands of
a 64-channel gammatone filterbank, which is a typical number
of channels used in CASA systems. Among the algorithms
described earlier, only modified versions of WADA and HND
are compared with the proposed subband SNR estimation
algorithm. As described in Section II, WADA assumes that
speech is Gamma distributed with a fixed parameter o = 0.4.
Although this holds for broadband signals, we have noticed that
this value does not hold for band-limited signals. Therefore, the
30-utterance development set is used to find an optimal « for
each subband. This is done by fitting a Gamma distribution to
the clean subband signal amplitudes (in the maximum-likeli-
hood sense). The mean « for the 30 utterances for each channel
is then chosen as the final parameter for that channel. HND
is adapted to estimate subband SNRs in the domain defined
by the gammatone filterbank by first transforming the energy
estimates using (11) and then using (3). The IBM estimation
module of the proposed algorithm estimates a 128-channel
mask. Instead of re-estimating a 64-channel mask for the
purpose of subband SNR estimation, we sub-sample this mask
to 64 channels. This is reasonable because the center frequen-
cies (c) of the 64-channel gammatone filterbank and those
of the odd numbered channels (2¢ — 1) of the 128-channel
gammatone filterbank are identical, since both of them are
uniformly distributed in the ERB rate scale. Sub-sampling is
done by additionally accounting for the wider bandwidths of
filters in the 64-channel filterbank; a T-F unit, Mg4(m, ¢), in
the 64-channel mask is labeled 1 only if at least 2 out of the 3
corresponding T-F units, M1ag(n, 2¢ — 2)), Mj2g(m, 2¢ — 1)
and Msg(rmn, 2¢), in the 128-channel mask are speech domi-
nant. The subband SNRs are restricted to the range of —20 dB
to 30 dB, i.e., any estimate not falling in this range is rounded
to the boundary values.

In order to remove minor effects of windowing on the
global SNR, the estimated values from each of these algorithms
are rounded to the nearest integer before calculating error
metrics2. In the case of broadband/filtered SNR estimation, the
mean absolute errors and standard deviations are reported. In
the case of subband SNR estimation, only the mean absolute
errors are reported.

2In the default setting, the minimum step size in WADA is 1 dB.

B. SNR Transformation

In this section, we illustrate the effectiveness of the SNR
transform by performing an oracle experiment assuming that
the true filtered speech and noise energies are available to the
system. Turning off the SNR transform implies that the broad-
band SNR is approximately equal to the filtered SNR. The mean
absolute errors are shown in Table I for the 4 noise types at the
tested SNR conditions. As can be seen, there are no differences
in the results for white noise since the amount of low-frequency
energy is negligible compared to the total noise energy that
passes through the filterbank. In contrast, for car noise, without
the transformation the errors are much larger. On average, SNR
transformation improves performance by around 7.7 dB for this
noise. The difference is less dramatic for babble noise, as it has
only a small amount of energy in the low-frequency range. For
factory noise, the transformation improves the average perfor-
mance by around 0.9 dB. With the SNR transform the mean ab-
solute error is near 0 dB for all 4 noises at the tested SNR con-
ditions. The results corroborate our claim that the broadband
and the filtered SNR can be different and the proposed SNR
transform compensates for this difference for broadband SNR
estimation. The transform plays an important role when the un-
derlying noise type in a mixture has a considerable amount of
low-frequency energy.

C. IBM Results

The mean absolute errors and the standard deviations of the er-
rors in estimating the filtered SNR and the broadband SNR of the
signal using the IBM are shown in Table II. The error trends in es-
timating these SNRs are quite similar. It can be clearly seen from
the results that excellent performance is obtained using the IBM.
When the noise is relatively stationary, the IBM based system is
even able to perfectly estimate the SNR in a few test conditions.
It is interesting to note that the errors are slightly larger in ex-
treme SNR conditions (—10 dB and 15 dB). This is because at
such high (low) SNRs masked (unmasked) T-F units are much
fewer, leading to an underestimation (overestimation) of the total
noise energy. This bias is noise dependent, which makes it diffi-
cult to compensate for without prior knowledge about the noise
type. It should be pointed out that the advantage of SNR trans-
formation persists even when the IBM is used to approximate the
total speech and noise energy, especially for noises with signifi-
cant low-frequency energy. Since noise is slightly overestimated
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TABLE III
THE MEAN ABSOLUTE ERROR IN ESTIMATING THE FILTERED SNR(SNR ;) USING WADA, HND, HU-WANG, HND_MOD AND THE PROPOSED
ALGORITHM. THE STANDARD DEVIATION OF THE ERROR IS SHOWN WITHIN PARENTHESIS. THE BEST RESULT IN EACH CONDITION
IS MARKED IN BOLD. ALSO SHOWN ARE THE RESULTS AVERAGED ACROSS SNRS AND ACROSS DIFFERENT NOISE TYPES

Noise Method SNR Mean

type -10 dB -5 dB 0 dB 5dB 10 dB 15 dB

White WADA 3.32(+4.51) 1.17(£1.31) 0.90(%+0.82) 0.88(£0.91) 1.02(£1.22) 1.55(%£2.01) 1.47(%+1.80)
HND 0.55(+0.63)  0.81(£0.58)  0.69(£0.53) 0.64(40.51) 0.85(+0.42) 1.07(£0.38)  0.77(£0.51)
Hu-Wang 1.15(+£0.94)  0.45(+0.78)  0.39(+0.71)  0.76(£1.81) 1.44(£1.86) 2.89(%3.20) 1.18(%1.55)
HND_MOD  2.44(40.97)  1.28(4+0.48)  0.92(+0.39) 0.86(+0.37) 0.86(£0.35)  0.90(+0.32) 1.21(+0.48)
Proposed 1.65(+£0.78)  0.78(%£0.57)  0.46(4+0.51)  0.54(+£0.54)  0.71(£0.63)  1.09(£0.75) 0.87(40.63)

Car WADA 6.29(£7.05) 3.11(£4.88) 1.09(+1.30) 0.86(£1.03) 0.93(£1.24) 1.56(%£2.01) 2.31(+2.92)

(
(
(
E
HND 2.24(£0.92)  0.74(£0.56)  0.20(£0.43)  0.15(£0.38)  0.28(£0.47)  0.70(£0.64)  0.72(+0.57)
Hu-Wang  0.77(£1.00)  0.55(£0.88) 0.60(£1.54) 0.92(£2.08) 1.56(£2.15) 3.44(£3.77)  1.31(£1.90)
(
(
(
(
(
(

(
(
( (
( (
HND_MOD  0.42(£0.78)  0.13(£0.37)  0.07(£0.26)  0.14(+0.36)  0.43(+0.52) 0.77(+0.59)  0.33(40.48)
( (
( (
( (
(

(

(

(

E
Proposed 0.35(+£0.67)  0.07(+0.25)  0.01(+£0.10)  0.01(£0.07)  0.06(+£0.23)  0.24(+£043)  0.12(+0.29)
Babble  WADA 5.88(£2.50) 2.04(£1.86) 1.75(£1.09) 1.28(£1.06) 1.32(£1.39) 1.65(E£2.00) 2.47(E1.68)
HND 3.59(£1.20)  1.09(£1.09)  0.65(+0.86) 0.72(+0.83) 1.17(+0.96) 1.56(+1.03)  1.46(41.00)
Hu-Wang 2.32(+£1.49)  1.06(£1.42) 1.12(£1.64) 1.61(£2.19) 2.20(£2.91)  3.65(+£4.20)  2.01(+2.31)
HND_MOD  2.80(£1.50) 1.00(£1.21) 0.59(+0.82) 0.61(+0.81) 0.72(+0.85) 0.85(£0.93)  1.10(%1.02)
Proposed 1.96(+1.44)  0.86(+1.16)  0.40(+0.65)  0.50(+0.69)  0.60(+0.78)  0.93(+£0.91)  0.88(+0.94)
Factory  WADA 6.30(£3.81) 2.86(£1.71) 1.84(£1.14) 1.43(£1.18) 1.30(£1.42) 1.74(£2.17) 2.60(E£1.91)
HND 2.15(+2.04)  0.96(£1.42)  0.93(+0.99) 1.09(+0.84) 1.41(+0.88) 1.92(+£1.06) 1.41(+£1.20)
Hu-Wang 1.75(£2.09)  1.14(£1.72) 1.03(£1.53) 1.05(£1.45) 1.65(£2.57) 3.02(£3.40) 1.61(+2.13)
HND_MOD  2.32(+3.16)  1.14(+1.52) 0.82(£0.95) 0.88(+0.81) 1.06(+0.80) LI1(+£0.96)  1.22(£1.37)
Proposed 1.30(+£1.83)  0.97(+1.23)  0.54(+0.70)  0.50(+0.67)  0.72(+0.78)  1.13(+£0.98)  0.86(+1.03)
All WADA 5.A7(£5.73) 2.52(£3.17) 1.39(£1.23) L.IL(£1.10) 1.14(£1.35) 1.63(£2.08) 2.21(E2.45)
HND 2.13(+1.20)  0.90(£0.91)  0.62(+0.70)  0.65(+0.64) 0.93(+£0.68) 1.31(+£0.78)  1.09(+£0.82)
Hu-Wang 1.50(£1.99)  0.80(£1.30) 0.79(+1.41) 1.08(+1.94) 1.74(4+2.43) 3.25(+3.68) 1.53(+2.12)
HND_MOD  1.99(+£1.61) 0.89(+0.89) 0.60(£0.60) 0.62(+0.59) 0.77(+0.63)  0.91(£0.70)  0.96(40.84)
Proposed 131(£1.18)  0.67(+0.80)  0.35(+0.49)  0.39(+0.49)  0.52(+0.61)  0.85(0.77)  0.68(+0.72)

TABLE IV
THE MEAN ABSOLUTE ERROR IN ESTIMATING THE BROADBAND SNR (SNR, ) USING WADA, HND, HU-WANG, HND_MOD AND THE PROPOSED ALGORITHM.
THE STANDARD DEVIATION OF THE ERROR IS SHOWN WITHIN PARENTHESIS. THE BEST RESULT IN EACH CONDITION IS MARKED IN BOLD. ALSO SHOWN ARE
THE RESULTS AVERAGED ACROSS SNRS AND ACROSS DIFFERENT NOISE TYPES

Noise Method SNR Mean
type -10 dB -5 dB 0 dB 5dB 10 dB 15 dB
White WADA 3.52(+£4.69) 1.10(£1.25) 0.87(£0.77) 0.86(£0.84) 1.02(£1.13) 1.57(£1.88) 1.49(%1.76)
HND 0.62(+0.57) 1.00(£0.55)  0.92(£0.42) 0.86(40.44) 0.97(+0.34) 1.17(£0.37)  0.92(£0.45)
Hu-Wang 1.21(£0.92)  0.44(+0.69)  0.39(+0.70) 0.67(£1.08)  1.51(£2.89) 3.03(%3.77) 1.21(%1.68)
HND_MOD  2.40(40.92)  1.30(£0.50)  0.96(+0.31) 0.86(+0.38) 0.86(%0.35)  0.89(+£0.36) 1.21(40.47)
Proposed 1.68(+0.77)  0.80(+0.55)  0.52(£0.55)  0.55(+0.52)  0.73(+0.63)  1.10(+0.75)  0.89(£0.63)
Car WADA 6.93(£7.61) 4.48(£6.23) 1.53(£1.78) 1.21(£1.29) 1.22(£1.34) 1.64(£1.93) 2.84(%3.36)
HND 6.22(+£1.69)  3.80(%1.25) 2.22(40.86) 1.79(£0.90) 1.42(£0.70) 1.21(40.78)  2.78(+1.03)
Hu-Wang 0.35(£1.52)  0.31(£1.51) 0.46(£1.71) 0.93(£2.58) 1.62(£2.30) 3.57(+4.05) 1.21(42.28)
HND_MOD  0.03(£0.16)  0.01(£0.07)  0.00(+0.00)  0.01(£0.10)  0.03(£0.18)  0.20(+0.49)  0.05(%0.17)
Proposed 0.01(+0.07) 0.00(+0.00) 0.00(=40.00) 0.00(+0.00) 0.01(+0.07) 0.06(+0.32) 0.01(+0.08)
Babble =~ WADA 5.72(+2.58) 2.94(£1.66) 1.70(£1.08) 1.30(£1.06) 1.28(+1.23) 1.70(£2.05) 2.44(%1.61)
HND 4.03(£1.75)  1.24(£1.17)  0.60(%0.89) 0.77(£1.00) 1.15(£0.98) 1.53(%1.08) 1.55(%1.15)
Hu-Wang 2.18(+1.66)  0.98(£1.39) 1.06(+1.44) 1.62(£2.49) 2.22(+2.80) 4.08(£4.67) 2.02(+2.41)
HND_MOD  2.51(#+1.60)  0.96(+1.18) 0.49(%0.76) 0.56(%0.74)  0.68(40.78)  0.73(£0.91)  0.99(40.99)
Proposed 1.82(£1.60) 0.72(+1.03) 0.41(+0.67) 0.41(£0.65) 0.57(+0.78)  0.90(£0.93)  0.81(40.94)
Factory WADA 5.70(£3.92) 2.82(£1.66) 1.72(*1.14) 1.24(£1.03) 1.30(£1.22) 1.81(£2.02) 2.43(%£1.83)
HND 2.34(+1.40) 0.83(%1.23) 0.67(+0.84) 0.91(£0.75) 1.22(£0.82)  1.59(40.92) 1.26(%1.00)
Hu-Wang 1.53(£1.96)  0.89(%1.23) 0.82(%+1.21) 0.93(£1.39) 1.40(£1.89) 2.95(%3.66) 1.42(+1.89)
HND_MOD  1.65(%+2.34) 1.00(£1.37) 0.66(+0.77) 0.78(+0.69) 0.85(+£0.74) 0.89(£0.93)  0.97(%1.14)
Proposed 1.16(£1.65)  0.77(£0.95) 0.44(+0.68) 0.36(+0.54) 0.59(+0.73) 1.01(£0.90)  0.72(+0.91)
All WADA 5.47(£5.81) 2.83(£3.63) 1.46(£1.32) 1.15(£1.09) 1.21(£1.24) 1.68(£1.97) 2.30(%£2.51)
HND 3.30(£1.36)  1.72(£1.05) 1.10(%0.75) 1.08(£0.77) 1.19(£0.71) 1.38(40.79) 1.63(%0.91)
Hu-Wang 1.32(£2.00) 0.65(£1.27) 0.68(+1.33) 1.04(%£2.03) 1.69(£2.53) 3.41(+4.08) 1.46(%2.21)
HND_MOD  1.65(£1.26) 0.82(£0.78)  0.53(+0.46) 0.55(4+0.48)  0.60(+0.51)  0.68(+£0.67)  0.80(%0.69)
Proposed 1.17(£1.02) 0.57(+0.63)  0.34(+0.47)  0.33(£0.43)  0.47(£0.55) 0.77(£0.73)  0.61(+0.64)

at extremely low SNRs, the transformation may worsen the per-  performance. The results point to the fact that the IBM, despite
formance for noises that do not have significant low-frequency being binary, can indeed be used for SNR estimation.

energy, like babble and factory. The mean absolute errors without

the transform for babble and factory noise at —10 dB are 0.72dB - Estimated IBM Results

and 0.28 dB, respectively, slightly better than the results with 1) Global SNR Estimation: Global SNR estimation results
the transform. At all other SNRs, the transformation improves are tabulated in Tables III and IV. Each table consists of 5 sets
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Fig. 4. Subband SNR estimation results using WADA, HND, the IBM, and the estimated IBM by the proposed algorithm, averaged across the four noises—white,
car, babble and factory. Mean absolute errors across the 64 sub-bands are shown for the following filtered SNR conditions: (a) —10 dB. (b) 0 dB. (c) 10 dB.

of results—one for each noise and one for the average across
the 4 noises.

The mean absolute errors in estimating the filtered SNR are
shown in Table III. The proposed algorithm obtains the best av-
erage results across all noise types. It also obtains the best re-
sults in most of the individual test conditions. Similar to the
IBM results, errors gradually increase at positive SNR levels
but are still reasonably small. The second best performance is
obtained using another binary masking method—HND_MOD.
On average, it is around 0.2 dB worse than the proposed method.
The proposed algorithm outperforms WADA and HND by about
1.5 dB and 0.4 dB, respectively. WADA performs reasonably
when the SNR > 0 dB. But at lower SNRs, the noisy speech
does not follow the Gamma distribution leading to poor esti-
mation results. Not surprisingly, both WADA and HND per-
form the best in white noise conditions. WADA assumes that
noise is Gaussian distributed, which holds better in white noise
conditions compared to the other noises. Similarly, the distri-
bution and statistical independence assumptions made by HND
about the DFT coefficients of noise also hold well for white
noise3. Hu-Wang outperforms the proposed system when the
background noise is white and the SNR < 0 dB. It is interesting
to note that the proposed algorithm works better than the IBM
in a few conditions when the SNR is high (e.g., for factory noise
at 10 dB). This is possible because the IBM does make errors in
SNR estimation, as can be seen from Table II. However, on av-
erage the IBM obtains better results than the proposed algorithm
in every noise condition. The standard deviations of the errors
are also shown in Table III. In terms of this error metric, the pro-
posed algorithm also works the best in most test conditions.

The errors in estimating the broadband SNR are shown
in Table IV. Again, the trends are very similar to Table III.
Compared to HND_MOD, the average mean absolute error of
the proposed algorithm is better by about 0.2 dB. Compared
to WADA and HND, it is better by about 1.7 dB and 1 dB,
respectively. The standard deviation profiles are similar to those
for filtered SNR estimation.

These results clearly show that the proposed algorithm is able
to obtain accurate estimates of global SNR—both broadband
and filtered. Unlike WADA and HND, which work reasonably
well at high SNRs, the proposed algorithm works well at all
SNR/noise conditions.

3Note that these properties are unrelated to the color of the noise.

2) Subband SNR Estimation: Subband SNR estimation re-
sults are shown in Fig. 4. For simplicity, we only show the av-
erage performance across the 4 noises at 3 SNR conditions:
—10 dB, 0 dB and 10 dB (see [24] for more detailed results).
Unlike the global SNR estimation results, the errors are larger
even when the IBM is used, where the best performance is typi-
cally obtained. For the proposed algorithm, better performance
is usually obtained when the noise type is stationary. Barring a
few conditions, the mean absolute error of the proposed algo-
rithm is < 5 dB.

Excluding the IBM results, the best performance in the low
frequency channels (center frequency < 350 Hz or the first
10-15 channels) is typically obtained by the proposed algo-
rithm. The only noted exception is when the noise is babble and
the SNR < 0 dB, where the mean errors are greater than 5 dB
for some channels. HND outperforms the proposed algorithm
in such conditions. If we consider the average performance
across all noise conditions, the mean absolute error of the
proposed algorithm is well within 5 dB for these frequency
channels, significantly better than both HND and WADA.

For the mid-frequency channels (center frequency between
300 Hz and 3800 Hz, or frequency channels 13-51), no one
method works uniformly better than the rest. Both HND and the
proposed algorithm work well in most conditions. WADA ob-
tains results similar to HND and the proposed algorithm when
the background noise is white; and performs better when the
background noise is car and the SNR > 10 dB. This is largely
because the true subband SNRs in these conditions are well
above 0 dB. At other conditions, performance of WADA is sig-
nificantly worse than the other methods, as reflected in the av-
erage performance (see Fig. 4). When the background noise is
non-stationary, the proposed algorithm is slightly better than
HND at most SNRs. Under stationary conditions, the perfor-
mance of the proposed algorithm is mostly comparable or better
than HND. In a few cases, especially when the SNR is high,
HND works slightly better. Similar mixed trends are observed
for the high frequency channels (center frequency > 3800 Hz, or
the last 10—15 channels), with the proposed algorithm working
slightly better than HND especially when the noise type is non-
stationary. When the noise type is factory and the SNR < 0 dB,
the errors are greater than 5 dB but still better than both WADA
and HND.

We can observe a few overall trends in estimation errors from
Fig. 4. For example, we can see that as the filtered SNR of the
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TABLE V
THE MEAN ABSOLUTE ERROR IN ESTIMATING THE BROADBAND SNR (SNR,)
USING IBM_DFT, IBM_GF, EBM_DFT AND THE PROPOSED ALGORITHM.
THE RESULTS ARE AVERAGED ACROSS THE 4 NOISES

Method SNR

-10dB -5dB 0dB 5dB 10dB 15dB
IBM_DFT 0.18 0.00 0.00 0.10 0.49 0.77
IBM_GF 0.40 0.01 0.06  0.43 0.66 1.08
EBM_DFT 2.99 1.58 1.10 1.11 1.23 1.35
Proposed 1.17 0.57 0.34 0.33 0.47 0.77

signal increases, the performance of the proposed algorithm also
improves. When the SNR is —10 dB, the mean absolute errors
are about 4 dB. And when the SNR is 10 dB, the errors are
about 2 dB. Also note that improvements in mask estimation
can clearly improve the average performance of the proposed
method, since the IBM results are significantly better especially
at low SNR conditions. These results indicate that the proposed
algorithm can additionally be used to estimate subband SNRs
with considerable accuracy.

E. Comparison of FFT and Gammatone Filterbank Based
Representations

The use of the cochleagram representation rather than the
more commonly used FFT based representation to estimate the
SNRs deserves some justification. A system that uses binary
masks estimated in the DFT domain has an advantage—the SNR
transformation step is not needed to estimate the broadband
SNR. But IBM estimation in the DFT domain is less studied
compared to that in the auditory domain. Furthermore, auditory
cues typically used by CASA-based estimation algorithms, like
pitch and amplitude modulation are less prominent in represen-
tations that use a linear frequency scale [12].

Nevertheless, we perform a comparison between the perfor-
mance obtained using the ideal and estimated binary masks in
these two domains. When using the IBM (or the estimated mask)
in the DFT domain, (5)—(7) are used without any SNR trans-
formation, after replacing the cochleagram with the spectro-
gram. The IBM in the DFT domain is defined using (4), by
comparing the energy (squared-magnitude) of clean speech and
noise at each T-F unit. When estimating the binary mask, a re-
cently proposed MMSE-based mask estimator is used [16]. We
use Type-II binary masks as defined in [16] that minimize the
spectral ‘squared-magnitude’ MSE. It has the same form as the
spectral magnitude MMSE mask derived in [16], except that
the spectral squared-magnitude MMSE gain function is used in
place of the gain function used in [16]. The results are summa-
rized in Table V. The table shows results obtained using the IBM
(IBM_DFT) and the MMSE-optimal binary mask (EBM_DFT)
in the DFT domain. For comparison, we also show the results
obtained using the IBM in the gammatone filterbank domain
(IBM_GF), and those obtained using the IBM estimated using
the algorithm described in Section III.B.3 (Proposed). Note that
the SNR transform is used by both IBM_GF and Proposed.
Clearly, the performance is better when the IBM defined in the
DFT domain is used. This is expected because the DFT do-
main uses a better frequency resolution (512 vs. 128). On the
other hand, when estimated binary masks are used, better per-
formance is obtained in the auditory domain. To conclude, if ef-
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fective algorithms exist to estimate the IBM in the DFT domain,
one can choose such a representation. But since relatively accu-
rate mask estimation algorithms operate in the auditory domain,
it seems preferable to perform SNR estimation in this domain.

V. DISCUSSION

The results presented in this paper show that binary masks
can be used for long-term SNR estimation—both at subband and
broadband levels. The results further indicate that we only need
areasonable estimate of the IBM to obtain good SNR estimates.
If an algorithm is able to correctly label the high energy regions
as belonging to the target or the noise, the long-term SNR can
be estimated with very good accuracy as the energy in these re-
gions dominates the total energy. In most of the test conditions,
the best performance is obtained when the masks estimated by
CASA and speech enhancement algorithms are combined.

The proposed algorithm cannot be used to estimate short-
time SNR of a signal, which would lead to a chicken-and-egg
problem as the short-time SNR can directly be used to estimate
the IBM. A disadvantage of the proposed algorithm is its com-
putational complexity. The CASA component involves compu-
tation of autocorrelation and envelope extraction at each T-F
unit during the feature extraction stage, both of which are com-
putationally expensive. The feature extraction stage dominates
the time complexity of the proposed algorithm. Autocorrela-
tions can be efficiently calculated in O(N log N) time and since
frequency channels are independent of each other, computa-
tions can be parallelized [13], [15]. Even so, the algorithm takes
longer than WADA or HND. Nevertheless, the performance in
SNR estimation obtained by the proposed system is significantly
better than these approaches.

Binary masking described in this work is quite different from
VAD based algorithms that have been proposed in the litera-
ture for SNR estimation [19], [26]. A VAD tries to identify
noise-only frames to obtain an estimate of the noise energy by
assuming stationarity. On the other hand, our approach iden-
tifies noise-dominant T-F units, which are used to approximate
the total noise energy in the algorithm. The algorithm can easily
be extended to estimate the SNR in speech-present frames, by
simply dropping noise-only frames during estimation. In exper-
iments not reported in the paper, we have confirmed that drop-
ping noise-only frames does not have a significant impact on
performance. As such, our algorithm can deal with situations
when the target signal contains long pauses. Such pauses would
appear as long sections of time frames with no unmasked units.
In contrast, methods like WADA and the algorithm from NIST
[1] will have greater difficulty dealing with such signals.

Note that, the mask estimation and the SNR estimation in the
proposed system are two separate modules. The IBM estima-
tion module used by the current system can be replaced with any
other mask estimation algorithm. Therefore, the proposed algo-
rithm can potentially be used in more challenging conditions
like reverberant noisy environments and multi-talker conditions
by replacing the existing mask estimation algorithm with those
that work well in such conditions.

To summarize, we have proposed a novel CASA based SNR
estimation algorithm. The algorithm estimates the filtered,
broadband and subband SNRs with high accuracy. Results



NARAYANAN AND WANG: CASA-BASED SYSTEM FOR LONG-TERM SNR ESTIMATION 2527

show that the performance of the proposed system is better than
existing long-term SNR estimation algorithms. The algorithm
additionally estimates the IBM, which can be used for speech
separation purposes. An insight from our work is that binary
masks can be effectively used for SNR estimation.
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