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ABSTRACT

We explore time-frequency masking to improve noise robust auto-
matic speech recognition. Apart from its use as a frontend, we use
it for providing smooth estimates of speech and noise which are
then passed as additional features to a deep neural network (DNN)
based acoustic model. Such a system improves performance on
the Aurora-4 dataset by 10.5% (relative) compared to the previous
best published results. By formulating separation as a supervised
mask estimation problem, we develop a unified DNN framework that
jointly improves separation and acoustic modeling. Our final system
outperforms the previous best system on CHiME-2 corpus by 22.1%
(relative).

Index Terms— Deep neural network, noise robustness, time-
frequency masking, CHiME-2, Aurora-4

1. INTRODUCTION

Automatic speech recognition (ASR) has come a long way in the
last few years, especially after the introduction of deep neural net-
work based acoustic models (DNN-AMs) [1]. With systems achiev-
ing acceptable performances in relatively clean conditions, focus on
robustness has been sharpened. In this work, we mainly consider
noise robustness, which has been widely studied over the last two
decades [2]. When computational complexity is not a main concern,
model adaptation techniques perform well (e.g., [3]). But most such
techniques assume Gaussian mixture model (GMM) based acoustic
models (GMM-AMs); it is currently unclear how to extend them to
DNN based systems. Feature adaptation techniques (e.g., [4, 5]), on
the other hand, do not make any assumptions about the ASR backend
and are, therefore, more directly applicable.

A class of feature adaptation techniques is based on time-
frequency (T-F) masking for speech separation. In such methods,
a T-F mask is estimated from the input signal which is then used
to enhance the noisy spectrogram (or any other T-F representation
that is used) [6]. ASR features are subsequently extracted from
the enhanced spectrogram. Recently, data-driven mask estimation
algorithms have shown a lot of promise [7]. Our investigation of
such techniques [8, 9] showed that they work reasonably well even
when DNN based acoustic models are used. But the improvement
compared to a GMM based backend is significantly lower. In this
work we further explore such methods. Specifically, we focus on
two aspects. Firstly, we study if there are alternative ways of using
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the output of speech separation to improve ASR performance. Sec-
ondly, since the separation system is supervised, we study training
strategies that unify separation and the backend acoustic modeling.

This paper is organized as follows. Section 2 describes prior
work. A preliminary study on using the output of separation in novel
ways to improve ASR is described in Section 3. Our system, which
unifies separation and acoustic modeling, is presented in Section 4,
followed by results in Section 5. Section 6 concludes the paper.

2. RELATION TO PRIOR WORK

The proposed system uses DNN based acoustic models which have
been shown to work well in the presence of noise as long as the
mismatch between training and testing conditions is not significant
[10, 8, 11]. With a mismatch, feature enhancement/separation has
been shown to be useful [8, 11]. The current work builds upon our
previous work in [8], which uses an ideal ratio mask (IRM) based
frontend defined for a mel-spectral representation of speech. In [8],
the IRM is estimated by combining subband and fullband DNNs us-
ing a set of features extracted specifically for the purpose. As shown
in Section 4, the current work significantly simplifies that system.
Moreover, in [8], IRM estimation and acoustic modeling are done
independent of one another, unlike the proposed system.

Noise-aware training (NAT) was proposed in [10] to improve
noise robustness of DNN based ASR systems. In addition to the
noisy log compressed mel-spectrogram (log-MS), it uses a crude es-
timate of noise obtained by averaging the first and the last few frames
of each utterance as input to the DNN-AMs. This improved perfor-
mance on the Aurora-4 noisy ASR task [12] by 3.9% (relative). Our
system uses a similar strategy. But, instead of using a crude esti-
mate, we use speech separation to obtain a more accurate estimate
of noise. We also use additional features derived from speech sepa-
ration to further improve performance.

With DNNs, it has been observed that using a speech separa-
tion frontend does not always improve performance [10, 8], espe-
cially when log mel-spectral features, which have been shown to
work better than cepstral features [13, 8], are used as input. A strat-
egy commonly used with GMMs is retraining the ASR system us-
ing the enhanced features to reduce mismatch [14]. But frontends
invariably introduce distortions, and with DNN-AMs retraining can
sometimes negatively affect performance [8]. An alternative strategy
with GMM-AMs has been joint or adaptive training – the enhance-
ment and recognition modules are optimized jointly [15, 16, 17]. A
probabilistic formulation of both the enhancement frontend and the
GMM-AMs lends itself to EM -style iterative training. In the con-
text of noise robustness, such joint training strategies, to the best

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 2523



of our knowledge, have not been proposed for DNN-AMs. In this
study, we propose a novel joint training algorithm for DNN-AMs;
we call it joint noise adaptive training for DNN-AMs (D-JNAT).

3. ALTERNATIVE FEATURES FROM SEPARATION

We will first look at alternative ways of using the output of speech
separation to improve ASR performance. Given an estimate of the
ideal ratio mask (IRM), which is defined as the ratio of speech to
mixture energy at each T-F unit assuming uncorrelated noise, we
can obtain an estimate of both speech and noise as follows:

N̂(t) = (1− M̂(t))⊙Y(t), (1)

X̃(t) = (M̂(t))α ⊙Y(t), (2)

X̂(t) = f(X̃(t),Y(t)). (3)

Here, Y is the mixture mel-spectrogram (MS), X̂, X̃, and N̂ cor-
respond to estimates of the clean, noise-removed, and noise MS. M̂
is an estimate of the IRM, and has values in the range [0, 1]. t in-
dexes time-frames. α is a tunable parameter (< 1) that exponentially
scales-up IRM estimates, thereby reducing the distortion introduced
by masking. Exponentiation is done point-wise. In these prelimi-
nary experiments, α is set to 1. ⊙ denotes point-wise multiplication.
f(·) is a function that undoes the distortion introduced by channel
or microphone mismatch between training and testing. It may take
additional features as input, apart from those shown in Eq. 3. For
example, in [8], f(·) is learned in a supervised fashion using DNNs
that take a window of the noisy and noise-removed MS as inputs.
Given these estimates, we look at the following alternative feature
representations to train a DNN-AM:

• Noisy mel-spectrogram (NMS): 26-channel noisy log-MS along
with the first and second derivatives. The features are derived by
splicing together the log-MS for 11 contiguous time-frames after
sentence level mean normalization. This is the standard feature
set used by most DNN systems, and forms our baseline.

• Noisy mel-spectrogram + noise estimate (1) (NMS + NE(1)): This
feature set replicates the system proposed in [10]. The noise esti-
mate at each time frame is obtained by averaging the first and the
last 15 frames of the noisy log-MS.

• Noisy mel-spectrogram + noise estimate (2) (NMS + NE(2)):
Same as above, but the noise estimate is obtained from Eq. 1 after
smoothing it using a 9th order ARMA filter [18].

• Noisy mel-spectrogram + noise estimate (2) + speech estimate
(NMS + NE(2) + SE): Same as above, but additionally uses a
speech estimate which is obtained by smoothing X̂ in Eq. 3 using
a 2nd order ARMA filter.

• Noisy mel-spectrogram + noise estimate (2) + residual noise es-
timate (NMS + NE(2) + RNE): A crude residual noise estimate,
which may also carry some channel information and is obtained
by averaging the first and last 15 frames of X̃ in Eq. 2, is addi-
tionally used as a feature.

The results obtained on the Aurora-4 dataset using these alter-
native features are shown in Table 1. A DNN-AM with 7 hidden
layers and trained with dropout [19] is used (see Section 4.2 for de-
tails). The ratio mask estimate and the feature mapping function f(·)
are the same as in [8]. Several interesting observations come out of
this preliminary study. Firstly, our results are better than those re-
ported in [10]. This is partly because of the training recipe that we
used and also because our training labels are obtained by aligning
the clean training set. With this improvement, NAT (‘NMS + NE(1)’

Table 1. Word error rates (WER) on the Aurora4 corpus using al-
ternative features. NMS, which forms our baseline, stands for noisy
log-mel-spectrogram. NE, SE, RNE, and POS AVG stand for noise,
speech, and residual noise estimate, and posterior averaging, respec-
tively (see text for details). The columns Clean, Noisy, Clean +
Channel, and Noisy + Channel correspond to the WER averaged on
test sets 1, 2 to 7, 8, and 9 to 14, respectively, of Aurora-4.

System Clean Noisy Clean + Noisy + AverageChannel Channel
NMS 4.8 7.9 7.9 17.4 11.7
+ NE(1) 4.7 7.9 7.6 17.4 11.7
+ NE(2) 4.6 7.8 7.9 17.0 11.5

+ SE 5.0 7.4 8.4 18.0 11.8
+ RNE 4.5 8.0 8.1 16.9 11.5

POS AVG 4.5 7.4 8.1 16.5 11.1

in table) proposed in [10] does not seem to have a lot of effect in per-
formance. Only in clean+channel mismatched condition does it im-
prove performance slightly. Note that most of the noises in Aurora-
4 can be categorized as non-stationary, contrary to the assumption
made by NAT. Using a more accurate noise estimate that comes from
Eq. 1 improves performance in noisy+channel mismatched condi-
tions by 0.4 percent. The average performance improves by 0.2
percent. Adding the smoothed speech estimate improves perfor-
mance in noisy conditions by 0.4 percent, but lowers performance in
noisy+channel mismatched conditions by 1.0 percent. This is simi-
lar to the trend we noticed when using only the speech estimate as
an additional feature in [8]; the distortions introduced by separation
seems to have a detrimental effect in the presence of noise+channel
mismatch. Adding the residual noise estimate improves performance
in noisy+channel mismatched conditions by 0.1 percent, but deteri-
orates performance in noisy conditions by 0.2 percent. As was sug-
gested in [20], we tried averaging the posteriors obtained from ‘NMS
+ NE(2) + SE’ and ‘NMS + NE(2) + RNE’ systems as they perform
the best in noisy and noisy+channel mismatched conditions, respec-
tively (POS AVG). Interestingly, POS AVG retains the best perfor-
mance in both these conditions and improves upon the previous best
results on this corpus by 10.5% [10], and 8.3% (relative) [8]1.

4. SYSTEM DESCRIPTION

Arguably, channel mismatch is easier to handle as we can collect
more data to cover additional devices (e.g., cell-phones) on which
the ASR system needs to be deployed. In comparison, noise is much
more unpredictable. For the D-JNAT system that we present here, it
is assumed that there is not a lot of channel mismatch between train-
ing and testing, and that speech separation primarily addresses noise
(f(·) in Eq. 3 deterministically maps X̃(t) to X̂(t)). A block dia-
gram of the proposed system is shown in Figure 1. The components
of the system are described in detail below.

4.1. Speech separation

As mentioned, speech separation is done via ratio masking in the
mel-spectral domain. We use a 26-channel MS that spans frequen-
cies in the range 50 Hz to 7 kHz. A window size of 20 msec and a
hop size of 10 msec are used. The IRM is estimated using a system
similar to [8], but is simplified so that it can be easily incorporated

1[8] performs online feature adaptation, whereas [10] does not.
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Fig. 1. A block diagram of joint adaptive training. The two main
components of the system, speech separation and acoustic modeling,
are shown along with how they are joined into a single framework.

into the joint framework. The following feature set is extracted at
every time frame from the noisy input signal:

• 13 dimensional RASTA filtered perceptual linear predictive cep-
stral coefficients (RASTA-PLPs) [21]. The features for 7 contigu-
ous frames are spliced together to add context.

• Amplitude modulation spectrograms (AMS) [22]. 15-dimensional
AMS features are extracted separately for each of the 26 fre-
quency bands in the MS. They are then concatenated to form the
input feature for a time-frame.

• 31 dimensional broadband and narrowband mel frequency cep-
stral coefficients (MFCCs). Narrowband MFCCs are extracted us-
ing an analysis window of 200 msec [23] and add a lot more con-
text than braodband MFCCs, which use a 20 msec window. Sim-
ilar to RASTA-PLPs, the MFCC features of 7 contiguous frames
are spliced together to form the input representation.

The above features are concatenated together to form a 915-
dimensional (13×7 + 15×26 + 31×2×7) input feature, which is
then fed to a 3 hidden layer DNN that estimates the IRM for all 26
frequency channels. Each hidden layer has 1024 nodes. The DNN
is trained with a dropout rate of 0.3. The hidden nodes use rectified
linear activations (ReLU) and the output nodes sigmoidal activa-
tions. The weights are learned using mini-batch stochastic gradient
descent with adagrad and momentum. The momentum is linearly
increased from 0.1 to 0.5 over the first 5 epochs after which it is
set to 0.9. Mini-batch size is set to 256. The weights are initialized
at random; no RBM-pretraining is used. We also normalize the
L2 norm of incoming weights of each hidden node to 1 [19]. The
DNN is trained for 50 epochs to minimize the cross-entropy error
criterion. The learning rate is set to 0.01 for the first 10 epochs,
0.005 for the next 20 epochs, and 0.001 for the last 20 epochs.

Note that [8] estimates masks at the subband and the fullband
levels, and then combines these estimates over a window to explic-
itly incorporate context. The proposed system, on the other hand,

incorporates context at the feature-level. Further, the proposed sys-
tem directly estimates the IRM instead of a transformed version of it
as done in [8], which significantly simplifies joint training.

4.2. Acoustic modeling

To train the DNN-AMs, two input feature representations are chosen
from those presented in Section 3. The first one corresponds to the
‘NMS’ feature. The second feature representation corresponds to
the ‘NMS + NE(2) + SE’ feature as it performed the best in the
presence of noise (cf. Table 1). The noise and speech estimates are
obtained in a similar fashion using the IRM estimated by the system
described in Section 4.1. The DNN-AMs consist of 7 hidden layers,
each with 2048 nodes, and are trained similar to the DNNs used
for IRM estimation. The output layer uses softmax activation. The
learning rate is set to 0.005 for the first 30 epochs and 0.001 for the
final 20 epochs; the rest of the parameters remain unchanged.

4.3. Joint training

The main goal behind joint training is to unify separation and acous-
tic modeling. Typically, the output of separation undergoes further
processing before it is fed to the acoustic model. In our joint system,
we model these processing steps as fixed hidden layers of a single
deep network. They are shown in gray in Figure 1 and includes oper-
ations like log-compression, feature normalization, delta calculation,
and feature splicing. Interestingly, all of these operations can be per-
formed within a DNN framework using appropriate weights and/or
network architectures. For example, delta features can be calculated
using a linear activation layer with weights as below [24]:[

ot

△ot

]
=

[
0 I 0
−I 0 I

]
︸ ︷︷ ︸

W△

 ot−1

ot

ot+1

 (4)

Here, ot is the static feature at time t, I is the identity matrix, and
W△ is the desired weight matrix of the hidden layer. The above for-
mulation calculates deltas over a window of 3 frames, but it can be
extended trivially to more than 3 frames and for calculating double-
deltas. Further, the connections from the preceding layer can be
modified so that this layer receives static features from multiple, con-
tiguous time frames as is necessary for delta calculation. The other
fixed layers can be modeled in a similar fashion.

With the above formulation, it is easy to see that the two modules
can now be trained jointly; with the fixed hidden layers cast as a
‘neural network’, the error gradients from the DNN-AM can flow
through them back to the separation module. While training such a
system, we initialize both the acoustic model and the IRM estimator
using the independently trained DNNs. The trainable weights of
both networks are then tuned together for a few additional epochs.

We apply joint training to the DNNs described in the previous
subsections. The following systems are considered:
• DNN-AM that uses the ‘NMS’ feature as its input. The IRM esti-

mated by the separation module enhances the NMS features using
Eq. 2 which is then used as input to the DNN-AM. Joint training is
used to further enhance the NMS feature and adapt the DNN-AM.
This will be referred to as joint adaptive training (D-JAT).

• DNN-AM that uses the ‘NMS + NE(2) + SE’ feature as its in-
put. The noise and speech estimates are obtained using the ini-
tial IRM estimator which is trained independent of the DNN-AM.
Joint training is used to enhance the NMS feature and the DNN-
AM (D-JNAT).
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Table 2. WER on the CHiME-2 corpus. NMS, which forms our baseline, stands for noisy log-mel-spectrogram. ERM, NE, SE, D-JAT, and
D-JNAT stand for estimated ratio mask, noise estimate, speech estimate, joint adaptive training, and joint noise adaptive training, respectively
(see text for details). The previous best results on this corpus is also shown.

System si dt 05 si et 05
Average -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB Average

NMS 28.9 37.9 30.1 25.9 21.1 18.3 16.5 25.0
ERM 26.6 33.0 26.6 23.9 19.5 16.6 15.8 22.6
+ NE(2) + SE 25.9 33.2 26.7 22.4 18.7 15.4 14.5 21.8
D-JAT 25.8 32.1 25.6 23.1 18.6 16.1 15.1 21.7
D-JNAT 25.1 31.4 24.8 21.4 18.1 15.1 14.1 20.8
[14] 32.9 42.7 33.9 27.5 21.8 18.4 16.2 26.7

5. RESULTS

5.1. Experimental setup

The proposed system is evaluated on the CHiME-2 corpus [25]. It
is a medium-large vocabulary task based on the Wall Street Journal
corpus (WSJ0). The training and the test conditions simulate a fam-
ily living room. The utterances are reverberant, and are mixed at
signal-to-noise ratios (SNR) in the range [−6, 9] dB. Even though
the corpus is binaural, our system is currently monaural; we simply
average the left and right ear recordings for all experiments. The
IRM estimator needs noisy and the corresponding clean recordings
to define the targets at the time of training. Since such recordings
are not provided with the corpus, we artificially mix the reverber-
ant noise-free utterances in the training set with randomly selected
segments of the noise recordings provided with the corpus. The frac-
tion of recordings at each SNR is the same as in the official noisy-
reverberant training set. This new set is used only to train the IRM
estimator when it is trained independent of the DNN-AM.

In order to obtain senone (or tied-triphone state) labels for train-
ing the DNN-AM, an ML trained GMM-HMM system is used. The
clean training set of WSJ0 is used to train and subsequently align
the utterances. Based on the pruning parameters, the system ended
up with 3298 senones. The DNN-AMs are trained using the offi-
cial noisy-reverberant training set. The joint systems (D-JAT and D-
JNAT) are initialized using the independently trained IRM estimator
and DNN-AM, and jointly trained for 10 epochs. A mini-batch size
of 512 and a learning rate of 0.001 is used. For D-JAT and D-JNAT,
the final model is chosen based on the WER on the official develop-
ment set (si dt 05). The development set is also used to choose α in
Eq. 2, the chosen value being 0.5. A subset of this development set
is used to choose some of the hyper-parameters while training, like
the learning rates and the value at which the log-gradient is clipped
to prevent it from dominating the error gradient. The feature normal-
ization parameters are re-calculated after every epoch.

5.2. Evaluation results

For limitations of space, we only present detailed results on the final
test set (si et 05) along with the average results on the development
set. The results are shown in Table 2. As can be seen, our base-
line system trained using noisy log-MS features gives an average
WER of 25.0 percent, which is in itself better than the previous best
results on this corpus by 6.7% (relative) [14]. The system in [14]
uses bidirectional long short-term memory based feature enhance-
ment and a discriminatively trained, speaker adapted GMM-HMM
system. Interestingly, an unadapted DNN-HMM system is able to
outperform such a system. Using the estimated ratio mask (ERM)
to enhance the noisy speech (see Eq. 2) improves performance by

2.4 percent (absolute) compared to the baseline. Note that the ASR
models are not retrained using the masked speech; doing so did not
improve performance (results not in the table). D-JAT, which jointly
trains the IRM estimator and the DNN-AM, improves performance
by another 0.9 percent compared to ERM. The ‘NMS + NE(2) + SE’
system improves performance on the development set by 1.7 percent
(results not in the table) compared to the NMS baseline. When the
ERM is used to enhance the noisy log-MS used by the system, WER
reduces by another 1.3 percent. On the test set, such a system per-
formed similar to D-JAT, as shown in the table. Our final system,
D-JNAT, produces an average WER of 20.8 percent, 1 percent (ab-
solute) better than the system that does not use joint training, and 4.2
percent better than our baseline (6.5 percent at -6 dB). This is also
a 22.1% (relative) improvement over the system in [14]. It is worth
mentioning that NAT [10] did not improve performance on this cor-
pus compared to the NMS baseline; this is to be expected as noise
used by the corpus is highly non-stationary.

It was observed that the masks generated by the jointly trained
model attenuate noise a lot more than those generated by the in-
dependently trained models, while preserving spectro-temporal pat-
terns that are most important for recognition. There is a discon-
nect between the criterion that is commonly used for mask estima-
tion (SNR improvement) and ASR (WER reduction), and our past
work has shown that SNR improvements and ASR performance (or
speech intelligibility) are not fully correlated [26]. Joint training, on
the other hand, directly optimizes a criterion that is important to im-
prove ASR. Since ASR and speech intelligibility tend to correlate
[26], such joint training schemes may provide an alternative, more
useful criterion to optimize for speech separation algorithms that fo-
cus on intelligibility. Note that the proposed training strategy is quite
flexible, and can potentially by used by other separation frontends
like feature mapping [5, 14, 8].

6. CONCLUSION

We have proposed novel ways for improving the state-of-the-art in
noise robust ASR using time-frequency masking. By using speech
separation to provide smooth estimates of speech and noise to a
DNN-AM, we are able to significantly improve performance in a
wide range of conditions. Modeling separation and recognition in a
unified framework yields a novel joint noise adaptive training strat-
egy to optimize the parameters of both systems, which further im-
proves performance. The results obtained using our system represent
the best published in two commonly used medium-large vocabulary
ASR tasks – Aurora-4 and CHiME-2. Going forward, we plan to
incorporate discriminative training [27] into our framework to allow
higher-level sequence structure to influence separation and acoustic
modeling.
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