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Multipitch tracking is important for speech and signal processing. However, it is challenging to

design an algorithm that achieves accurate pitch estimation and correct speaker assignment at the

same time. In this paper, deep neural networks (DNNs) are used to model the probabilistic pitch

states of two simultaneous speakers. To capture speaker-dependent information, two types of DNN

with different training strategies are proposed. The first is trained for each speaker enrolled in the

system (speaker-dependent DNN), and the second is trained for each speaker pair (speaker-pair-

dependent DNN). Several extensions, including gender-pair-dependent DNNs, speaker adaptation

of gender-pair-dependent DNNs and training with multiple energy ratios, are introduced later to

relax constraints. A factorial hidden Markov model (FHMM) then integrates pitch probabilities and

generates the most likely pitch tracks with a junction tree algorithm. Experiments show that the pro-

posed methods substantially outperform other speaker-independent and speaker-dependent multi-

pitch trackers on two-speaker mixtures. With multi-ratio training, the proposed methods achieve

consistent performance at various energies ratios of the two speakers in a mixture.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4973687]
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I. INTRODUCTION

There is a long-standing interest in estimating the pitch,

or the fundamental frequency (F0) of speech. A reliable esti-

mation of pitch is critical for many speech processing appli-

cations, including automatic speech recognition for tonal

languages (Chen et al., 1997), speaker identification (Zhao

et al., 2012) and speech separation (Wang and Brown,

2006). Over the last few decades, various algorithms have

been designed for tracking the pitch of a single speaker

(Talkin, 1995; Boersma, 2001; Cheveign�e and Kawahara,

2002), and they achieve good performance under clean or

modestly noisy conditions. However, pitch tracking when

speech is severely corrupted by interfering speakers is still a

challenging problem.

This paper is concerned with multipitch tracking when

two speakers are talking simultaneously in a monaural (sin-

gle-microphone) recording. Although microphone-array

approaches are widely used for multi-source tracking, monau-

ral solutions are easier to apply and may complement array-

based techniques. A number of studies have investigated the

problem of monaural multipitch tracking. Wu et al. (2003)

propose a probabilistic representation of pitch and tracked

continuous pitch contours with a hidden Markov model

(HMM). Sha and Saul (2005) model the instantaneous fre-

quency spectrogram with nonnegative matrix factorization

(NMF) and use the inferred weight coefficients to determine

pitch candidates. Bach and Jordan (2005) propose direct prob-

abilistic modeling of the spectrogram and track several

pitches with a factorial HMM (FHMM). Christensen and

Jakobsson (2009) describe statistical, filtering and subspace

methods for both single- and multi-pitch estimation. Hu and

Wang (2010) propose a tandem algorithm that performs pitch

estimation and voiced speech segregation jointly, producing a

set of pitch contours and their associated binary masks. Jin

and Wang (2011) improve the system by Wu et al. (2003) by

designing new techniques for channel selection and pitch

score estimation in the context of reverberant and noisy sig-

nals. The abovementioned studies build a general system

without modeling the characteristics of any specific speaker,

and can thus be denoted as speaker-independent models.

Although most speaker-independent models perform well for

estimating pitch periods, they can not assign pitch estimates

to the underlying speakers for multipitch tracking. To allevi-

ate this problem, Hu and Wang (2013) build their system on

the tandem algorithm (Hu and Wang, 2010) and group simul-

taneous pitch contours into two speakers using a constrained

clustering algorithm. Similarly, Duan et al. (2014) take the

pitch estimates of speaker-independent multipitch trackers as

input and stream pitch points by clustering. However, both

approaches achieve limited improvement as individual pitch

contours and points are usually too short to contain enough

speaker information for clustering. On the other hand,

speaker-dependent models have been investigated recently.

Wohlmayr et al. (2011) model the probability of pitch periods

using speaker-dependent Gaussian mixture models (GMMs),

and then use a speaker-dependent FHMM to track pitches of

two simultaneous speakers. They have shown significant

improvement over a speaker-independent approach (Wu

et al., 2003).

In this paper, we propose a speaker-dependent and dis-

criminative technique to model the pitch probability at each
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time frame. Specifically, we use deep neural networks

(DNNs) to model the posterior probability that a pair of fre-

quency bins (pitch states) is pitched given frame-level obser-

vations. A DNN is a feedforward neural network that

contains more than one hidden layer (Hinton et al., 2006).

Recently, Han and Wang (2014) use DNNs to model the pos-

terior probability of pitch states for single-pitch tracking in

noisy conditions, which motivates the use of DNNs for mul-

tipitch tracking in this study. To leverage individual speaker

characteristics, we train a DNN for each speaker enrolled in

the system, denoted as speaker-dependent DNNs or SD-

DNNs. We also train DNNs for different pairs of speakers,

denoted as speaker-pair-dependent DNNs or SPD-DNNs.

We then extend the DNN based models to relax practical

constraints. To deal with unseen speakers, we train three

gender-pair-dependent DNNs (male-male, male-female, and

female-female, denoted as GPD-DNNs) as a generalization

of SPD-DNNs. GPD-DNNs only require gender information

during testing. With insufficient training data, direct training

of SD-DNNs or SPD-DNNs may result in overfitting. To

examine this issue, we conduct a fast adaptation of GPD-

DNNs for each speaker pair with limited training data. Also,

the utterances of the two speakers in a mixture usually have

different energy ratios, leading to a ratio mismatch between

training and test. We address this problem by including vari-

ous speaker energy ratios in training, denoted as the multi-

ratio training.

After estimating the posterior probability of pitch states,

we use an FHMM for pitch tracking. Under the framework

of the FHMM, the pitch state of each speaker evolves within

its own Markov chain, while the emission probability is

derived by the posterior probability estimated by DNNs. We

then use the junction tree algorithm (Jordan et al., 1999) to

infer the most likely pitch tracks.

The rest of the paper is organized as follows. Section II

gives an overview of the system architecture. Feature extrac-

tion is discussed in Sec. III. The details of DNN based poste-

rior probability estimation are introduced in Sec. IV. Section

V describes the FHMM for multipitch tracking. Experimental

results and comparisons are presented in Sec. VI. Finally, we

conclude the paper and discuss related issues in Sec. VII. A

preliminary version of this paper (Liu and Wang, 2015a) was

presented at Interspeech 2015. This paper extends Liu and

Wang (2015a) in major ways, including gender-dependent

DNNs, model adaptation, and multi-ratio training.

II. SYSTEM OVERVIEW

A diagram of our proposed multipitch tracker is illus-

trated in Fig. 1. The input to the system is a speech mixture

vt sampled at 16 KHz,

vt ¼ u1
t þ u2

t ; (1)

where u1
t and u2

t are utterances of two speakers. Given the

mixture, our system first extracts frame-level features ym

with a frame shift of 10 ms, which corresponds to the first

module in the diagram.

In the second stage, features are fed into DNNs to derive

the posterior probability of pitches at frame m, i.e.,

pðx1
m; x

2
mjymÞ, where x1

m and x2
m denote pitch states of two

speakers at frame m. Both x1
m and x2

m have 68 states (s1, s2,

s3,…, s68), where s1 refers to an unvoiced or silent state, and

s2 to s68 encode different pitch frequencies ranging from 60 to

404 Hz (Han and Wang, 2014). Specifically, we quantize the

pitch frequency range 60 to 404 Hz using 24 bins per octave

on a logarithmic scale, resulting in a total of 67 bins. This fre-

quency resolution provides two bins per semitone, and gives

less than 3% of relative frequency difference between adja-

cent pitch states, adequate for continuous pitch tracking.

pðx1
m ¼ si; x2

m ¼ sjjymÞ equals one if groundtruth pitches fall

into the ith and jth frequency bins, respectively. We propose

two types of DNN to estimate the posterior probability, which

are the speaker-dependent DNNs and the speaker-pair-depen-

dent DNNs. We also explore several extensions. The detailed

settings of DNNs can be found in Sec. IV.

The final module converts the posterior probability

pðx1
m; x

2
mjymÞ to the emission probability of an FHMM

pðymjx1
m; x

2
mÞ. The junction tree algorithm is then applied to

infer the most likely pitch tracks. Note that in the following

sections, a pitch contour refers to a continuous pitch trajec-

tory from the same speaker, and a pitch track refers to a set

of pitch contours from the same speaker.

III. FEATURE EXTRACTION

Features should encode the information of pitch and

speaker identity at the same time. We compare three fea-

tures: cochleagram, log spectrogram, and mel-frequency

cepstral coefficients in our study. Cochleagram and log spec-

trogram are signal representations shown to be effective for

speech separation, automatic speech recognition and speaker

recognition. Unique harmonic structure of each speaker is

reflected in both cochleagram and log spectrogram. Mel-

frequency cepstral coefficients (MFCCs) are widely used in

speech processing, and they are investigated here as a repre-

sentative cepstral feature found to be useful for pitch estima-

tion long ago (Noll, 1967).

A. Cochleagram

To get the cochleagram feature, we first decompose the

input signal in time-frequency domain by using a bank of 64

gammatone filters whose center frequencies range from 50

to 8000 Hz. Gammatone filters model the impulse responses

of auditory filters and are widely used (Holdsworth et al.,
1988). We divide each subband signal into 20 ms frames with a

10 ms frame shift. The cochleagram is derived by computing the

energy of each subband signal at each frame. We then loudness

compress the cochleagram with a cubic root operation to get the

final 64-dimensional cochleagram feature (for a MATLAB

implementation see OSU Perception and Neurodynamics

Lab, 2008).FIG. 1. Diagram of the proposed multipitch tracker.
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B. Log spectrogram

To get the spectrogram feature, the signal is first divided

into 32 ms frames with a 10 ms frame shift. The frame length

of log spectrogram is longer than that of the other two fea-

tures in order to produce a finer resolution of the frequency

axis. We then apply a Hamming window to each frame and

derive the spectrogram using 1024-point FFT. Last, we com-

pute the logarithm of the amplitude spectrum, and pick bins

2-65 (corresponding to a frequency range up to 1000 Hz) as

our frame-level feature vector. The dimensionality of this

feature is 64, and it is proposed by Wohlmayr et al. (2011)

in their GMM-FHMM based multipitch tracker.

C. Mel-frequency cepstral coefficients

To compute MFCCs, we divide the input signal into

20 ms frames with a 10 ms frame shift. The power spectro-

gram is derived using short-time Fourier transform filtered

by a Hamming window. Next we use a bank of 64 mel scale

filters to convert the power spectrogram into mel scale. Last,

logarithm compression and discrete cosine transform are

applied to compute 31-dimensional MFCCs (Brookes,

2011).

D. Incorporating temporal context

To make use of the temporal context, we concatenate

neighboring frames into one feature vector. Denoting the

feature vector extracted within frame m as ŷm, we have

ym ¼ ½ŷm�d;…; ŷm;…; ŷmþd�; (2)

where d is chosen to be 5 (see Sec. IV B).

IV. DNN BASED PITCH PROBABILITY MODELING

DNNs have been successfully applied in various speech

processing applications. In this section, we first introduce

two types of DNN for posterior probability estimation. Next

we extend the models to relax practical constraints.

A. Speaker-dependent DNNs

The goal of DNNs is to model the posterior probability

that a pair of pitch states occurs at frame m, i.e.,

pðx1
m; x

2
mjymÞ. However, this would be difficult without the

prior knowledge of the underlying speakers. We first focus

on training speaker-dependent DNNs to model the posterior

probability.

According to the chain rule in probability theory,

pðx1
m; x

2
mjymÞ ¼ pðx1

mjymÞpðx2
mjx1

m; ymÞ; (3)

we can estimate pðx1
mjymÞ and pðx2

mjx1
m; ymÞ in turn to get

pðx1
m; x

2
mjymÞ. In this study, we estimate the pitch-state proba-

bility of speaker one pðx1
mjymÞ by training a DNN. The input

layer of the DNN corresponds to the frame-level feature vec-

tor of the mixture. There are four hidden layers in the DNN,

and each hidden layer has 1024 rectified linear units (ReLU)

(Glorot et al., 2011). The reason we choose ReLU instead of

sigmoid is that it alleviates the overfitting problem, leading to

faster and more effective training/adaptation. The output layer

has 68 softmax output units, denoted as ðO1
1;O

2
1;…;O68

1 Þ,
where Oj

1 estimates pðx1
m ¼ sjjymÞ. Hence there are sixty-

seven 0s and a 1 in the desired output. The value of 1 corre-

sponds to the frequency bin of the groundtruth pitch. We use

cross-entropy as the cost function. The standard backpropaga-

tion algorithm and dropout regularization (Hinton et al.,
2012) are used to train the network, with no pretraining. We

adopt mini-batch stochastic gradient descent along with a

momentum term (0.9) for the optimization. The choice of

DNN parameters is justified in Sec. VI B. The training data

contain mixtures of speaker one and a set of interfering

speakers.

Figure 2 compares the groundtruth and estimated pitch-

state probabilities of speaker one in a female-female test

mixture. As shown in the figure, the DNN rather accurately

models the conditional probability of x1
m, even without

knowing x2
m. Therefore the same type of DNN can be used to

model pðx1
mjx2

m; ymÞ or pðx2
mjx1

m; ymÞ.
In the next step, we train another DNN to model

pðx2
mjx1

m; ymÞ using exactly the same structure and training

methodology as for the first DNN. The output of the DNN is

denoted as ðO1
2;…;O68

2 Þ. The original posterior probability

pðx1
m; x

2
mjymÞ can then be obtained by

pðx1
m ¼ si; x2

m ¼ sjjymÞ ¼ Oi
1Oj

2: (4)

Because we train a DNN for each enrolled speaker, we

denote this model as the speaker-dependent DNN (SD-

DNN).

B. Speaker-pair-dependent DNNs

A speaker-pair-dependent DNN (SPD-DNN) is a DNN

trained on a specific pair of speakers. The structure of an

SPD-DNN is quite similar to that of an SD-DNN. The input

layer corresponds to the frame-level feature vector. There

are four hidden layers with 1024 ReLU units. Instead of esti-

mating the probability for only one speaker, we concatenate
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FIG. 2. Pitch probability modeling of the first speaker in a female-female mix-

ture at 0 dB. (a) Groundtruth probabilities of pitch states. (b) Probabilities of

pitch states estimated by a DNN.
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the pitch-state probabilities of the other speaker into the

DNN output. The resulting output layer has 136 units,

denoted as ðO1
1;…;O68

1 ;O
1
2;…;O68

2 Þ. To correctly model the

probability distribution, the activation function of the output

layer is a softmax function. Assuming that output units

before applying the activation function have values

ðv1
1;…; v68

1 ; v
1
2;…; v68

2 Þ, we have

Oj
i ¼

exp vj
i

� �

X68

k¼1

exp vk
i

� � for i ¼ 1 or 2; 1 � j � 68: (5)

Other training details exactly follow SD-DNNs. The poste-

rior probability of pitch states is estimated by

pðx1
m ¼ si; x2

m ¼ sjjymÞ ¼ Oi
1Oj

2: (6)

Because SPD-DNNs are trained on speaker pairs, they

should accurately capture the underlying speaker informa-

tion. On the other hand, for a system with N speakers

enrolled, we need to train N SD-DNNs, but ½NðN � 1Þ�=2

SPD-DNNs.

C. Extensions

SD-DNNs and SPD-DNNs utilize detailed speaker

information to estimate the posterior probability of pitch

states. In this section, we introduce extensions to relax their

practical constraints.

1. Gender-pair-dependent DNN

SD-DNNs and SPD-DNNs are not applicable to unseen

speakers. To deal with this constraint, we extend our

speaker-dependent models to gender-dependent ones. In this

way, only the genders of the two underlying speakers are

needed during testing.

A straightforward way to design a gender-dependent

model is to follow the structure of SD-DNNs and train two

DNNs for male and female speakers, respectively. This idea

works well for male-female mixtures, but can not distinguish

the two speakers of the same gender. Therefore we build our

gender-dependent model by extending SPD-DNNs to gen-

der-pair-dependent DNNs or GPD-DNNs. We train three

GPD-DNNs for different gender pairs: male-female, male-

male, and female-female. The structure of a GPD-DNN is

chosen to be the same as an SPD-DNN for simplicity. For

the male-female GPD-DNN, the pitch-state probabilities of

the male speaker correspond to the first 68 output units, and

the female speaker the remaining output units. For same-

gender GPD-DNNs, the first 68 output units correspond to

the speaker with lower average pitch, and the other output

units correspond to the speaker with higher average pitch.

Although this layout may lead to incorrect speaker assign-

ment at some frames, it provides a reasonable way to distin-

guish two speakers with the little information available.

Other training aspects exactly follow SPD-DNNs.

2. Adaptation of GPD-DNNs with limited training data

SD-DNNs and SPD-DNNs would overfit if we could not

collect enough training data. One way to address this prob-

lem is to perform speaker adaptation of GPD-DNNs with

limited data. Speaker adaptation of DNNs has been studied

in automatic speech recognition. Two typical approaches

include incorporating speaker-dependent information into

DNN’s input (Abdel-Hamid and Jiang, 2013; Saon et al.,
2013) and regularized retraining (Liao, 2013; Yu et al.,
2013). In the first approach, speaker-dependent information,

like i-vectors and speaker codes, is incorporated into the

input of DNNs and the original features are projected into a

speaker-normalized space. In regularized retraining, the

weights of DNNs are modified using the adaptation data. To

ensure that the adapted model does not deviate too much

from the original model, a regularization term is added to the

cost function. Both approaches substantially improve the

performance of unadapted DNNs.

We use regularized retraining to perform speaker adap-

tation. For each new speaker pair, we retrain all the weights

of the corresponding GPD-DNN on limited adaptation data

with a relatively small learning rate (0.001) and a weight

decay (L2 regularization) of 0.0001. Other training aspects

follow those for training SPD-DNNs.

3. Multi-ratio training

Utterances of the two speakers in a mixture usually have

different energy ratios. A ratio mismatch between training

and test may result in performance degradation for super-

vised algorithms. Under the framework of GMM-FHMM,

Wohlmayr and Pernkopf (2011) alleviate this problem by

adding a gain parameter to the mean vectors of each GMM.

An expectation-maximization based algorithm is then per-

formed to estimate the gains for each test mixture. They fur-

ther extend the EM-like framework to adapt model

parameters to unseen acoustic environments and speakers

(Wohlmayr and Pernkopf, 2013). However, it is unclear how

to apply these techniques to DNNs.

Generally speaking, the performance of supervised

learning is sensitive to the information contained in the train-

ing set. Therefore, a simple and effective way for improving

generalization is to enlarge the training set by including vari-

ous acoustic conditions (Chen et al., 2016). In this study, we

perform multi-condition training by creating mixtures at dif-

ferent speaker energy ratios, denoted as multi-ratio training.

The resulting DNNs are denoted as ratio-adapted DNNs. The

details of multi-ratio training are given in Sec. VI.

V. FACTORIAL HMM INFERENCE

Once all posterior probabilities are estimated by DNNs,

we use a factorial HMM to infer the most likely pitch tracks.

A factorial HMM is a graphical model that contains several

Markov chains (Ghahramani and Jordan, 1997). In this

study, we only discuss the case of two Markov chains, as

shown in Fig. 3.

The hidden variables (x1
m; x2

m) are the pitch states of two

speakers, and the observation variable is the feature vector
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ym. The Markov assumption implies that ym is independent

of all variables given x1
m and x2

m. Assuming the total number

of frames is M, we denote the sequence of variables in bold-

face: X ¼ [M
m¼1fx1

m; x
2
mg; Y ¼ [M

m¼1fymg. The overall joint

probability of the model is given by

pðX;YÞ ¼ pðx1
1Þpðx2

1Þpðy1jx1
1; x

2
1Þ
YM
m¼2

pðx1
mjx1

m�1Þ

� pðx2
mjx2

m�1Þpðymjx1
m; x

2
mÞ: (7)

Prior probabilities and transition matrices of the hidden

variables are computed from single-speaker recordings in

the training set either speaker-dependently (for SD-DNNs

and SPD-DNNs) or gender-dependently (for GPD-DNNs).

To avoid a probability of zero, Laplace smoothing is applied

during the computation, where we add one to each possible

observation. The emission probability can be computed

using the estimated posterior probability and Bayes rule,

p ymjx1
m; x

2
m

� �
¼

p x1
m; x

2
mjym

� �
p ymð Þ

p x1
m

� �
p x2

m

� � ; (8)

where p(ym) is a constant for all feature vectors.

Once all probabilities are derived, we apply the junction

tree algorithm to infer the most likely sequence of pitch states.

The first step of this algorithm is to convert the directed graphi-

cal model to an undirected graphical model. In the next step,

the nodes in the undirected graph are arranged to form a junc-

tion tree, where belief propagation is performed. For more

details on the junction tree algorithm, we refer the interested

reader to Jordan et al. (1999) and Wohlmayr et al. (2011). The

time complexity of the junction tree algorithm is

O(2� 683�M) in our study. We then convert derived pitch

states to the mean frequencies of the corresponding frequency

bins. Because the resulting frequencies correspond to a rough

sampling of possible pitch frequencies, we use a moving aver-

age window of length three to smooth frequencies and get final

pitch estimates.

VI. EVALUATIONS AND COMPARISONS

A. Corpus and error measurement

For evaluations, we first use the GRID database (Cooke

et al., 2006), which is also used in Wohlmayr et al. (2011)

hence facilitating our comparisons. The corpus consists of

1000 sentences spoken by each of 34 speakers (18 male, 16

female). Two male and two female speakers [No. 1, 2, 18,

20, same as Wohlmayr et al. (2011)], denoted as MA1,

MA2, FE1, and FE2, are selected to train and test the pro-

posed methods, except for GPD-DNNs which are tested on

the same four speakers but trained on another set of speak-

ers. We denote these four speakers as Set One. For each

speaker in Set One, 950 sentences are selected for training,

40 sentences are used for choosing the best DNN weights

during training, and the remaining ten sentences are used for

testing. Note that all test sentences used in Wohlmayr et al.
(2011) are also included in our test set. Another ten male and

nine female speakers (numbers 3, 5, 6, 9, 10, 12, 13, 14, 17,

19; 4, 7, 11, 15, 16, 21, 22, 23, 24)1 are used in the training

of SD-DNNs and GPD-DNNs, where again for each speaker

we select 950 sentences for training, and 40 sentences for

selecting the best DNN weights. We denote these twenty

speakers as Set Two. Reference pitches are extracted from

single-speaker sentences using RAPT (Talkin, 1995), which

outperforms other pitch trackers on clean speech signals

(Drugman and Alwan, 2011). Although RAPT makes minor

mistakes like pitch halving and doubling, these errors are not

severe. Since the main challenge in multipitch tracking is the

interference of another pitched sound, we treat thus derived

pitch as groundtruth.

To mix two sentences u1
t and u2

t , we first select a speaker

ratio R in dB, and amplify one of the speakers by R dB. A

mixture with a speaker ratio of R dB is created by combining

the resulting sentences using: vt ¼ 10R=20u1
t þ u2

t or

vt ¼ u1
t þ 10R=20u2

t . Note that if we choose a speaker ratio of

0 dB, the two equations to derive vt are the same. For com-

parison reasons, we use a matched speaker ratio of 0 dB in

the training and test of SD-DNNs, SPD-DNNs, GPD-DNNs

and adaptation of GPD-DNNs. Unmatched speaker ratios are

used to test multi-ratio training. The details of the training

and test set are as follows:

• SD-DNNs: training mixtures are created by mixing each

sentence of the target speaker in Set One with 60 random

sentences in Set Two at 0 dB. Thus there are 57 000 train-

ing mixtures created for every target speaker. The test is

conducted within Set One. We exhaustively mix test sen-

tences for each speaker pair in Set One at 0 dB, resulting

in a total of 10� 10� 6¼ 600 test mixtures.
• SPD-DNNs: for each speaker pair in Set One, we build the

training set by mixing sentences of the two speakers at

0 dB. We make sure that each sentence of one speaker is

randomly mixed with 60 sentences of the other speaker.

Therefore 57 000 mixtures are created to train each

speaker pair. We use the same test set as for SD-DNNs.
• GPD-DNNs: the training is conducted within Set Two.

For the male-female case, we randomly create 57 000 mix-

tures at 0 dB. For the same-gender case, we divide the

training speakers into two groups, with the first group hav-

ing higher average pitch. We then create 57 000 training

mixtures by randomly mixing the utterances in the first

group and those in the second group at 0 dB. The same

test set is used as for SD-DNNs.

FIG. 3. A Factorial HMM with two Markov chains.
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• Adaptation of GPD-DNNs: For each speaker pair in Set

One, we randomly select 100 mixtures from the SPD-

DNN’s training set as the adaptation data. The same test

set is used as for SD-DNNs.
• Multi-ratio training: the training is conducted for both SD-

DNNs and SPD-DNNs. Mixtures are no longer created at

0 dB in this experiment. Instead, we randomly amplify one

of the two speakers with a random ratio out of R¼ {–12,

6, 0, 6, 12} dB for each training mixture. As for the test

set, we alternately amplified one of the two sentences with

a ratio out of R¼ {�15, �12, �9, �6, �3, 0, 3, 6, 9, 12,

15} dB, which gives 10� 10� 6� 2¼ 1200 mixtures at

each speaker energy ratio, and 13 200 mixtures in total;

note that each mixture at 0 dB appears twice in test.

In addition, we test our proposed methods using the

FDA database (Bagshaw et al., 1993) where the groundtruth

pitches are derived from laryngograph data.

We evaluate pitch tracking results using the error mea-

sure proposed in Wohlmayr et al. (2011), which jointly eval-

uates the performance in terms of pitch accuracy and

speaker assignment. Assuming that the ground truth pitch

tracks are F1
m and F2

m, we globally assign each estimated

pitch track to a groundtruth pitch track based on the mini-

mum mean square error and denote the assigned estimated

pitch tracks as f 1
m and f 2

m. The pitch frequency deviation of

speaker i, i 2 {1, 2}, is

Df i
m ¼
jf i

m � Fi
mj

Fi
m

: (9)

The voicing decision error Eij, i 6¼ j, denotes the percentage

of time frames where i pitch points are wrongly detected as j
pitch points. For each speaker i, the permutation error Ei

Perm

is set to one at time frames where the voicing decision for

both estimates is correct, but Df i
m exceeds 20%, and f i

m is

within the 20% error bound of the other reference pitch, i.e.,

the error is due to incorrect speaker assignment. The overall

permutation error EPerm is the percentage of time frames

where either E1
Perm or E2

Perm is one. Next, for each speaker i,
the gross error Ei

Gross is set to one at time frames where the

voicing decision for both estimates is correct, but Df i
m

exceeds 20% with no permutation error. The overall gross

error EGross is the percentage of time frames where either

E1
Gross or E2

Gross is one. The fine detection error Ei
Fine is

defined as the average of Df i
m in percent at time frames

where Df i
m is smaller than 20%. EFine ¼ E1

Fine þ E2
Fine. The

total error is used as the overall performance measure:

ETotal ¼ E01 þ E02 þ E10 þ E12 þ E20 þ E21

þ EPerm þ EGross þ EFine: (10)

B. Parameter selection

Because all proposed DNNs have similar structure, we

conduct parameter selection for SPD-DNNs only. The best

performing parameters are used in other models. We use a

new pair of male speakers (numbers 26 and 28 in the GRID

corpus) as the development set. For each speaker, 950

sentences are used for training, 40 sentences are used for

choosing the best DNN weights during training and 10 sen-

tences are used for test. Besides the matched 0 dB training

and test condition, we also train the SPD-DNN with multi-

ratio training. The details of the training and test set follow

Sec. VI A. The results of multi-ratio training are averaged

across all speaker ratios.

The size of the training set has strong impact on DNN’s

performance. We create five training sets by randomly mix-

ing each sentence of one speaker with 5, 20, 40, 60 and 80

sentences of the other speaker, resulting in 4750, 19 000,

38 000, 57 000, 76 000 mixtures. An SPD-DNN is trained for

each training set. The results are given in Fig. 4(a). In gen-

eral, the total error decreases with the increase of the training

size, and the improvement becomes small when the training

size reaches 57 000. Taking the computational cost into con-

sideration, we choose 57 000 training mixtures in the subse-

quent experiments.

Features are important to the system. As shown in Fig.

4(b), we compare three features: cochleagram, log spectro-

gram and MFCCs. We adopt the cochleagram feature in the

subsequent experiments as it outperforms other two features.

To incorporate temporal dynamics, a context window is

applied to the input feature. We have explored three values

of the window size d (see Sec. III D). In Fig. 4(c), the total

error substantially decreases when d is increased from 3 to 5,

and remains the same when d reaches 7. Therefore we

choose d¼ 5 for the cochleagram feature.

Next, we investigate the number of hidden units used in

SPD-DNNs. Three numbers are compared: 512, 1024, and

1536. As shown in Fig. 4(d), the total error is reduced by

more than 1.1% when the number is increased from 512 to

1024. However, further increasing the number of hidden

units does not significantly boost the performance.

As described in Sec. II, we follow Han and Wang

(2014) to use 68 pitch states to quantize the frequency range

from 60 to 404 Hz. Another speaker-dependent multipitch

tracking algorithm (Wohlmayr et al., 2011) quantizes the

frequency range from 80 to 500 Hz into 170 pitch states. We

compare the two pitch quantizations using SPD-DNNs. The

results are given in Fig. 4(e). Basically, more pitch states do

not lead to better performance, probably because the fre-

quency resolution with 170 pitch states is too fine for DNNs

to make accurate probability estimates.

Other parameters, including the type of activation func-

tions, the number of hidden layers, learning rate and mini-

batch, are also chosen from the same development set.

C. Results and comparisons

We present our results, and compare with two state-of-

the-art multipitch trackers: Jin and Wang (2011) and

Wohlmayr et al. (2011). Jin and Wang’s approach is designed

for noisy and reverberant signals. They use correlogram to

select reliable channels and track continuous pitch contours

with an HMM. Wohlmayr et al. model speakers with GMMs,

and use a mixture maximization model to obtain a probabilis-

tic representation of pitch states. An FHMM is then applied to

track pitch over time. The GMM-FHMM structure could also
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be extended to be gender-dependent. We denote the speaker-

dependent and gender-dependent models from Wohlmayr

et al. as Wohlmayr et al. SD and Wohlmayr et al. GD, respec-

tively. Wohlmayr et al. train their models on the GRID

database with groudtruth pitches obtained also by RAPT. The

test mixtures used in their study are included in our test set,

and we directly adopt the trained GMM/FHMM models

posted on their website for comparison.

E E

E

EE

FIG. 4. Average ETotal of SPD-DNNs with different (a) sizes of training set, (b) features, (c) sizes of context window, (d) numbers of hidden units, (e) numbers

of pitch states.

TABLE I. ETotal for different multipitch trackers on 600 test mixtures of the GRID Corpus.

E01 E02 E10 E12 E20 E21 EGross EFine EPerm ETotal

Jin and Wang Mean 4.54 1.25 6.97 5.51 1.94 12.81 4.80 6.93 6.47 51.21

Stda 2.34 1.38 3.55 3.33 2.16 5.54 4.65 3.17 5.34 11.71

Wohlmayr et al. SD Mean 1.81 0.06 5.89 2.68 1.39 10.81 0.93 2.79 0.37 26.73

Std 1.64 0.26 3.42 2.18 2.06 5.26 1.14 0.73 0.79 9.49

SD-DNN Mean 1.98 0.13 2.01 5.70 0.07 2.74 0.72 2.32 1.01 16.69

Std 1.61 0.40 2.02 5.57 0.27 2.06 1.25 0.84 2.23 7.90

SPD-DNN Mean 1.69 0.07 1.59 3.19 0.05 2.55 0.52 1.95 0.15 11.77

Std 1.42 0.26 1.54 2.09 0.24 1.94 0.91 0.33 0.54 3.29

aStandard deviation (Std).
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We first evaluate the SD-DNN and SPD-DNN based

methods. Table I compares the SD-DNN and SPD-DNN

based methods with the other multipitch trackers on 600 test

mixtures. Speaker-dependent approaches perform substan-

tially better than the speaker-independent approach, and our

SD-DNN and SPD-DNN based methods cut ETotal by more

than 10% compared to Wohlmayer et al. SD. The major

improvement in ETotal comes from E21, which implies that

our methods estimate pitch more accurately when the two

speakers are both voiced. The SPD-DNN method performs

better than the SD-DNN method, which is not surprising as

SPD-DNNs are trained on individual speaker pairs. We fur-

ther illustrate ETotal for each of the six speaker pairs in Fig.

5. As shown in the figure, our methods have lower errors

across all pairs. SD-DNNs and SPD-DNNs perform compa-

rably on five speaker pairs, and the latter achieve signifi-

cantly lower ETotal on the most difficult pair of MA1-MA2.

Figure 6 illustrates pitch tracking results on a test mixture of

MA1-MA2. Jin and Wang’s approach fails to assign pitches

to the underlying speakers. The approach by Wohlmayr

et al. works better in terms of speaker assignment, but per-

forms poorly when two pitch tracks are close to each other.

Moreover, their resulting pitch contours lack continuity. The

SD-DNN produces much smoother pitch contours. However,

it still has incorrect speaker assignment at a few frames. The

SPD-DNN generates very good pitch tracks in both pitch

accuracy and speaker assignment.

To further analyze the above-mentioned improvement

achieved by our proposed methods, we compare our SD-

DNN based method with Wohlmayr et al. SD using the same

feature, namely, the log spectrogram feature described in

Sec. III B, and the same training data, i.e., 497 training utter-

ances per speaker. Specifically, we train the SD-DNN based

method using three settings: (1) 497 training utterances per

speaker with log spectrogram feature, (2) 497 training utter-

ances per speaker with cochleagram feature, and (3) 950

training utterances per speaker with cochleagram feature

(the proposed training setting). Results on the 600 test mix-

tures are shown in Table II. When using exactly the same

feature and training data, the SD-DNN based method signifi-

cantly outperforms Wohlmayr et al. SD. If we replace SD-

DNN’s input feature with cochleagram, the total error further

decreases. Last, increasing the training size slightly boosts

SD-DNN’s performance. In conclusion, although features

FIG. 5. ETotal of different approaches tested on six pairs of speakers. Error

bars depict the mean and standard deviation of a method on the test mixtures

of a given speaker pair.

FIG. 6. (Color online) Multipitch tracking results on a test mixture (pbbv6n

and priv3n) of the MA1-MA2 speaker pair. (a) Groundtruth pitch (lines and

dotted lines) and estimated pitch (circles and crosses) by Jin and Wang. (b)

By Wohlmayr et al. SD. (c) By SD-DNN. (d) By SPD-DNN.

TABLE II. Average ETotal for SD-DNN and Wohlmayr et al. SD on 600 test

mixtures of the GRID Corpus.

Training utterances

per speaker 497 950

Feature type

Log

spectrogram Cochleagram Cochleagram

SD-DNN 19.02 17.22 16.69

Wohlmayr et al. SD 26.73 — —

FIG. 7. ETotal of gender-dependent approaches. Error bars depict the mean

and standard deviation of a method on the test mixtures of a speaker pair.
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and training sizes have an effect, the use of DNNs makes the

most contribution to performance gains.

Next, we evaluate three extensions to the previous mod-

els. Figure 7 shows the performance of the GPD-DNN based

method. It significantly outperforms the gender-dependent

model by Wohlmayer et al. on all speaker pairs. The average

ETotal of GPD-DNN is 15.89% lower than the gender-

dependent model by Wohlmayr et al., and even 5.46% lower

than the speaker-dependent model by Wohlmayr et al.
However, the performance gap between GPD-DNNs and

SD-DNNs/SPD-DNNs is larger than 4.5%. Therefore one

should use SD-DNN/SPD-DNN based methods when

speaker-dependent information is available.

Figure 8 shows the performance of GPD-DNN adapta-

tion. Four models are compared across all speaker pairs: (1)

GPD-DNNs, (2) SPD-DNNs directly trained with 100 mix-

tures per speaker pair, (3) GPD-DNNs adapted with 100

mixtures per speaker pair, (4) SPD-DNNs trained with

57 000 mixtures per speaker pair. As shown in the figure,

SPD-DNNs trained with limited data perform better than

GPD-DNNs on same-gender mixtures, but worse than GPD-

DNNs on different-gender mixtures. GPD-DNN adaptation

consistently outperforms the first two methods, resulting in

5% reduction in average ETotal. The results indicate the supe-

riority of GPD-DNN adaptation for small training sizes.

Generalization to different speaker energy ratios is cru-

cial to supervised multipitch trackers. Figure 9 shows the per-

formance of SD-DNN, SPD-DNN, and the speaker-dependent

models by Wohlmayr et al. at various speaker ratios. All mod-

els are trained at 0 dB, and results are averaged across all

speaker pairs at each speaker ratio. As shown in the figure,

the total error increases significantly when the speaker ratio

deviates from 0 dB. Errors are not symmetric with respect to

0 dB, as we only scale the level of one speaker in order to cre-

ate a specified ratio. For the speaker-dependent model by

Wohlmayr et al., when the speaker ratio is positive, the mix-

ture becomes dominated by the amplified speaker, misleading

the GMM of the weak speaker. For the SD-DNN and SPD-

DNN based methods, it is hard for DNNs to recognize the

weak speaker when the speaker ratio is too low. We then

apply multi-ratio training for SD-DNNs and SPD-DNNs, and

compare them with Jin and Wang’s unsupervised multipitch

tracker as well as the gain-adapted version of the speaker-

dependent models by Wohlmayr et al. (Wohlmayr and

Pernkopf, 2011). Note that, unlike multi-ratio training, gain

adaptation in Wohlmayr and Pernkopf (2011) uses an

expectation-maximization based framework to estimate gains

in test mixtures, thus no additional training is needed. The

results are given in Fig. 10. The performance of multi-ratio

trained DNNs remains high across all speaker ratios. At 0 dB,

multi-ratio trained SD-DNNs and SPD-DNNs produce only

0.03% and 0.34% higher errors than SD-DNNs and SPD-

DNNs trained in the matched 0 dB condition, indicating their

strong generalization ability.

Noise robustness is also an important issue in multipitch

estimation. We evaluate Jin and Wang’s model, the speaker-

dependent model by Wohlmayr et al., the SD-DNN based

model and the SPD-DNN based model, when a speech shape

noise (SSN) and a babble noise are mixed with two-speaker

utterances. SSN is a stationary noise with no pitch, and babble

noise is nonstationary with pitched portions. Specifically, we

generate 100 test mixtures of MA1-MA2 at the speaker ratio

of 0 dB. The test mixtures are then mixed with SSN and bab-

ble noise at the SNR of 5, 10, 20 and Inf dB. Here the SNR

refers to the ratio of two-speaker-mixture power to the noise

power, and Inf dB corresponds to the noise-free condition.

Importantly, no retraining is performed for any system. The

multipitch tracking results in background noise are given in

Fig. 11. As shown in the figure, our methods remain robust to

both kinds of noise, and outperform the comparison models.

In the above experiments, we use RAPT to extract the

groundtruth pitch from single speaker recordings, which is

not error-free as mentioned previously. We now evaluate our

methods on the FDA database (Bagshaw et al., 1993), where

FIG. 8. Performance of GPD-DNN adaptation. Error bars depict the mean

and standard deviation of a method on the test mixtures of a speaker pair.

E

FIG. 9. Results of different approaches tested on 11 speaker ratios. Each

data point represents ETotal averaged across 1200 test mixtures.

E

FIG. 10. Results of different approaches tested on 11 speaker ratios. Each

data point represents ETotal averaged across 1200 test mixtures.
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the groundtruth pitch is directly given by laryngograph data.

The corpus consists of recordings of 50 sentences by each of

two speakers (a male and a female). For each speaker, we

choose 40 sentences for testing and 40 test mixtures are cre-

ated by mixing the test sentences at 0 dB. Because the

dataset is not large enough for training SD-DNNs and SPD-

DNNs, we conduct experiments with GPD-DNN and GPD-

DNN adaptation. A ratio-adapted GPD-DNN trained on the

GRID database is used for pitch-state probability estimation.

We also perform speaker adaptation of the GPD-DNN with

10 adaptation sentences per speaker, i.e., 10� 10 adaptation

mixtures. We compare the two methods with Jin and Wang’s

speaker-independent model as well as the gain-adapted ver-

sion of the gender-dependent model by Wohlmayr et al.
ETotal of different approaches is shown in Fig. 12. Results

indicate that our GPD-DNN based method outperforms other

approaches. The adaptation of the GPD-DNN further reduces

the average total error by 8.69%.

In addition to ETotal, we use another metric to compare

the performance in this experiment: overall multipitch accu-

racy used by Duan et al. (2014). To compute this accuracy,

we first assign each estimated pitch track to a groundtruth

pitch track. For each estimated pitch track, we call a pitch

estimate at a frame correct if it deviates less than 10% from

its corresponding groundtruth pitch. The overall multipitch

accuracy is defined as

Accuracy ¼ TP

TPþ FPþ FN
; (11)

where TP (true positive) is the total number of correctly esti-

mated pitches, FP (false positive) is the total number of

pitches that appear in some estimated pitch track but do not

belong to the corresponding groundtruth pitch track, and FN

(false negative) denotes the total number of pitches that

appear in some groundtruth pitch track but do not belong to

the corresponding estimated pitch track. Different assign-

ments of estimated pitch tracks give us different accuracies,

and we choose the highest value to represent the overall

accuracy. Similar to Fig. 12, the GPD-DNN and GPD-DNN

adaptation achieve accuracies of 70.02% and 82.61%. The

other two approaches have accuracies lower than 50%.

Last, we compare the computational complexity of dif-

ferent approaches. We directly use the program from the

author websites of Jin and Wang (2011) and Wohlmayr et al.
(2011). The program from Jin and Wang (2011) is imple-

mented in Java, and the program by Wohlmayr et al. (2011)

is implemented in MATLAB. Our program is a mixture of

MATLAB and Caffe (a deep learning framework). One hun-

dred mixtures with the total length of 179.7 s are created for

this evaluation. The test is performed on a machine with an

Intel i7-4770k CPU (3.5 GHz) and 32 GB memory. All com-

putations are performed on the CPU within a single thread.

Table III shows the average processing time per one second

mixture. Results indicate that our methods are a lot more

efficient. There are two main reasons why Wohlmayr et al.
SD is slower. First, the number of pitch states used in SD of

Wohlmayr et al. is 170, while in our study it is 68. Second,

the mixmax interaction model in SD of Wohlmayr et al.
occupies 85% of total running time. In our study the corre-

sponding module is DNN, and it only takes less than 0.4 s

for one second mixture.

In addition to the above comparisons, we have com-

pared with Hu and Wang (2013), where a clustering algo-

rithm is used to group short pitch contours into two speakers.

FIG. 11. ETotal of different approaches

tested on the MA1-MA2 speaker pair

mixed with (a) speech shape noise, (b)

babble noise.

E

FIG. 12. Results of different approaches tested on the FDA corpus. (a) Jin

and Wang. (b) Wohlmayr et al. GD with gain adaptation. (c) Ratio-adapted

GPD-DNN. (d) Speaker adaptation of GPD-DNN. Error bars depict the

mean and standard deviation of a method on the test mixtures.

TABLE III. Running time comparison for different approaches.

Jin-Wang Wohlmayr et al. SD SD-DNN SPD-DNN

Time (s) 7.77 20.12 0.60 0.43
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We found that this method performs better than Jin and

Wang’s method, but worse than the speaker-dependent

method by Wohlmayr et al. The details of this comparison

can be found in Liu and Wang (2015b). NMF based

approaches have been used in multipitch tracking (Sha and

Saul, 2005; Peharz et al., 2011). Since a gain-adapted

GMM-FHMM based approach has been shown to match the

performance of an NMF-FHMM based approach at various

speaker energy ratios (Wohlmayr and Pernkopf, 2011;

Peharz et al., 2011), we do not directly compare our methods

with NMF based algorithms.

VII. CONCLUDING REMARKS

We have proposed speaker-dependent and speaker-pair-

dependent DNNs to estimate the posterior probabilities of

pitch states for two simultaneous speakers. Taking advantage

of discriminative modeling and speaker-dependent informa-

tion, our approach produces good pitch estimation in terms

of both accuracy and speaker assignment, and significantly

outperforms other state-of-the-art multipitch trackers. The

SPD-DNN based method performs especially well when the

two speakers have close pitch tracks. In order to relax con-

straints, we have introduced three extensions to SD-DNNs

and SPD-DNNs. Gender-pair-dependent DNNs are designed

for unseen speakers during testing, and they perform sub-

stantially better than other speaker-independent and gender-

dependent approaches on both GRID and FDA databases.

Given limited speaker-dependent training data, speaker

adaptation is effective for reducing tracking errors. Last,

multi-ratio trained SD-DNNs and SPD-DNNs produce con-

sistent results across various speaker ratios.

To apply our speaker-dependent models requires that

the identities of the two speakers be known beforehand.

Recently, Zhao et al. (2015) proposed a DNN-based cochan-

nel speaker identification algorithm, which can reliably iden-

tify the speakers in two-speaker mixtures. Such an algorithm

could be used to first identify the two speakers in an input

mixture, thus helping select trained SD-DNNs or SPD-

DNNs for pitch estimation. When the speakers in a mixture

are not enrolled, we can use a similar cochannel gender pair

detection algorithm as a front-end for gender-pair-dependent

multipitch tracking. Our experiments show that the accuracy

of such gender pair detector is perfect.

Although the proposed models are designed for two-

speaker mixtures, they can be extended to mixtures with

more than two speakers. To illustrate this extension, Fig. 13

shows an example when three speakers, i.e., MA1, FE1, and

FE2 in the GRID database, are mixed in one test sample

with equal energy ratio between every pair of speakers. We

first use three SD-DNNs trained on the GRID database to

estimate pitch-state probabilities for the three speakers. An

FHMM with three Markov chains is then employed to con-

nect all probabilities. No retraining is performed for this

experiment. As shown in the figure, our algorithm does a

decent job tracking three pitch tracks simultaneously.

Extensions to more speakers can be achieved in a similar

manner. It is worth noting that this relatively straightforward

extension is an advantage of our speaker-dependent model-

ing and our use of FHMM that is not shared by the HMM

based model in Jin and Wang (2011). Many multipitch track-

ers deal with interfering speakers and additive noise at the

same time (Wu et al., 2003; Jin and Wang, 2011). We have

illustrated the noise-robustness of our models without

retraining. Better results are expected if we further include

noise corrupted mixtures in the training data set.

To make use of the temporal context, we concatenate

neighboring frames into a feature vector. Such a method can

only capture temporal dynamics in a limited span. On the

other hand, recurrent neural networks (RNNs) have self con-

nections through time. Studies have shown that RNNs are

good at modeling sequential data like handwriting (Graves

et al., 2008) and speech (Vinyals et al., 2012). We plan to

explore RNNs in future work to better capture the temporal

context.
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