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Abstract

Multipitch tracking is a challenging problem for speech and
signal processing. In this paper, we use deep neural networks
(DNNs) to model the probabilistic pitch states of two simulta-
neous speakers. To closely capture speaker-dependent informa-
tion and improve the accuracy of speaker assignment, we train a
DNN for each enrolled speaker (speaker-dependent DNN). We
also explore the feasibility of training a DNN for each speaker
pair in the system (speaker-pair-dependent DNN). A factorial
hidden Markov model (FHMM) then integrates the pitch prob-
abilities and generates most likely pitch contours with a junc-
tion tree algorithm. We evaluate our system on the GRID cor-
pus. Experiments show that our approach substantially outper-
forms state-of-the-art multipitch trackers on both same-gender
and different-gender two-talker mixtures.

Index Terms: multipitch tracking, deep neural networks,
speaker-dependent modeling, factorial hidden Markov model.

1. Introduction

There is a long-standing interest in estimating the pitch, or
the fundamental frequency (FO) of speech. A reliable estima-
tion of pitch is critical for many speech applications, including
speech separation [1] [2], speaker identification [3] and auto-
matic speech recognition [4]. Over the last few decades, var-
ious algorithms have been designed for tracking the pitch of a
single speaker in clean recordings [5] [6]. However, pitch track-
ing when speech is severely corrupted by noise or interfering
speakers is still a challenging problem.

This paper is concerned with pitch tracking in a situation
when multiple speakers (two in this study) are talking at the
same time. A number of studies have investigated this prob-
lem. Wu, Wang and Brown [7] built a probabilistic representa-
tion of pitch on top of a channel/peak selection mechanism and
tracked continuous pitch contours with a hidden Markov model
(HMM). Sha and Saul [8] modeled the instantaneous frequency
spectrogram with nonnegative matrix factorization and used the
inferred weight coefficients to determine pitch candidates. Bach
and Jordan [9] proposed a model based on the direct probabilis-
tic modeling of the spectrogram and tracked several pitches with
a factorial HMM (FHMM). Jin and Wang [10] further improved
Wu, Wang and Brown’s system by designing new techniques
for channel selection and pitch score estimation in the context
of reverberant and noisy signals. All of the abovementioned
studies built a general system without modeling the character-
istics of any specific speaker, denoted as speaker-independent
models. Although most speaker-independent models perform
reasonably well for estimating pitch periods, they fail to cor-
rectly assign pitch estimates to the underlying speakers for mul-
tipitch tracking. To alleviate this problem, Duan et al. [11]
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proposed a post processing approach, which used the pitch esti-
mation of speaker independent models as input and reassigned
pitch streams using a constrained clustering algorithm. On the
other hand, speaker-dependent models have also been investi-
gated recently. Wohlmayr, Stark and Pernkopf [12] modeled the
probability of pitch periods using speaker-dependent Gaussian
mixture models (GMMs), and then used a speaker-dependent
FHMM to track pitches of two simultaneous speakers. They
have shown significant improvement over a previous speaker-
independent model [7].

In this paper, we adopt the idea of speaker-dependent mod-
eling and propose a discriminative technique to generate the
probability of pitches at each time frame. Firstly, we use deep
neural networks (DNNs) to model the posterior probability that
a pair of frequency bins (pitch states) are pitched given the
frame-level observation. A DNN is a feedforward neural net-
work that contains more than one hidden layer [13]. Recently,
Han and Wang [14] used DNNs to model the posterior proba-
bility of pitch states for single-pitch tracking, which motivates
the use of DNNs for multipitch tracking in this study. We ex-
pect DNNs to generate more accurate pitch probabilities than
Wolhmayr et al.’s GMMs [12]. To reflect the speaker depen-
dency of our model, we train a DNN for each speaker enrolled
in the system. In addition, we explore the feasibility of train-
ing DNNGs for different pairs of speakers. Secondly, we use an
FHMM for pitch tracking. Under the framework of the FHMM,
the pitch state of each speaker evolves within its own Markov
chain, while the emission probability is derived by the posterior
probability estimated by DNNs. We then use the junction tree
algorithm [15] to track the most likely pitch trajectories.

The rest of the paper is organized as follows. The next sec-
tion describes the overall system architecture. The details of the
proposed multipitch tracking algorithm are discussed in Section
3. Experimental results and comparisons are presented in Sec-
tion 4. Finally, Section 5 concludes the paper.

2. System overview

A flowchart of our proposed multipitch tracker is illustrated in
Figure 1. The input to the system is a speech mixture v(;) sam-
pled at 1.6 KHz:
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where ugi; and ugf)) are utterances from two different speak-

ers, mixed at O dB in our study. Given the mixture, our system
first extracts frame-level features y,,,,y. The features are then
fed into DNNSs to derive the posterior probability of pitches at
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Figure 1: Overall system architecture.

unvoiced or silent state, and s> to s° encode different pitch

frequencies ranging from 60 to 404 Hz [14]. Specifically, we
quantize the pitch frequency range 60 to 404 Hz using 24 bins
per octave in a logarithmic scale, resulting in a total of 67 bins.

The value of p(ma) = si,méfi)

sj|y(m)) equals one if
groundtruth pitches fall into the i** and 5" frequency bin re-
spectively. Depending on the level of speaker dependency, we
propose two types of DNNs to estimate the posterior proba-
bility, which are the speaker-dependent DNN and the speaker-
pair-dependent DNN. The detailed settings of DNNs can be
found in Section 3. We then convert the posterior probability
p(.rﬁ,i), xéi?) |Y(1m)) to the emission probability of an FHMM
P(Y(m) |x8,2), mgii)) and apply the junction tree algorithm to
infer the most likely pitch trajectories.

3. Algorithm description
3.1. Feature extraction

Good features should encode the information of pitch and
speaker identity at the same time. We have investigated three
features: cochleagram, log spectrogram and Mel-frequency
cepstral coefficients in a development set, and decide to use the
cochleagram feature in the following experiments due to its su-
perior performance.

3.1.1. Cochleagram feature

To get the cochleagram feature, we first decompose the input
signal into the time-frequency domain by using a bank of 64
gammatone filters whose center frequencies range from 50 Hz
to 8000 Hz. Gammatone filters model the impulse response of
auditory filters and are widely used in speech applications [21].
We then divide each sub-band signal into 20 ms frames with a
10 ms frame shift. The cochleagram is derived by computing
the energy of each subband signal at each frame. In the end, we
loudness compress the cochleagram with a cubic root operation
to get the final cochleagram feature.

3.1.2. Feature post processing

To make use of the temporal context, we concatenate neigh-
boring frames into the feature vector. Assume the frame-level
feature before post processing is §,,), the final feature vector
can be written as:

’ @(m-{»d)] (2)

Ym) = [@(m—d)? RER) @(m)» e

where d is chosen as 5 from cross-validation.

3.2. DNN:s for posterior probability estimation

We introduce two types of DNNs for posterior probability esti-
mation.

3.2.1. Speaker-dependent DNN

The goal of DNNs is to model the posterior probability that a
pair of pitch states occur at frame m, i.e., p(ycgii), xéii) 1Y (m))-

However, this would be difficult without the prior knowledge of
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Figure 2: Comparison between the groundtruth and estimated
pitch-state probability.

the underlying speakers. In this section, we focus on training
speaker-dependent DNNs to model the posterior probability.
According to the chain rule in probability theory:
P 2o U my) = DB 1Y () )P o |20 Y ()
3)
we can estimate p(ma) Y (m)) and p(mgiz) |x22>, Y(m)) in turn
to get p(wgrlr)l), zgig [Y (m))- In this study, we estimate the pitch-
state probability of speaker one p(xgiwy(m)) by training a
DNN. The input layer of the DNN corresponds to the feature
vector of a speech mixture. There are four hidden layers in
the DNN, and each hidden layer has 1024 hidden units with the
ReLU activation function [16]. The output layer has 68 sigmoid
units (O to O$®), where O{ estimates p(xgiyz) = sj|y<m>).
Hence there are 67 '0’s and a "1’ in the desired output. The
value ’1” corresponds to the frequency bin of the groundtruth
pitch. We use the mean square error as the cost function. The
standard backpropagation algorithm and dropout regularization
(dropout rate 0.2) are used to train the network, with no pre-
training [17]. We adopt stochastic gradient descent along with
a momentum term (0.9) for the optimization. The training pro-
cess requires mixtures of speaker one and a set of interfering
speakers. During testing, the output of the DNN is scaled to
sum to one. Figure 2 compares the groundtruth and the esti-
mated pitch-state probability of speaker one in a female-female
test mixture.
As shown in Figure 2, the DNN is powerful enough to

(1)

(m) €ven without know-

model the conditional probability of x
ing ngg) Thus we further assume the conditional independence
between xE}}O gii):

2 1
p(mﬁni) Ixﬁni)y Yim)

and x

2
) = p(‘rgwi)ly(m)) C))
In the next step, we train another DNN to model p(mE:) [Y(m))
using exactly the same structure and training methodology as
for the first DNN. After estimating p(mgz) |Y(m))- the original
posterior probability can be obtained by:

(1)

2 1 2
P 22 Y ) = D@ Y ) P o [U ) (5)



—>

=]

Figure 3: A Factorial HMM with two Markov chains.

e
e

As we train a DNN for each enrolled speaker, we denote this
model as the speaker-dependent DNN (SD-DNN).

When training the SD-DNN for speaker one, we can
concatenate the pitch state of the interfering speaker k into
the DNN’s output. The resulting output has 136 units,
[O1,...,0%8 O4,...,08%8]. The training of the new DNN is
conducted by jointly minimizing the mean square error of the
target and the interfering pitch state, where the error of the in-
terfering pitch state can be regarded as a regularization term
for the training process. Other settings exactly follow the initial
DNN. During the test phase, we only use the output correspond-
ing to the target speaker (O1 to O%®) to estimate p(mgii) Y (m))-
The same method applies to every speaker in the system. We
denote this model as the regularized speaker-dependent DNN
(RSD-DNN).

3.2.2. Speaker-pair-dependent DNN

A speaker-pair-dependent DNN (SPD-DNN) is a DNN trained
and tested exclusively on a specific pair of speakers. The struc-
ture and training of a SPD-DNN are the same as a RSD-DNN.
The input layer corresponds to the frame-level feature vector
and the output layer estimates the pitch-state probabilities of
two speakers (i.e., [O1,...,0%,03,...,05%]). Only a single
DNN is needed when testing on a specific speaker pair. The
estimated posterior probability of pitch states is computed by:

(2)

1)
p(x (m)

Timy = shxy =8 Y(n) = @010, (6)
where « is a scalar.

As a SPD-DNN is trained exclusively on a speaker pair, it
can accurately capture the identity information of both speakers.
We expect it to yield better results when two speakers are of
the same gender and can not be easily distinguished from each
other.

Finally, we analyze the training cost of all DNNs. For a
system with N speakers enrolled, we need to train N DNNs for
the SD-DNN and Y2/~ DNN for the SPD-DNN. Although
SPD-DNNSs are expected to generate better results, they would

come at a higher computational cost.

3.3. Inference on a factorial HMM

A factorial HMM model is a probabilistic graphical model that
contains several Markov chains [18]. In this study, we only dis-
cuss the case of two Markov chains, as shown in Figure 3. The
hidden variables (zéi), (m)) are the pitch states of two speak-
ers, and the observation variable is the feature vector y,,,).
The Markov assumption implies that y,,,) is independent of

all variables given xgiz) and mgig

frames is M, we denote the sequence of variables in boldface:

M 1 2 M
z = U, :ngz), Enz)} Y = Um=1{Y@m)}- The overall

Assume the total number of
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probability of the model is given by:
1 2 (2
p(x,y) = p(z)p()p(y o |25, 250)

Hp

(1)
(m)

20

(2)
(mfl)) (

1 2
(m)\azm 1)) (y(m)|xgnz)axgri))

O]

Prior probabilities and transition matrices of the hid-
den variables are computed from the training data speaker-
dependently. Laplace smoothing is applied during the training
process. The emission probability can be computed using the
estimated posterior probability and Bayes rule:

1) (2)

(1) ) ap( () L (| Y m))
p(z (m))p( (m))

where « is a constant.

Once all probabilities are derived, we apply the junction
tree algorithm [15] to infer the most likely sequence of pitch
states. The time complexity of the junction tree algorithm is
O(2 x 68% x M) in our study, which is still tractable. We
then convert derived pitch states to mean frequencies of corre-
sponding frequency bins. In the end, we use a moving average
window of length three to smooth frequencies and get the final
pitch estimate.

4. Experimental results and comparisons

For evaluations and comparisons, we use the GRID database
[19], which is also used in [12]. The corpus consists of high
quality recordings of 1000 sentences spoken by each of 34
speakers (18 male, 16 female). Two male and two female speak-
ers (speaker No. 1, 2, 18, 20 respectively, denoted as MA1,
MAZ2, FE1 and FE2) are selected to train and test the SD-DNN,
RSD-DNN and SPD-DNN based methods. We denote these
four speakers as Set One. For each speaker in Set One, 997 sen-
tences are used for training, while the remaining three sentences
(see [12]) are used for testing. Another ten male and ten female
speakers (speaker No. 3, 5, 6, 9, 10, 12, 13, 14, 17, 19; 4, 7,
8, 11, 15, 16, 21, 22, 23, 24 respectively) are used as interfer-
ing speakers in the training of the SD-DNN/RSD-DNN, where
again 997 sentences of each speaker are used for training. We
denote these 20 speakers as Set Two. Groundtruth pitches are
extracted from single-speaker utterances using RAPT [5]. The
choice of RAPT is justified in [20], where RAPT outperforms
other pitch trackers on clean speech signals. The details of the
training and test set are described as follows:

¢ SD-DNN/RSD-DNN: training mixtures are created by
mixing utterances of the target speaker in Set One
with utterances of interfering speakers in Set Two at 0
dB. Each utterance of the target speaker is mixed with
five utterances of each interfering speaker in Set Two.
Thus there are 99,700 training mixtures for every target
speaker. The test is conducted within Set One. We ex-
tensively mix test utterances for each speaker pair in Set
One, resulting in a total of 3xX3x6 = 54 test mixtures.

* SPD-DNN: for each speaker pair in Set One, we build
the training set by mixing utterances of the two speakers
at 0 dB. To generate enough training data, we make sure
that each utterance of one speaker is mixed with about
100 utterances of the other speaker. Thus approximately
99,700 mixtures are created to train each speaker pair.
We use the same test set as for the SD-DNN/RSD-DNN.
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We evaluate pitch tracking results using the error measure
proposed in [12], which jointly evaluates the performance in
terms of pitch accuracy and speaker assignment. Assume the
ground truth pitch trajectories are fg[m] and fé&[m], we glob-
ally assign each estimated pitch trajectory to a groundtruth pitch
trajectory based on the minimum mean square error and denote
the assigned estimated pitch trajectories as fg[m] and fZ[m)].
The pitch frequency deviation of speaker i (:€{1,2}) is:

_ [folm] = fo[ml|
felm]
The voicing decision error F;; denotes the percentage of time
frames where ¢ pitch points are detected as j pitch points. For
each speaker ¢, the permutation error Eglrm is set to one at
time frames where the voicing decision for both estimates is
correct, but Af¥[m] exceeds 20%, and fi[m] is within the
20% error bound of the other reference pitch (i. €., the error due

to incorrect speaker assignment). The overall permutation error
€]

Perm

AP [m] ©)

Eperm is the percentage of time frames where either £/
Efe)rm is one. Next, for each speaker ¢, the gross error Egz oss
is set to one at time frames where the voicing decision for both
estimates is correct, but Af® [m] exceeds 20% and no per-
mutation error is detected. The overall gross error Egross 18

ED o ED

Gross Gross

or

the percentage of time frames where either

is one. The fine detection error Egjm is defined as the aver-
age of Af¥[m] in percent at time frames where A f()[m] is
smaller than 20%. Erine = Egi)n e T El(f;" .- The total er-
ror is used as the performance measure in this study: Fiotqr =
Eoi+FEo2+FEi0+Ei12+Exn+E21+Eperm+EGrosst+Erine.
We compare our methods (SD-DNN, RSD-DNN and SPD-
DNN based) with two state-of-the-art multipitch trackers: Jin
and Wang’s [10] (denoted as HMM) and Wohlmayr et al.’s
speaker-dependent approach [12] (denoted as GMM-FHMM).
Jin and Wang’ approach does not require training. Wohlmayr
et al. trained their models on the same corpus and groundtruth
pitch as we use, and we directly adopt their code in testing.
The results of our methods and those of the comparison
algorithms are shown in Figure 4. As shown in the figure,
all DNN based methods have lower total errors than other ap-
proaches. The advantages hold apparently for the first five
speaker pairs. For the last speaker pair FE1-FE2, our ap-
proach performs comparably with GMM-FHMM but better
than HMM. The two types of SD-DNNs perform almost the
same across all speaker pairs, which implies that the regu-
larization does not significantly boost the performance of the
SD-DNN. On the other hand, sharing the same network struc-
ture with the RSD-DNN, the SPD-DNN outperforms both SD-
DNN:ss, especially when two speakers are of the same gender.
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Figure 5: Multipitch tracking results on a test sample (pbbvbn
and priv3n) for the MA1-MA2 speaker pair.

Such results are expected as SPD-DNNs are trained on speaker
pairs and can accurately distinguish the differences between the
speakers. In Figure 5, we illustrate pitch tracking results on a
test sample of MA1-MA2. The HMM based approach fails to
assign pitches to their underlying speakers. The GMM-FHMM
based approach works well in terms of speaker assignment, but
performs poorly when two pitch trajectories are close to each
other. Moreover, the resulting pitch contour of GMM-FHMM
lacks continuity. The RSD-DNN based method outperforms
previous approaches in terms of pitch continuity, but it still has
incorrect speaker assignment at some frames. The SPD-DNN
based method generates very good pitch trajectories in terms of
both pitch accuracy and speaker assignment.

5. Conclusion

We have proposed speake-dependent and speaker-pair-
dependent DNNs to estimate the posterior probabilities of pitch
states for multipitch tracking. In comparison to the GMM-
FHMM structure [12], the use of DNNs allows us to estimate
pitch states discriminatively. Experiments have shown that all
DNN based methods outperform two state-of-the-art multipitch
trackers. The speaker-pair-dependent DNN performs especially
well when the test sample is generated by two speakers of the
same gender.
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