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ABSTRACT 

 
Prior models of speech have been used in robust automatic speech 
recognition to enhance noisy speech. Typically, a single prior 
model is trained by pooling the entire training data. In this paper 
we propose to train multiple prior models of speech instead of a 
single prior model. The prior models can be trained based on 
distinct characteristics of speech. In this study, they are trained 
based on voicing characteristics. The trained prior models are then 
used to reconstruct noisy speech. Significant improvements are 
obtained on the Aurora-4 robust speech recognition task when 
multiple priors are used; in conjunction with an uncertainty 
transform technique, multiple priors yield a 13.7% absolute 
improvement in the average word error rate over directly 
recognizing noisy speech. 
 

Index Terms — Robust ASR, Aurora-4, uncertainty 
transform, feature reconstruction, CASA 
 

1. INTRODUCTION 
 
Robust*recognition is one of the most challenging tasks facing 
automatic speech recognition (ASR) today. Traditional ASR 
methods perform well under clean speech conditions but lose 
performance in mismatched noise conditions. Some compensation 
strategies try to extract noise-robust features like RASTA and 
cepstral mean normalization (CMN), while others preprocess noisy 
speech using speech enhancement techniques. If noise samples are 
available a priori, models of speech and noise can be trained 
individually and used together during recognition. However, these 
approaches have subpar performance in real environments [3]. 

The fact that humans perform robust recognition with relative 
ease is attributed to auditory scene analysis (ASA) by Bregman [1]. 
Computational auditory scene analysis (CASA) tries to use 
perceptual cues to separate different sound sources. Several CASA 
based strategies have been proposed for robust ASR [2]. Most of 
these techniques make use of an estimated Ideal Binary Mask 
(IBM). An IBM is a binary mask with 1s and 0s representing 
speech dominated and noise dominated regions, respectively, of a 
noisy signal in the time-frequency (T-F) domain [2]. The true IBM 
can be created only if we have access to the clean speech signal 
and the noise that constitutes the noisy speech signal. In real 
conditions, the IBM has to be estimated directly from noisy 
speech. Estimated IBMs can be used in several ways: the 
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probabilities of the unreliable parts (0s in the IBM) are 
marginalized in [3] to improve robust ASR performance. 
Alternatively, the unreliable parts can be reconstructed using prior 
models of speech [4]. This latter technique has the advantage of 
obtaining a complete speech feature which can then be transformed 
to the cepstral domain where ASR yields better results than the 
spectral domain. In an uncertainty transform technique, feature 
reconstruction and uncertainty decoding were used to obtain a 
significant improvement over a system that only uses 
reconstruction [5]. Uncertainty decoding accounts for uncertainty 
in reconstructed speech by adjusting the variance of the acoustic 
models.  

In this paper, we explore the use of prior models of speech for 
reconstructing the unreliable components of a noisy utterance. 
Traditionally, such prior models are trained by pooling the entire 
speech data from the training set [2, 4, 5]. The fidelity of the 
reconstructed speech largely depends on how well the prior model 
is able to accurately match the unreliable components. Using a 
single speech prior model can be rather coarse, as speech 
characteristics can vary based on voicing characteristics, manner 
and place of articulation, etc. We investigate multiple speech 
priors, each of which models speech with a distinct characteristic. 
During the reconstruction stage, a segment of speech can be 
reconstructed based on its characteristic instead of using a single 
one-size-fits-all model. Such speech characteristics should also be 
detectable in noisy conditions with considerable accuracy for it to 
be useful during reconstruction. We expect that such a strategy can 
better reconstruct the unreliable components of a noisy utterance. 

The rest of the paper is organized as follows: the next section 
provides the system description, followed by experimental results 
in section 3. We conclude with a discussion of results in section 4. 
 

2. SYSTEM DESCRIPTION 
 
In this section we describe our speech recognition system that uses 
multiple prior models. The prior models of speech are built based 
on the voicing characteristic (voiced vs. unvoiced) as it is an 
important, easily discernable characteristic of speech. Moreover, 
voiced/unvoiced (V/UV) detection can be performed with 
considerable accuracy even from noisy speech. The voiced and 
unvoiced speech prior models are trained independently. We begin 
with a description of the ASR process, followed by V/UV 
detection. 
 
2.1. Recognition using multiple speech priors 
 
A noisy utterance is first analyzed using FFT over 25 msec 
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windows with a window shift of 10 msec to produce 257 DFT 
coefficients for each frame. This creates a spectrogram for the 
noisy utterance. The next step is to identify reliable and unreliable 
components of the spectrogram. This was done using an IBM 
estimated directly from the noisy utterance. Although many 
sophisticated methods exist for IBM estimation [2], for the purpose 
of this study, we estimate IBM using a simple spectral subtraction 
method (see [5]).  

Given an IBM, reliable and unreliable T-F units directly 
correspond to 1s and 0s, respectively, in the binary mask. Before 
we reconstruct the unreliable T-F units of a frame using the 
information available from the reliable ones, we need to identify 
whether the frame is voiced or unvoiced. This was done using a 
V/UV detector described in the next section. Once we know the 
voicing of the frame, we use the appropriate prior model to 
reconstruct the unreliable features of the frame. 

Both voiced and unvoiced speech priors are modeled as a 
mixture of Gaussians as in [4, 5] - p(X), where X corresponds to a 
random variable representing clean speech, is modeled as: 
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Here, M corresponds to the number of Gaussians in the prior 
model, k the index, P(k) the component weight and p(X|k) the 
conditional probability density of X given the kth Gaussian 
component. We use diagonal Gaussians in our experiments due to 
computational considerations. The difference from the model 
described in [5] is that we use two prior models, one for the voiced 
frames and one for the unvoiced frames, as mentioned before. 

Using the reliable components, Xr, of speech, the unreliable 
components, Xu, are reconstructed by first estimating the a 
posteriori probability of the kth Gaussian component, as shown in 
Equation (2), and then approximating the unreliable components as 
the expectation of Xu conditioned on Xr (Equation (3)) [5]: 
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ku, here refers to the unreliable components of the mean vector 
of the kth Gaussian in the speech prior. The signal is then re-
synthesized from the reconstructed features and converted to the 
cepstral domain to obtain enhanced MFCC features for the 
utterance.  

The spectral uncertainties in the estimate of the reconstructed 
features are approximated as in [5]: 
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Here  and ˆ  refer to the standard deviation of the Gaussians in 
the prior model and the estimated standard deviation, respectively. 
The estimated spectral variance is then transformed to the cepstral 
domain using a multilayer perceptron (MLP) as described in [5]. In 
order to obtain cepstral variance, apart from the spectral variance, 
the MLP takes as input the enhanced cepstral values corresponding 
to that frame, a preceding frame and a succeeding frame [5]. 

The above equations are a general treatment to using prior 

models of speech for feature reconstruction; but the proposed 
method handles voiced speech and unvoiced speech separately 
using two independently trained prior models. Using V to denote 
the voicing of a frame (1 being voiced and 0 unvoiced) Equations 
(2) and (3) can be modified to accommodate multipriors as: 
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where fV(X) is an indicator function that is 1 iff V matches the 
output of the V/UV detector (V=1 implies voiced, 0 unvoiced). The 
spectral variance can also be estimated in a similar fashion.  

Once we obtain the enhanced cepstral features and the 
estimated uncertainties, recognition is performed using a 
traditional HMM-based ASR system trained on clean speech. The 
estimated variances were used to adjust variances of the trained 
acoustic models during the decoding stage [5]. 

 
2.2. Voiced/unvoiced detection 
 
Voiced/unvoiced detection is modeled as a binary decision 
problem. Gaussian mixture models (GMM) are trained 
independently to model noisy voiced speech and noisy unvoiced 
speech. The V/UV decisions are made at the frame level by 
comparing the log likelihood ratio (LLR) of the data relative to the 
voiced and unvoiced models; the LLR is compared to a threshold, 
τ, as shown in Equation (7):  
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X here refers to the noisy observation and V denotes the assumed 
voicing of the noisy frame (1=voiced, 0=unvoiced). The threshold 
is set to 1, instead of 0, to reduce the false alarm errors and thereby 
improve the V/UV detection accuracy. The likelihoods are 
estimated by an equation very similar to Equation (1), but with an 
additional conditioning on the model (voiced or unvoiced) under 
which the likelihood needs to be estimated. We also post-process 
the output to re-label spurious isolated voiced or unvoiced frames: 
the detected voicing of such an isolated frame is switched if both 
its neighbors have voicing characteristics different from its own.  

An alternative way to perform V/UV detection is to binarize 
the outputs of pitch detectors like Praat [6] or other noise robust 
pitch detection algorithms (PDA) [7]. However, such PDAs focus 
on estimating the correct pitch values in each frame. Although they 
work well in clean conditions, they are likely to have difficulties 
dealing with noisy speech especially if the underlying noise has a 
harmonic structure. We overcome this by training our GMMs to 
focus solely on V/UV detection directly from noisy speech, as we 
believe that this will yield better V/UV detection accuracies. A 
systematic comparison between our approach and a Praat based 
V/UV detection system is presented in the next section. 
 

3. RESULTS 
 
3.1. Experimental setup 
 
The proposed ASR system is evaluated on the Aurora-4, 5000 
word closed-vocabulary recognition task [8]. The Aurora-4 corpus 
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is based on the Wall Street Journal (WSJ0) database [9]. It consists 
of clean speech utterances digitally mixed with different noise 
types at SNR levels ranging from 5 to 15 dB. Although the corpus 
also has recordings that simulate different conditions like 
variations in microphone and sampling frequency, we only use the 
noisy samples from the corpus, sampled at 16 kHz, as our primary 
goal is to improve noise robustness [8]. 

Clean speech utterances from the training set are used to train 
the HMM based speech recognizer using the HTK Toolkit [10]. 
The training set consists of 7138 utterances. Cepstral mean 
normalized Mel frequency cepstral coefficients (MFCC) along 
with their delta and acceleration coefficients and normalized log 
energy (MFCC_E_D_A_Z in HTK terminology) are used. The 
models themselves consist of state-tied cross-word triphone-based 
HMMs. The observation density of each state is modeled as a 
mixture of 16 diagonal Gaussian components. The standard bigram 
language model and the CMU pronunciation dictionary-based 
lexicon are used. The reduced test set, which consists of 166 
utterances for each noise type, is used to evaluate the proposed 
method. 

The prior models of speech, implemented as large GMMs, are 
also trained using the HTK toolkit. The GMMs are trained using 
spectral features. Both voiced and unvoiced models consist of 1024 
diagonal Gaussian components. 

The reliable and unreliable components of speech are 
identified using an estimated IBM. To estimate the IBM, the 
spectra of the first and last 50 frames of a noisy utterance are 
averaged to create an estimate of the spectrum of noise. Using the 
noise spectrum, the local SNR at each T-F unit is estimated. A T-F 
unit is then labeled 1 if the estimated local SNR is above a 
threshold and 0 otherwise. The threshold was set to 5 dB as 
suggested in [5]. The estimated noise energy is subtracted from the 
mixture energy before the unreliable components are reconstructed 
[4, 5]. 

We randomly pick 40 noisy utterances from the multi-noise 
training set of Aurora-4 to train the MLP that transforms spectral 
uncertainties to cepstral uncertainties. The IBM, created using the 
clean speech signal corresponding to those noisy utterances and the 
noise signal estimated by subtracting the clean speech signal from 
the mixture signal, is used to estimate the spectral uncertainty. The 
target is the true variance of the enhanced cepstral coefficients with 
respect to the clean cepstral coefficients. The MLP has 374 input 
units (257 spectral uncertainties + 39x3 cepstral coefficients), 800 
hidden units and 39 output units [5]. The transfer function used for 
the hidden units is the tangential sigmoid function and that of the 
output units is the linear function. The MLP was trained for 150 
iterations to minimize the mean squared error.  

Noisy utterances (2676 in number) from the multi-noise 
training set of Aurora-4 are used to train the V/UV detector. Pitch 
is estimated from clean speech utterances corresponding to these 
noisy utterances using Praat and binarized to establish the ground 
truth V/UV labeling for the training set. MFCC coefficients 
(MFCC_E_D_A_Z) extracted from noisy utterances are used to 
train the GMMs corresponding to the voiced model and the 
unvoiced model. Each model has 1024 diagonal Gaussian 
components. Also, since the first and last 50 frames are used to 
estimate the noise spectrum during the IBM estimation, they are 
labeled as unvoiced irrespective of the output obtained using the 
V/UV detector. 

 
3.2. Experimental results 
 
The V/UV detection accuracies are shown in Table 1 for the noise 

types in Aurora-4. The table shows the percent accuracies of the 
detector. As a comparison, V/UV intervals were also estimated 
from noisy speech directly using Praat. Pitch estimated from clean 
speech using Praat is used to establish the ground truth V/UV label 
for each frame. Clearly, the GMM based modeling does a much 
better job in identifying voiced and unvoiced frames. Note that the 
first and last 50 frames are labeled as unvoiced even for the Praat 
based V/UV detector.  

Table 1. V/UV detection accuracies of the proposed GMM based 
method and the Praat based method. The last row shows the 
average accuracy. 

Noise Type GMM Praat 
Car 87.0% 52.0% 
Babble 85.8% 72.0% 
Restaurant 86.8% 74.0% 
Street 86.4% 62.5% 
Airport 86.5% 71.5% 
Train 85.4% 63.2% 

Average 86.3% 65.9% 

 
The ASR word error rates (WER) calculated as the sum of 

substitution, insertion and deletion errors divided by the total 
number of words are shown in Table 2. When tested on clean 
speech, a WER of 8.7% was obtained. The first row in the table 
shows the baseline results. They are obtained when features are 
directly extracted from the noisy utterances without any 
enhancement, apart from CMN. The first set of results is obtained 
when the unreliable components are reconstructed but ASR is 
performed without using the uncertainty transform technique. As a 
baseline for the reconstruction based methods, features were 
enhanced using only a single prior (SP) model, as in [5]. The 
results are shown in the second row of the table. Note that the SP 
model was trained in a setting similar to the proposed model to 
make the results comparable. The next three rows show results 
using multiprior (MP) models. The V/UV detector is implemented 
by either using Praat (MP-Praat) or Gaussian mixture models (MP-
GMM) or by using the ground truth V/UV (MP-GT) information 
based on the binarized pitch values. As Praat does not identify the 
V/UV frames that well, the WERs for MP-Praat are better only in 
some cases when compared to SP. But for MP-GMM and MP-GT, 
the WER is better than SP for all noise types. The improvements 
are statistically significant for car noise, babble noise, street noise 
and train noise.  

The next set of results show WERs when the uncertainty 
transform technique is included during the decoding stage (SP-UT, 
MP-Praat-UT, MP-GMM-UT, MP-GT-UT, following the same 
order as before). As can be seen, in almost all the cases, there is an 
improvement when the uncertainty transform is included. MP-GT-
UT for restaurant noise and train noise are the exceptions, but the 
drop in performance is not statistically significant. The 
improvements for MP-GMM-UT are statistically significant for 
street noise and train noise when compared to SP-UT. The least 
improvements in performance were obtained for restaurant noise 
and airport noise. This is partly because of the impulsive nature of 
these noise types, which severely affects the quality of the spectral 
subtraction mask. Note that even for the single prior based method 
the least improvements were obtained for these two noise types, 
when compared to the baseline method. 
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Table 2. WER of different recognition methods, as discussed in the ‘Experimental results’ section for the 6 noise types in Aurora-4. SP and 
MP abbreviate single prior and multiprior, respectively, indicating the number of prior models used for feature reconstruction. Praat, GMM 
(Mixture of Gaussians) and GT (Ground Truth) refer to the strategy used for V/UV detection. The suffix UT denotes the use of the 
uncertainty transform technique during recognition. The last column shows the average WER of each of the systems across all noise types. 

System 
Test Set 

Car Babble Restaurant Street Airport Train Average 
Baseline 44.9 43.7 43.2 52.0 44.1 55.2 47.2 

SP 21.5 38.5 42.6 41.5 41.5 39.4 37.5 
MP-Praat 21.6 36.6 42.8 41.5 42.5 38.8 37.3 

MP-GMM 19.6 34.8 41.0 38.3 41.1 36.5 35.2 
MP-GT 17.9 34.4 41.4 37.7 39.8 35.0 34.4 

SP-UT 18.9 34.2 41.2 40.6 37.0 39.0 35.2 
MP-Praat-UT 19.4 33.8 39.7 40.5 37.1 38.8 34.9 

MP-GMM-UT 18.4 32.8 39.1 37.4 36.9 36.5 33.5 
MP-GT-UT 16.6 32.7 40.1 37.4 36.6 35.5 33.2 

  
The last column shows the average performance of these 

methods across all noise types. By using multiple priors, we can 
obtain a better average performance even when V/UV detection is 
made using Praat. The average improvement of the multiprior 
based method, when the proposed V/UV detector or the ground 
truth based detector is used, is statistically significant as compared 
to the single prior based method. This is true irrespective of 
whether the uncertainty transform is used during the decoding 
stage of the recognizer. In most cases, there is still some 
improvement to be gained when an ideal detector is used for V/UV 
classification. This would mean that improvements in V/UV 
detection can further improve the performance of the proposed 
method. 

 
4. DISCUSSIONS 

 
We have shown that using multiple speech priors based on the 
voicing characteristic of speech can be advantageous for robust 
automatic speech recognition when speech priors are used to 
reconstruct features corrupted by noise. The improvement holds 
even when techniques like uncertainty transform are used to 
account for the distortions in the reconstructed speech. We believe 
that multipriors give a better representation of speech as they are 
built to represent different categories of speech. One of the 
possible disadvantages of using multipriors is that we have to first 
predict the characteristic of each frame of speech before we can 
reconstruct corrupted components. In this study, this is overcome 
by building a simple yet effective voiced/unvoiced detector using 
Gaussian mixture models.  

We believe that the proposed strategy opens up new avenues 
to improve robust speech recognition. Voicing of speech is only 
one of many possible characteristics that can be utilized under the 
proposed framework. Other examples include place and manner of 
articulation, and gender based prior models. These will be explored 
in future research. 

Finally, we would like to point out that identifying the reliable 
and unreliable components of speech is an important subtask that 
has major implications to the quality of reconstructed speech and 
in turn, recognition accuracies. Although we use a simple spectral 
subtraction mask for our study, we can expect better performance 
if more sophisticated CASA based strategies are used [2]. 
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