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ABSTRACT

Speaker-independent multi-pitch tracking has been a long-standing
problem in speech processing. In this study, we extend a recur-
rent neural network - factorial hidden Markov model (RNN-FHMM)
framework, and use the utterance-level permutation invariant train-
ing (uPIT) criterion for multi-pitch tracking. Separated speech and
label permutations from a speech separation uPIT-RNN have been
further incorporated to improve pitch tracking performance. We
evaluate our methods on the GRID database. Results indicate that
the proposed speech separation - pitch tracking system with matched
uPIT label permutations outperforms all other gender-dependent and
speaker-independent multi-pitch trackers. The improvement is more
significant for challenging same-gender mixtures.

Index Terms— Multi-pitch tracking, recurrent neural network,
permutation invariant training, speech separation

1. INTRODUCTION

Conventional pitch tracking algorithms [2, 13, 15, 17] fail to produce
consistent results when the target speech is interfered by a compet-
ing speaker. In other words, they can not track two pitch candi-
dates simultaneously. The task is known as multi-pitch tracking in
speech processing, and this paper is mainly concerned with multi-
pitch tracking of two concurrent speakers.

During the last couple decades, lots of approaches have been
proposed for multi-pitch tracking. Based on the speaker depen-
dencies and speaker assignments of approaches, we can broadly
categorize them into three groups: speaker-independent (SI) ap-
proaches without speaker assignment (SA), SI approaches with SA,
and speaker-dependent approaches (SD) with SA. Many studies
fall into the first category [1, 3, 10, 19]: SI without SA, where a
speaker-independent model is built to track two pitch contours with-
out assigning them to any specific speaker. Most of them consist of
two stages: harmonic modeling and speaker-independent tracking.
SI approaches without SA can reliably estimate pitch periods at the
frame level, but they do not perform any speaker assignment, which
makes them uninformative for applications like co-channel speech
separation and SD emotion analysis. SI approaches with SA [5, 9]
are introduced to address this problem, which cluster short-term
pitch contours to sequentially group them into two speakers. How-
ever, they achieve limited success as individual pitch contours are
usually too short to contain enough information for clustering.

On the other hand, SD approaches try to address the pitch as-
signment problem of by utilizing speaker information. For example,
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Wohlmayr et al. [18] train SD Gaussian mixture models (GMMs)
to estimate the frame-level probability of pitch periods, and connect
them with an SD factorial hidden Markov model (FHMM) for con-
tinuous pitch tracking. Our previous work [14] uses speaker-pair-
dependent (SPD) deep neural networks (DNNs) to predict the pitch
states of both speakers at each frame. An SPD-DNN has two out-
put layers, each for a specific speaker, and it is trained only for a
specific speaker pair. An FHMM is then adopted to track pitch of
two speakers through time. We have shown that our approach sig-
nificantly outperforms other existing SI and SD multi-pitch track-
ing algorithms. However, speaker-dependent information is usually
unavailable for most real applications, therefore, in [14] we further
propose gender-pair-dependent (GPD) DNNSs to relax this constraint.
Specifically, DNNs for three gender pairs, i.e., male-female, male-
male and female-female, are trained using GPD data. For the male-
female gender pair, we associate the first output layer with training
labels of male speakers, and second output layer with female speak-
ers. For same-gender pairs, we divide the training speakers into two
groups, with the group A having lower average pitch, and group B
having higher average pitch. The first output is assigned to speakers
in group A, and the second output to group B. The GPD-DNN based
approach works extremely well for male-female speaker pairs. For
same-gender pairs, our solution is still suboptimal. The grouping cri-
terion are based on the global pitch properties of speakers. However,
because same-gender pairs have very close pitch ranges, in certain
utterances the order of average pitch may flip for the two groups,
which leads to conflicting gradients during the training process.

Recently, an utterance-level permutation invariant training
(uPIT) [12] algorithm is proposed to deal with the output per-
mutation problem. Instead of using a predefined ordering of the
two labels, uPIT uses a bi-directional long short-term memory
recurrent neural network (BLSTM-RNN) to jointly optimize the
label assignment and training error end-to-end. When training the
BLSTM-RNN, uPIT allows two possible label permutations for the
two speakers within an utterance, and only use the one with the
lowest loss to update the network. In this way, it finds a locally op-
timized solution to the output assignment. uPIT leads to substantial
improvement in speaker-independent co-channel speech separation.
In this study, we apply the uPIT method to train an ST BLSTM-RNN
for multi-pitch estimation. We follow our framework in [14], and
compare the ST uPIT-BLSTM with SPD-BLSTM and GPD-BLSTM
for pitch states estimation. Later, we find that by performing multi-
pitch tracking alone, uPIT does not generate promising results for
same-gender speaker pairs. Thus we further extend our system by
using speech separation (SS) uPIT-BLSTM as the front-end. Three
new structures are explored. In the first structure, we try to directly
apply the RAPT [17] single-pitch tracking algorithm after uPIT
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based speech separation. The second structure concatenates SS with
multi-pitch tracking, by using the outputs of uPIT-SS as additional
features for uPIT based multi-pitch tracking. Lastly, we modify the
second structure by using the label permutation in uPIT-SS for the
multi-pitch tracking network. Consistent improvement is achieved
by using the third structure.

In the remainder of this paper, after reviewing the SPD and GPD
systems in Section 2, the uPIT based systems are introduced in Sec-
tion 3. Section 4 describes the FHMM for multipitch tracking. Ex-
perimental results and comparisons are presented in Section 5. A
conclusion is given in Section 6.

2. SPEAKER-PAIR AND GENDER-PAIR DEPENDENT
PITCH PROBABILITY ESTIMATION

2.1. Overview

Our previous pitch tracking algorithm [14] consists of two stages:
pitch probability estimation and FHMM. We introduce the first stage
in this section. The input to the system is a speech mixture vs: v =
us +u?, where uy and u? are utterances of two speakers. Given the
mixture, our system first extracts frame-level log magnitude short-
time discrete Fourier transform (STFT) features y,,. We then feed
Y m into neural networks to estimate the posterior pitch probabilities
at frame m, i.e., p(zh,, 22,|ym). ;, and 22, denote pitch states
of the two speakers at frame m. We quantize the frequency range
60 to 404 Hz into 67 bins using 24 bins per octave in a logarithmic
scale. Each bin corresponds to one pitch state. An additional pitch
state represents silence or unvoiced speech. p(z1, (s1), 2, (s2)|ym)
equals one if groundtruth pitches fall into the s and s&" frequency
bins respectively. Since BLSTM-RNNSs [8] can make better use of
the temporal context, we use BLSTM-RNNS instead of DNNSs in this
study.

2.2. SPD-BLSTM for Pitch Probability Estimation

An SPD-BLSTM is a BLSTM-RNN trained on a specific pair of
speakers. There are two 68-unit softmax output layers in SPD-
BLSTM, with each one estimating pitch state of the *" speaker
p(zl,|ym). Denoting the i*" output layer at frame m by Of,, we
can write the frame-level cross-entropy loss as:

(@ (5)lym) 10g(Om(s)) M

where s is the index for 68 pitch states.
The final frame-level pitch probability is estimated by:

P(Tpas Ton|lym) = 03,0, )

This model is denoted by SPD-PITCH in the rest of the paper.

2.3. GPD-BLSTM for Pitch Probability Estimation

SPD-PITCH is not applicable to untrained speakers, thus we in-
troduce GPD models in [14] to relax this constraint, denoted by
GPD-PITCH. GPD-PITCH adopts the same structure as SPD-
PITCH. Three sets of GPD data, including male-female, male-male
and female-female, are generated to train different GPD-BLSTM-
RNNSs. For the male-female GPD-BLSTM-RNN, we associate O}n
with male speakers, OZ, with female speakers. For same-gender
GPD-BLSTM-RNNs, we divide the speakers in the training set in to
two groups w.r.t. the overall average pitch. O, is paired with the

group of with lower average pitch, and OZ, is paired with speakers
with higher average pitch. During testing, a gender-pair detection
algorithm can be used to assign test samples to their correspond-
ing gender pairs. GPD-PITCH is then used for pitch probability
estimation.

3. UPIT FOR SI PITCH PROBABILITY ESTIMATION

3.1. uPIT based SI Multi-pitch Tracking

The label layout in GPD-PITCH provides a reasonable way to dif-
ferentiate two speakers with little information available. It leads to
promising results for different-gender pairs since speech of male and
female is intrinsically different in terms of pitch range, timbre, etc.
However, for same-gender pairs, GPD-PITCH’s ordering criterion
of training labels is suboptimal. The order of average pitch of two
same-gender speakers are usually different across utterances. More-
over, some other important characteristics of speech, including tim-
bre, unvoiced speech, etc., can not be reflected by average pitch.

Utterance-level permutation invariant training (uPIT) has been
proposed to replace rule-based label permutation. In uPIT, the two
training labels are provided as a whole set instead of an ordered list,
and the output-label pairing i <+ #°, for a given utterance, is defined
as the pairing that minimizes the utterance-level training loss over
all possible speaker permutations P. Taking the cross-entropy loss
as an example, the optimal permutation is presented as:

2
0. = argmin — ZZZP ZEm s)|ym) log(O (s) (3)

oep m i=1 s=1

0. is used for all frames within the current training utterance. The
frame-level loss can then be represented by:

DI

i=1 s=1

Tl = 8)[ym) 10g(On (s)) )

In this study, we train an SI-BLSTM-RNN with uPIT to pre-
dict the pitch states of two speakers, denoted by uPIT-PITCH. As
the training goes, we expect uPIT-PITCH to learn the correct output
permutation for both different-gender and same-gender pairs.

3.2. uPIT based Speech Separation followed by Single Pitch
Tracking

uPIT is originally proposed for two-talker speech separation (SS)
in single-microphone recordings. Therefore, an alternative way to
apply uPIT for multi-pitch tracking is to first perform uPIT based
SS, and then track the separated signals of the two speakers using
conventional single pitch tracking algorithms.

In this study, we follow the uPIT based speech separation frame-
work in [12], and train a BLSTM-RNN to predict the spectra of two
speakers. Magnitude STFT of the mixture is used as the input fea-
ture. Two time-frequency masks are then predicted and multiplied
with the mixture STFT, to reconstruct the phase sensitive approxi-
mation (PSA) [12] of the two speakers’ spectra. The uPIT training
criterion are used for the two spectrum outputs. During inference,
the estimated outputs are coupled with the noisy phase of the mix-
ture to resynthesize two time-domain signals. In the end, the RAPT
[17] algorithm is applied to the resulting signals for pitch tracking.
This approach is denoted by uPIT-SS-RAPT.
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Fig. 1: Diagram of uPIT-SS-PITCH.

3.3. uPIT based Speech Separation followed by uPIT based
Multi-pitch Tracking

uPIT-SS-RAPT gives excellent performance if the speech separa-
tion module works properly. However, for some challenging same-
gender mixtures, where uPIT-SS struggles with, directly applying
RAPT on top of uPIT-SS may be error-prone. There two main rea-
sons. First, speaker assignment errors in uPIT-SS directly affect the
pitch assignment in RAPT. Second, the masked signals may contain
some artifacts which degrades the performance of RAPT.

To overcome these issues, we directly concatenate the two out-
puts form uPIT based speech separation with the magnitude STFT of
the mixture to form a new input for uPIT-PITCH. A diagram of the
network is shown in Fig. 1. The left module corresponds to uPIT-SS,
which is trained first as the basis. The right module corresponds to
uPIT-PITCH. We do not feed the two outputs of uPIT-SS to separate
networks for single-pitch tracking, because that may compound the
assignment errors generated by uPIT-SS. Input features in the right
module are pre-processed using logarithm compression before feed-
ing into the BLSTM-RNN. Lastly, it should be noted that the label
permutation of the two modules are optimized independently. We
expect uPIT-PITCH takes useful information from uPIT-SS to help
pitch tracking. We denote the network by uPIT-SS-PITCH in this
study.

3.4. uPIT based Speech Separation followed by Multi-pitch
Tracking with Matched Permutation

One observation in uPIT-PITCH inference is that for some same-
gender speaker pairs, the speaker assignment of pitch swaps very
often across time. One possible reason is that the pitch label itself
is not informative enough to correctly assign same-gender speakers
to different labels. On the other hand, much richer information (un-
voiced speech, timbre) is contained in SS’s training targets, which
may lead to better optimized label permutation during training.

To take advantage uPIT-SS’s label permutation, we modify
uPIT-SS-PITCH, and use the label permutation in the SS module
for that in the pitch module, which is denoted by uPIT-SS-PERM-
PITCH. A diagram of the system is shown in Fig. 2. There is a
dash line connecting the label permutations of the two modules,
meaning that the permutations are matched. By using this structure,
better utterance-level label permutation for pitch tracking might be
achieved.

4. FHMM INFERENCE

After BLSTM based pitch probability estimation, we use a factorial
HMM to infer the most likely pitch tracks. The hidden variables are
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Fig. 2: Diagram of uPIT-SS-PERM-PITCH.

the pitch states of two speakers (z1,, 22,), and the observation vari-
able is the feature vector y . Prior probabilities and transition matri-
ces of the hidden variables are computed from single-speaker train-
ing data either speaker-dependently for SPD-PITCH, or speaker-
independently for all other models. Laplace smoothing is applied
during the computation. We then compute the emission probability
of the FHMM from the estimated posterior probability, and apply
the junction tree algorithm to infer the most likely sequence of pitch
states. In the end, frame-level pitch states are converted back to the
centers of frequency bins, and smoothing is applied to get a contin-
uous pitch track.

5. EXPERIMENTAL RESULTS AND COMPARISONS

5.1. Experimental Setup

We conduct experiments on the GRID database [4], which consists
of 1,000 sentences spoken by each of 34 speakers. Two male and two
female speakers ((No. 1, 2, 18, 20) are selected for testing, denoted
by Set One. For each speaker in Set One, we randomly select 10 ut-
terances, and mix them with every other speaker in Set One at -9, -6,
-3,0, 3, 6, and 9 dB. In total, 10x10x7 test mixtures are generated
for each of the 6 speaker pairs. We report results w.r.t. different gen-
der combinations, and absolute energy differences between two test
speakers. SPD-PITCH is trained within Set One, where 60,000 train-
ing mixtures are generated for each speaker pair by randomly mixing
900 training utterances of both speakers at a random energy ratio be-
tween -5 and 5 dB. Set Two is used to train all speaker-independent
models, where another 10 male and 10 female speakers (No. 3, 5, 6,
9,10,12,13,14,17,19;4,7, 11, 15, 16, 21, 22, 23, 24, 27) with 900
training utterances each, are selected. For GPD-PITCH, the 60,000-
mixture male-female training set is generated by randomly mixing
male utterances with female utterances in Set Two at between -5
and 5 dB. We then divide same-gender speakers in Set Two into two
groups based on their average pitch. For each same-gender pair,
60,000 mixtures are produced by mixing utterances from different
groups at between -5 and 5 dB. Lastly, an SI training set used for
all uPIT based models are generated by randomly mixing different-
speaker utterances within Set Two at between -5 and 5 dB.

Reference pitch is extracted from single-speaker utterances us-
ing the RAPT algorithm [17]. All mixtures are sampled at 16 kHz.
We extract STFT features using a frame length of 32ms, a frame shift
of 10 ms, and the square root of hanning window.

Results are reported using the error measure FEro.q; proposed
in [18], which jointly evaluates the performance in terms of pitch
accuracy and speaker assignment. FEr,tq; combines the percentile
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Table 1: E1ota:1 (%) of different multi-pitch tracking approaches w.r.t. different gender combinations, and absolute energy differences.

Methods Same-Gender Different-Gender

0dB 3dB 6dB 9dB 0dB 3dB 6 dB 9dB
Wohlmayr et al. SD 31.0 31.5 32.6 34.1 26.0 26.6 27.1 28.3
SPD-PITCH 12.4 12.4 12.8 13.9 11.5 11.6 11.8 12.5
GPD-PITCH 25.7 26.0 27.3 29.6 14.3 14.6 15.2 16.3
uPIT-PITCH 25.1 24.9 24.4 25.2 14.8 14.8 154 16.7

Table 2: Erotq1 (%) of joint speech separation - multi-pitch tracking w.r.t. different gender combinations, and absolute energy differences.

Methods Same-Gender Different-Gender

0dB 3dB 6 dB 9 dB 0dB 3dB 6 dB 9dB
uPIT-SS-RAPT 254 25.6 26.0 28.8 12.4 12.7 134 154
uPIT-SS-PITCH 24.6 24.6 24.2 26.2 14.5 14.6 15.0 16.3
uPIT-SS-PERM-PITCH 23.8 234 23.5 25.3 14.3 14.5 15.1 16.5

representation of voicing decision errors, permutation errors, gross
errors and fine errors. The lower, the better. The details of Erotai
can be found in [14, 18].

5.2. Models

All pitch estimation BLSTM-RNNS in this study share the same
structure. There are three 500-unit BLSTM layers in the model. Two
output layers with the softmax activation function are then used to
predict pitch states. The networks are trained with the Adam opti-
mization algorithm [11] and dropout regularization [7]. The initial
learning rate is set to 0.001, and we decrease the learning rate by a
ratio of 0.8 when the cross-validation loss stops decreasing for over
4 epochs. The maximum number of epochs is 30 for SPD-PITCH,
and 100 for all other models.

The uPIT based speech separation network contains 3 BLSTM
layers, each with 896 units. Two 257-unit ReLU [6] output layers
are used to predict phase sensitive masks. The initial learning rate is
set to 0.0002. All other training recipes follows the pitch BLSTM.

For reference, we compare all our methods with Wohlmayr et
al.’s speaker-dependent GMM-FHMM model with gain adaptation
[16, 18], which represents the state-of-the-art for SD multi-pitch
tracking. The SD models in [16, 18] are trained within Set One,
with the same RAPT based reference pitch. We would like to thank
M. Wohlmayr, M. Stark, and F. Pernkopf for providing their pitch
tracking code to us.

5.3. Results and Comparisons

Results of multi-pitch trackers without speech separation modules
are reported in Table 1. All proposed SPD/GPD/SI systems signif-
icantly outperform Wohlmayr et al.’s SD models, which reflects the
excellent modeling capacity of neural networks. Due to the usage of
speaker-dependent information, SPD-PITCH achieves the best re-
sults among all systems. GPD-PITCH yields slightly worse E7otal
than SPD-PITCH on different-gender pairs, and far worse Erotai
on same-gender pairs. This result is expected since same-gender
pairs are a lot more challenging for speaker-independent approaches,
and the ad-hoc label assignment in GPD-PITCH definitely exac-
erbates this problem. uPIT-PITCH matches GPD-PITCH’s perfor-
mance on different-gender pairs, and outperforms GPD-PITCH on
same-gender pairs by a small margin, which shows that the label per-
mutation optimized by uPIT leads to better generalization for neural
networks. However, the improvement is still relative small, thus we
further introduce speech separation to help multi-pitch tracking.

Table 2 reports results of all joint SS-PITCH systems. uPIT-
SS-RAPT achieves exceptionally good results on different-gender
pairs, primarily due to the fact that the same single pitch track-
ing algorithm, RAPT, is shared between uPIT-SS-RAPT and the
reference pitch. To be more specific, when the separation module
works well, uPIT-SS-RAPT tends to generate exactly the same pitch
as the reference pitch, which also includes consistent pitch errors,
and voicing decision errors in the reference pitch. These random
errors by RAPT are regularized by BLSTM-RNNSs during training,
and thus are regarded as incorrect estimations for BLSTM based
models. However, for uPIT-SS-RAPT, since the errors are con-
sistent with the reference pitch, it would be recognized as correct
estimation. On the other hand, uPIT-SS-RAPT works relatively
poorly on challenging same-gender pairs, which implies that inac-
curate estimation in speech separation introduces errors for pitch
tracking. With the help of the additional input feature, uPIT-SS-
PITCH consistently outperforms uPIT-PITCH. There is only one
exception, which is for same-gender pairs at the level-difference of
9 dB. The reason is that severe mismatch happens in this condi-
tion, so that the additional input may be too noisy and to provide
any useful information. Lastly, with matched label permutation,
uPIT-SS-PERM-PITCH generates the best results among speaker-
independent models for same-gender pairs. For different-gender
pairs, uPIT-SS-PERM-PITCH also matches the male-female GPD-
PITCH, which is specifically trained for male-female pairs, and has
optimally assigned label permutations.

6. CONCLUSION

In this study, we have introduced utterance-level permutation in-
variant training for multi-pitch tracking. BLSTM-RNNs with two
probabilistic pitch outputs are used as the base model. SPD, GPD
and uPIT-SI training are compared. For uPIT based pitch estima-
tion models, several extensions have been proposed, including in-
corporating outputs and label permutations from uPIT based speech
separation. Experimental results show that our final model, uPIT-
SS-PERM-PITCH, achieves the best results among all GPD and SI
models, especially for same-gender speaker pairs. In the future, we
will explore multi-target training and joint optimization for speech
separation and multi-pitch tracking
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