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ABSTRACT

A reliable estimate of pitch in noisy speech is crucial for many
speech applications. In this paper, we propose to use speaker-
dependent (SD) deep neural networks (DNNs) to model the
harmonic patterns of each speaker. Specifically, SD-DNNs
take spectral features as input and estimate probabilistic pitch
states at each time frame. We investigate two methods for SD-
DNN training. The first one is direct training when speaker-
dependent data is sufficient. The second one is speaker adap-
tation of a speaker-independent (SI) DNN with limited data.
The Viterbi algorithm is then used to track pitch through time.
Experiments show that both training methods of SD-DNN5s
outperform an SI-DNN based system as well as a state-of-
the-art pitch tracking algorithm in all SNR conditions.

Index Terms— Pitch estimation, deep neural network,
hidden Markov model, speaker-dependent modeling

1. INTRODUCTION

Pitch, or fundamental frequency (FO) of human speech can be
used as an important cue for automatic speech recognition [3],
speaker identification [23] and speech separation [20]. Many
algorithms have been designed for pitch tracking [2] [4] [18],
and they all achieved excellent performance on clean speech.
However, in situations where speech is severely corrupted by
noise, the performance of pitch trackers degrades drastically,
which makes the estimated pitch uninformative for speech ap-
plications. Although a lot of recent studies tried to address the
noise-robustness issue for pitch tracking, it is still challenging
to extract pitch at negative signal to noise ratios (SNRs).

We can broadly group robust pitch tracking algorithms
into three categories: spectral approach, temporal approach
and spectrotemporal approach [20]. Spectral approaches an-
alyze harmonic structure of speech in the spectral domain.
For example, PEFAC [7] selected pitch candidates from an
amplitude-compressed and comb-filtered spectrogram. Han
and Wang [8] used the processed spectrogram in PEFAC [7]
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as the input feature, and tracked pitch using a deep neural
network-hidden Markov model (DNN-HMM) based system.
The second category, i. e., temporal approaches, examines the
periodicity in the time domain by using autocorrelation func-
tions (ACFs), e.g., RAPT [18] captured peaks in normal-
ized ACFs and used dynamic programming for pitch selec-
tion. Lastly, spectrotemporal approaches decompose the sig-
nal using a bank of filters, and then apply time domain anal-
ysis on each subband signal. For instance, Jin and Wang [13]
used periodicity information on reliable channels to model the
pitch distribution and estimated continuous pitch tracks with
an HMM. Lee and Ellis [14] applied principle component
analysis on subband autocorrelation functions, and fed the de-
rived features into a multilayer perceptron for pitch score esti-
mation. Among these algorithms, Han and Wang [8] reported
the best performance at negative SNRs.

On the other hand, a generic model for pitch estima-
tion may be suboptimal for a given speaker, as a speaker’s
vocal tract and harmonic patterns can be unique. Speaker-
dependent modeling is used recently in multipitch tracking
tasks [16] [21] and has shown large improvement over generic
models. However, none of the abovementioned single pitch
tracking algorithms utilize speaker-dependent information for
pitch estimation.

In this study, we extend Han and Wang’s pitch track-
ing framework [8], and investigate the impact of individual
speaker characteristics on robust pitch tracking. First, we
use DNNSs to model the posterior probability that a frequency
bin (pitch state) is pitched given the frame-level observation.
Instead of training a generic DNN speaker-independently,
we train one DNN for each enrolled speaker using speaker-
dependent training data. Specifically, two training techniques,
i.e., direct training and speaker adaptation, are explored. We
then investigate related issues affecting the training process,
including input-layer/output-layer/all-layer adaptation and
the training size. Lastly, an HMM with the Viterbi algo-
rithm [5] is used to connect all frame-level probabilities and
generate continuous pitch tracks.

The rest of the paper is organized as follows. The next
section describes the details of the proposed pitch tracking

ICASSP 2016



system. Experimental results and comparisons are presented
in Section 3. Section 4 concludes the paper.

2. SYSTEM DESCRIPTION
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Fig. 1: Diagram of the proposed system.

A diagram of the proposed system is shown in Fig. 1. We
first extract the frame-level feature vector y,,, from a noisy ut-
terance in the spectral domain, where m denotes the frame in-
dex. The frame length is 90 ms and the frame shift is 10 ms. In
the next step, features are fed into DNNs to compute the pos-
terior probability of pitch states at frame m, i. e., p(Z|ym),
where x,, denotes the pitch state at frame m. x,, has 68
unique states (st,s2,s3,...,558), where s corresponds to
an unvoiced or silent state, and s to s%8 refer to different fre-
quency bins ranging from 60 to 404 Hz [8]. Specifically, the
frequency range 60 to 404 Hz is divided into 67 bins using 24
bins per octave in a logarithmic scale. p(x,, = s|y) equals
1 if the groundtruth pitch falls in the frequency bin of s¢. To
leverage speaker-dependent information, one DNN is trained
for each speaker. More details of speaker-dependent DNN
training can be found in Section 2.3 and Section 3. After the
estimation of pitch probabilities, an HMM with the Viterbi
algorithm is employed to track pitch through time.

2.1. Feature extraction

The feature used in study is introduced by Gonzalez and
Brookes [7] and used by Han and Wang in [8].

To get the frame-level feature, a signal is first decomposed
using short-time Fourier transform (STFT), where the power
spectral density of STFT is denoted as X, (f). m is the frame
index and f is the frequency bin index. We then interpolate
X (f) onto a log-spaced frequency resolution, and denote it
as X,,(q), where ¢ = log(f).

The derived log-frequency power spectrogram is normal-
ized through time to attenuate narrow-band noise: X/, (q) =

Xon (@) 7205,

spectrum, and Ym(q) is a smoothed spectrum using a mov-
ing average window.
Next, a comb-filter ~(q) is convolved with X, (¢q) to en-

hance harmonic peaks: X,,(q) = X/, (q) * h(q), where:

where L(q) is a long-term average speech

h(q) _ %#(271’6’1) — 6, if 10g(05) < q < 10g(105)
0, otherwise

ey

Here {3 is selected so that [ h(q)dgq = 0. ~y controls the width
of harmonic peaks and is set to 1.8. X,,(qo) includes har-
monic peaks at ¢y and peaks corresponding to multiples of
qo. Frequency components of X,,(¢) ranging from 60 to 404
Hz are selected as the feature.

To make use of temporal information, we splice a window
of 5 frames of features as our final frame-level feature y.,.

The feature in this study generalizes well to different noise
types and also contains speaker-dependent information which
can be leveraged in speaker-dependent DNN training.

2.2. DNN based pitch probability estimation

We adopt Han and Wang’s idea [8] and use a DNN to estimate
the posterior probability of pitch states given the frame-level
feature vector, i.e., p(2,|ym). The input layer of the DNN
corresponds to the frame-level feature vector of the mix-
ture. There are three hidden layers, and each one has 1600
units with the ReLU activation function [6]. The reason
why we choose ReLU instead of sigmoid is that it allevi-
ates the vanishing gradient problem. Faster and effective
training/adaptation can thus be performed. The output of the
DNN is a softmax layer with 68 units, with each unit esti-
mating the posterior probability of one pitch state. We use
the cross-entropy cost function, standard backpropagation
and dropout regularization [9] (dropout rate 0.2) to train the
network. Mini-batch stochastic gradient descent along with a
momentum term (0.9) is adopted for optimization. In Han and
Wang’s study [8], training data contains noisy utterances from
100 speakers, which can be denoted as a speaker-independent
DNN or SI-DNN.

2.3. Speaker-dependent training of DNNs

Because everyone’s speech has unique spectral patterns, an
SI-DNN may not be optimal for all speakers. To model the
characteristic of each enrolled speaker, we train speaker-
dependent DNNs (SD-DNNs) for pitch-probability estima-
tion. There are two ways to train SD-DNNs. If speaker-
dependent training data is sufficient, we can train SD-DNNs
using the same training recipe as for SI-DNNs. This method
is denoted as SD-DNN-TRAIN. However, with limited train-
ing data, direct training of SD-DNNs may result in overfitting.
To address this problem, we perform speaker adaptation for
the SI-DNN, and denote it as SD-DNN-ADAPT.

Speaker adaptation of DNNs has been studied in auto-
matic speech recognition for years. Two typical approaches
include feature transformation [15] [22] and regularized re-
training [1] [17]. Because of the limited training size in our
study, we use regularized retraining for adaptation. Specifi-
cally, for each new speaker, we retrain the weights of the SI-
DNN with a relatively small learning rate and a regularization
term of 0.01 (L regularization). We also examine two factors
which may affect the adaptation process, i. e., which layer to
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retrain and the size of adaptation data. In the end, adaptation
is compared with direct training to show their advantages and
shortages. Detailed experiments can be found in Section 3.

2.4. Hidden Markov model

After the estimation of posterior probabilities, we use an
HMM to infer the most likely pitch track. The hidden variable
of the HMM is the pitch state x,,, and the observation vari-
able is the feature vector y,,. Prior probabilities p(x,, = s;)
and transition matrices are computed from training data di-
rectly. Because our training data is insufficient for building
speaker-dependent HMMs, we use a speaker-independent
HMM for all speakers. Emission probabilities are computed
using estimated posterior probabilities and the Bayes rule.

In the next step, we apply the Viterbe algorithm [5] to
connect all derived probabilities and generate the most likely
pitch-state sequence. We then convert pitch states to mean
frequencies of corresponding frequency bins, and use a mov-
ing average window of three frames to smooth the pitch track.

3. EVALUATION RESULTS AND COMPARISONS

We use the TIMIT [25] and the IEEE database [12] for exper-
iments. The training set of the SI-DNN contains 1000 TIMIT
utterances from 100 speakers. Three noises from NoiseX [19]
are used during training: babble noise, factory noise, and high
frequency radio noise. We mix the training utterances with the
first half of all training noises at -5, 0 and 5 dB, resulting in a
total of 9000 mixtures for the SI-DNN. We then use the IEEE
database recorded by a male and a female speaker to train
SD-DNNs. For each speaker, 10, 40, 160 and 640 training
utterances are mixed with the first half of all training noises
at -5, 0 and 5 dB, therefore four training sets with 90, 360,
1440 and 5760 mixtures are created. The test set contains
20 unseen utterances of each speaker in the IEEE database.
The latter half of three training noises and three new types of
noise, i. e., cocktail-party, crowd playground and crowd music
noise [10], are used during test. Each test utterance is mixed
with all six test noises at -10, -5, 0, 5 and 10 dB, thus 600 test
mixtures are created for each speaker. Groundtruth pitches
are extracted from clean utterances using Praat [2].

To evaluate pitch tracking results, we use two met-
rics: detection rate (DR) and voicing decision error (VDE)
[14]. DR represents the percentage of voiced frames where
estimated pitch deviates less than 5% from groundtruth
pitch. VDE computes the percentage of frames where the
pitched/unpitched decision is incorrect:

DR — NO.OS’ VDE = Nn—>p + Np—>n

N, N

@)

Here Ny o5 is the number of frames whose estimated pitch
is within £5% of groundtruth pitch. N,,_,, and N,_,, are
the number of frames mislabeled as pitched and unpitched

Table 1: Comparison of Han and Wang’s system and our
SI-DNN based method. Each value in the table is averaged
across two speakers, three noise types and five SNR condi-
tions. Boldface indicates the best result.

Seen noises Unseen noises

DR | VDE | DR | VDE

Han & Wang 0.646 | 0.216 | 0.677 | 0.212
Proposed SI-DNN || 0.738 | 0.193 | 0.748 | 0.195

Table 2: Comparison of retrained layers during adaptation.

Seen noises Unseen noises

DR | VDE | DR | VDE

Input layer only 0.777 | 0.194 | 0.790 | 0.186
Output layer only || 0.773 | 0.204 | 0.773 | 0.208
All layers 0.787 | 0.194 | 0.800 | 0.179

Table 3: Comparison of different training sizes for SD-DNN.

Seen noises Unseen noises

DR | VDE | DR VDE

90 0.737 | 0.207 | 0.759 | 0.194

Direct training 360 || 0.779 | 0.201 | 0.795 | 0.186
1440 || 0.799 | 0.193 | 0.811 | 0.185

5760 || 0.803 | 0.195 | 0.814 | 0.183

90 0.787 | 0.194 | 0.800 | 0.179

Adaptation 360 || 0.792 | 0.195 | 0.805 | 0.178
1440 || 0.795 | 0.202 | 0.808 | 0.194

5760 || 0.794 | 0.207 | 0.805 | 0.202

respectively. N and IV, are the total number of frames and
pitched frames respectively.

We first present our baseline system: the SI-DNN based
method. Table 1 compares Han and Wang’s system with our
SI-DNN based method. Although the two systems share the
same framework and training corpus/noise, due to the larger
training size and better training recipe of our work, we pro-
duce much better results in terms of both DR and VDE.

Next, different layers in the SI-DNN are retrained with
90 adaptation mixtures per speaker. As shown in Table 2, all
three methods outperform the SI-DNN based method. Adap-
tation on all layers achieves the best performance for both
seen and unseen noises. As a result, all future experiments of
SD-DNN-ADAPT use all-layer adaptation.

Our next experiment investigates the relation between the
training size and pitch tracking results. As shown in Table 3,
the performance of SD-DNN-TRAIN improves with the in-
crease of the training size. The improvement becomes small
when the training size reaches 1440. For SD-DNN-ADAPT,
the system produces pretty good results with 90 training mix-
tures. Further increasing the training size does not boost the
performance significantly. The VDE of SD-DNN-ADAPT
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Fig. 2: (a) DR for seen noises. (b) DR for unseen noises.
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Fig. 3: (a) VDE for seen noises. (b) VDE for unseen noises.

starts to increase from 1440 mixtures. One possible expla-
nation is that too many iterations of training lead SD-DNN-
ADAPT to some local minima. Due to the small learning
rate and the regularization term, the network lacks the abil-
ity to jump out of the local minima. The best performing
system in terms of detection rate is SD-DNN-TRAIN trained
with 5760 mixtures, and its corresponding VDE is also com-
petitive. However, one should use SD-DNN-ADAPT when
limited data is available for speaker-dependent training.

As Han and Wang [8] have shown substantial improve-
ment over several other pitch tracking algorithms [7] [11]
[13] [14], we choose to compare our methods, i. e., SI-DNN,
SD-DNN-ADAPT trained with 90 mixtures and SD-DNN-
TRAIN trained with 5760 mixtures, with only one of them:
PEFAC [7], as a representative unsupervised method. As
shown in Fig. 2, all proposed methods have much higher
DR than PEFAC in all SNR and noise conditions. Both SD-
DNN based methods substantially outperform SI-DNN. The
improvement is higher when the SNR becomes low, which
reflects the noise-robustness of speaker-dependent training.
VDE results of our methods in Fig. 3 are also a lot better than
PEFAC. SD-DNN-TRAIN and SD-DNN-ADAPT match the
performance of SI-DNN for seen noises, and outperforms
SI-DNN at negative SNRs of unseen noises.

Lastly, we compare pitch tracking results on a test sample
of the female speaker. The speech in Fig. 4 is severely cor-
rupted by noise, which makes the pitch tracking task almost
impossible to accomplish. As shown in the figure, pitch ex-
tracted by SI-DNN deviates a lot from the groundtruth pitch.
SD-DNN-ADAPT and SD-DNN-TRAIN significantly im-
prove the pitch tracking performance by correctly capturing
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Fig. 4: Pitch tracking results of a female utterance, mixed
with crowd music noise at -10 dB. (a) Spectrogram of clean
speech. (b) Spectrogram of noisy speech. (c) SI-DNN based
pitch contours. (d) SD-DNN-ADAPT based pitch contours.
(e) SD-DNN-TRAIN based pitch contours.

pitch contours from frame 0 to 100. They also make right
voicing decisions for frames 175 to 190.

4. CONCLUSION

We have proposed speaker-dependent DNNs for pitch prob-
ability estimation. When training SD-DNNs, speaker adap-
tation works well on small training sizes, and direct training
performs better on large training sizes. They both outperform
a speaker-independent DNN in all SNR conditions. To use
our methods requires that the identity of the speaker be known
beforehand. A noise-robust speaker identification algorithm
proposed by Zhao et al. [24] can be used to help us select
trained SD-DNNs for pitch tracking.
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