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Separation of Singing Voice From Music
Accompaniment for Monaural Recordings

Yipeng Li, Student Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—Separating singing voice from music accompaniment
is very useful in many applications, such as lyrics recognition and
alignment, singer identification, and music information retrieval.
Although speech separation has been extensively studied for
decades, singing voice separation has been little investigated. We
propose a system to separate singing voice from music accompani-
ment for monaural recordings. Our system consists of three stages.
The singing voice detection stage partitions and classifies an input
into vocal and nonvocal portions. For vocal portions, the predom-
inant pitch detection stage detects the pitch of the singing voice
and then the separation stage uses the detected pitch to group the
time-frequency segments of the singing voice. Quantitative results
show that the system performs the separation task successfully.

Index Terms—Predominant pitch detection, singing voice detec-
tion, sound separation.

1. INTRODUCTION

T IS well known that the human auditory system has a
I remarkable capability in separating sounds from different
sources. One important aspect of this capability is hearing out
singing voice (also called vocal line) accompanied by musical
instruments. Although this task seems effortless to humans,
it turns out to be very difficult for machines. To date, few
systems have addressed the problem of separating singing
voice from music accompaniment systematically. A singing
voice separation system has its applications in areas such as
automatic lyrics recognition and alignment. Automatic lyrics
recognition often requires that the input to the system is solo
singing voice [41], which is often unrealistic since for almost all
songs, singing voice is accompanied by musical instruments.
However, such a requirement can be satisfied if successful
separation of singing voice is used for preprocessing. Aligning
lyrics to singing voice is a key step for applications such as
karaoke [45], and currently it remains labor-intensive work.
Automating this process therefore will be of considerable help.
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An accurate lyrics alignment system will allow listeners to
follow singing voice more easily. However, the task of aligning
lyrics to singing voice becomes difficult when accompaniment
is present, and a separation system can be used to alleviate the
problem. Singer identification is another promising area for
applying such a system. Several studies [3], [19], [47] have ad-
dressed the problem of singer identification in real recordings,
but the attempts so far have not separated a singer’s voice. With
singing voice separation, the accuracy of singer identification
is expected to improve. Another area where singing voice
separation can be applied is musical information retrieval.
Singing voice carries useful information, such as melody, for
identifying a song in a database and singing voice separation
can facilitate the extraction of such information.

Although songs today are often recorded in stereo, we focus
on singing voice separation for monaural recordings where only
one channel is available. This is because a solution for monaural
recordings is indispensable in many cases, such as for record-
ings of live performance (non-studio recordings). Such a solu-
tion can also assist in analysis of stereo recordings. It is well
known that human listeners have little difficulty in hearing out
singing voice even when it is recorded with music accompa-
niment in a single channel. Therefore, a separation system for
monaural recordings could also enhance our understanding of
how the human auditory system performs this task.

Although speech separation has been extensively studied,
few studies are devoted to separating singing voice from music
accompaniment. Since singing voice is produced by the speech
organ, it may be sensible to explore speech separation techniques
for singing voice separation. Before applying such techniques,
it is instructive to compare singing voice and speech. Singing
voice bears many similarities to speech. For example, they both
consist of voiced and unvoiced sounds. However, the differences
between singing and speech are also significant. A well-known
difference is the presence of an additional formant, called the
singing formant, in the frequency range of 2000-3000 Hz in
operatic singing. This singing formant helps the voice of a singer
to stand out from the accompaniment [37]. However, the singing
formant does not exist in many other types of singing [5], [22],
such as the ones in rock and country music we examined in
this paper. Another difference is related to the way singing and
speech are uttered. During singing, a singer usually intentionally
stretches the voiced sound and shrinks the unvoiced sound to
match other musical instruments. This has two direct conse-
quences. First, it alters the percentage of voiced and unvoiced
sounds in singing. The large majority of sounds generated during
singing is voiced (about 90%) [20], while speech has a larger
amount of unvoiced sounds [42]. Second, the pitch dynamics

1558-7916/$25.00 © 2007 IEEE



1476

(the evolution of pitch in time) of singing voice tends to be piece-
wise constant with abrupt pitch changes in between. This is in
contrast with the declination phenomenon [30] in natural speech,
where pitch frequencies slowly drift down with smooth pitch
change in an utterance. Besides these differences, singing also
has a wider pitch range. The pitch range of normal speech is
between 80 and 400 Hz, while the upper pitch range of singing
can be as high as 1400 Hz for soprano singers [38].

From the sound separation point of view, the most important
difference between singing and speech is the nature of other con-
current sounds. In a real acoustic environment, speech is usu-
ally contaminated by interference that can be harmonic or non-
harmonic, narrowband or broadband. Interference in most cases
is independent of speech in the sense that the spectral contents
of target speech and interference are uncorrelated. For recorded
singing voice, however, it is almost always accompanied by mu-
sical instruments that in most cases are harmonic, broadband,
and are correlated with singing since they are composed to be
a coherent whole with the singing voice. This difference makes
the separation of singing voice from music accompaniment po-
tentially more challenging.

In this paper, we propose a singing voice separation system.
Our system consists of three stages. The first stage performs
singing voice detection. In this stage, the input is partitioned and
classified into vocal and nonvocal portions. Then, vocal portions
are used as input to a stage for predominant pitch detection. In
the last stage, detected pitch contours are used for singing voice
separation where we extend a system for pitch-based separa-
tion [18]. The output of the overall system is separated singing
voice. To our knowledge, the proposed system is the first at-
tempt at a comprehensive solution to the problem of singing
voice separation.

The remainder of this paper is organized as follows. Section II
presents related work to singing separation. Section III gives
an overview of the system and describes each stage in detail.
Section IV presents the systematic evaluation of each stage as
well as the overall system. The last section gives further discus-
sion and concludes the paper.

II. RELATED WORK

To our knowledge, only a few systems directly address the
separation of singing voice from music accompaniment. Wang
[40] developed a system for singing voice separation by using a
harmonic-locked loop technique to track a set of harmonically
related partials. In his system, the fundamental frequency of the
singing voice needs to be known a priori. The system also does
not distinguish singing voice from other musical sounds, i.e.,
when the singing voice is absent the system incorrectly tracks
partials that belong to some other harmonic source. The har-
monic-locked loop requires the estimation of a partial’s instan-
taneous frequency, which is not reliable in the presence of other
partials and other sound sources. Therefore, the system only
works in conditions where the energy ratio of singing voice to
accompaniment is high. Another system proposed by Meron and
Hirose [27] aims to separate singing voice from piano accom-
paniment. For the system to work, a significant amount of prior
knowledge is required, such as the partial tracks of premixing
singing voice and piano or the music score for piano sound. This
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prior knowledge in most cases is not available; therefore, the
system cannot be applied for most real recordings.

Since we pursue a sound separation solution for monaural
recordings, approaches to speech separation based on micro-
phone arrays are not applicable. Speech enhancement can be
employed for separation for monaural recordings. However, it
tends to make strong assumptions about interference, such as
stationarity, which generally are not satisfied for music accom-
paniment. An emerging approach for general sound separation
exploits the knowledge gained from the human auditory system.
In an influential book [6], Bregman proposed that the auditory
system employs a process called auditory scene analysis (ASA)
to organize an acoustic mixture into different perceptual streams
which correspond to different sound sources. This process in-
volves two main stages: Segmentation stage and grouping stage.
In the segmentation stage, the acoustic input is decomposed
into time-frequency (T-F) segments, each of which likely origi-
nates from a single source. In the grouping stage, segments from
the same source are grouped according to a set of ASA princi-
ples, such as common onset/offset and harmonicity. ASA has
inspired researchers to build computational auditory scene anal-
ysis (CASA) systems for sound separation [7], [12], [33]. Com-
pared to other sound separation approaches, CASA makes min-
imal assumptions about concurrent sounds; instead it relies on
the intrinsic properties of sounds and, therefore, shows a greater
potential in singing voice separation for monaural recordings.

The work by Mellinger [26] represents the first CASA
attempt to musical sound separation. His system extracts onset
and common frequency variation and uses them to group
frequency partials from the same musical instrument. However,
these two cues seem not strong enough to separate different
sounds apart. The author suggested that other cues, such as
pitch, should be incorporated for the purpose of sound sepa-
ration. The pitch cue, or the harmonicity principle, is widely
used in CASA systems. For example, Godsmark and Brown
[14] developed a CASA system which uses the harmonicity
and other principles in a blackboard architecture for grouping.
Goto [15] developed a music-scene-description system which
uses the harmonicity principle for melody detection.

Recently, a sound separation system developed by Hu and
Wang [18] successfully segregates voiced speech from acoustic
interference based on pitch tracking and amplitude modulation.
The Hu—Wang system employs different segregation methods
for resolved and unresolved harmonics. Systematic evaluation
over a commonly used database shows that the system performs
significantly better over previous systems.

The Hu—Wang system relies heavily on pitch to group seg-
ments; therefore, the accuracy of pitch detection is critical.
However, their system obtains its initial pitch estimation from
the time lag corresponding to the maximum of a summary
autocorrelation function. This estimation of pitch is unreliable
for singing voice as shown in [24], and it limits the separation
performance of the system. In [24], we proposed a predom-
inant pitch detection algorithm which can detect the pitch
of singing voice for different musical genres even when the
accompaniment is strong. The Hu—Wang system assumes that
voiced speech is always present. For singing voice separation,
this assumption is not valid. Therefore, it is necessary to have
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Fig. 1. Schematic diagram of the proposed system.

a mechanism to distinguish portions where singing voice is
present from those where it is not. On the other hand, although
their system cannot separate unvoiced speech, this limitation
is less severe for singing voice separation because unvoiced
singing comprises a smaller percentage in terms of time and its
contribution to the intelligibility of singing is less than that to
the intelligibility of speech.

III. SYSTEM DESCRIPTION

Our system is illustrated in Fig. 1. The input to the system
is a mixture of singing voice and music accompaniment. In the
singing voice detection stage, the input is first partitioned into
spectrally homogeneous portions by detecting significant spec-
tral changes. Then, each portion is classified as a vocal portion
in which singing voice is present, or a nonvocal portion in which
singing voice is absent.

The predominant pitch detection stage detects the pitch con-
tours of singing voice for vocal portions. In this stage, a vocal
portion is first processed by a filterbank which simulates the fre-
quency decomposition of the auditory periphery. After auditory
filtering periodicity information is extracted from the output of
each frequency channel. Next the probability of each pitch hy-
pothesis is evaluated and a hidden Markov model (HMM) is
used to model the pitch generation process. Finally, the most
probable pitch hypothesis sequence is identified as pitch con-
tours of the singing voice using the Viterbi algorithm.

The separation stage is extended from the Hu—Wang system
[18] and has two main steps: thej segmentation step and the
grouping step. In the segmentation step, a vocal portion is
decomposed into T-F units, from which segments are formed
based on temporal continuity and cross-channel correlation. In
the grouping step, T-F units are labeled as singing dominant or
accompaniment dominant using detected pitch contours. Seg-
ments in which the majority of T-F units are labeled as singing
dominant are grouped to form the foreground stream, which
corresponds to singing voice. Separated singing voice is then
resynthesized from the segments belonging to the foreground
stream.

The following subsections explain each stage in detail.

A. Singing Voice Detection

The goal of this stage is to partition the input into vocal
and nonvocal portions. Therefore, this stage needs to address
the classification and partition problem. For the classification
problem, the two key components in the system design are fea-
tures and classifiers. Different features have been explored for
singing voice detection. These features include mel-frequency
cepstral coefficients (MFCCs) [2], [25], linear prediction coef-
ficients (LPCs) [25], perceptual linear prediction coefficients
(PLPs) [3], and the 4-Hz harmonic coefficient [10]. MFCC,
LPC, and PLP are also widely used for general sound classifica-
tion tasks and they are the so-called short-term features because
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they are calculated in short-time frames. Similarly, different
classifiers have also been explored, including Gaussian mix-
ture models (GMMs) [10], support vector machines (SVMs)
[25], and multilayer perceptrons (MLPs) [3]. As for the parti-
tion problem, HMM [2] and rule-based post-processing [10]
have been proposed. The underlying assumption of these two
methods is that a vocal or nonvocal portion sustains a certain
amount of time therefore the short-term classification should
not jump back and forth rapidly.

Several studies have shown that MFCC is a good feature
for sound classification, even for mixtures. Li et al. [23]
compared different features in classifying a sound into seven
classes and found that MFCC provides the best classification.
In Berenzweig’s work [2], MFCC-based classification also
performs well compared to other more complicated features.
Therefore, we use MFCC as the short-term feature for clas-
sification and calculate it for each frame. A frame is a block
of samples within which the signal is assumed to be near
stationary. However, the short-term classification is not reliable
since the information within a frame is limited. Observe that,
when a new sound enters a mixture, it usually introduces
significant spectral changes. As a result, the possible instances
of a sound event in a mixture can be determined by identifying
significant spectral changes. This idea is more compelling in
singing voice detection since a voice more likely joins the
accompaniment at beat times in order to conform with the
rhythmic structure of a song [31]. Beats are regularly spaced
pulses that give the sensation of the rhythm of music. Because
beats are usually generated by percussive instruments, they
tend to introduce strong spectral perturbations. The portion
between two consecutive spectral change instances is relatively
homogeneous, and the short-term classification results can then
be pooled over the portion to yield more reliable classification.
Therefore, we propose a novel method for extracting vocal
portions that takes into account the rhythmic aspect of music
signals. Specifically, we first partition the input into portions
by detecting instances when significant spectral changes occur,
and then pool the likelihoods over all the frames of a portion
and classify the portion into the class with the larger overall
likelihood.

We use a simple spectral change detector proposed by
Duxbury et al. [13]. This detector calculates the Euclidian
distance 7(m) in the complex domain between the expected
spectral value and the observed one in a frame

n(m) = 3 (| Se(m) = si(m))) M)

where Si(m) is the observed spectral value at frame m and
frequency bin k. Sk () is the expected spectral value of the
same frame and the same bin, calculated by

Si(m) = |Sk(m —1)] pddr(m) @

where |Si(m — 1)] is the spectral magnitude of the previous
frame at bin k. (,%k (m) is the expected phase which can be cal-
culated as the sum of the phase of previous frame and the phase
difference between the previous two frames

ér(m) = Pr(m — 1) + (@p(m — 1) — @p(m = 2))  (3)
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where @y (m — 1) and @ (m — 2) are the unwrapped phases for
frame m — 1 and frame m — 2, respectively. n(m) is calculated
for each frame of 16 ms with a frame shift of 10 ms.

A local peak in rj(m) indicates a spectral change, which can
either be that the spectral contents of a sound are changing or a
new sound is entering the scene. To accommodate the dynamic
range of the spectral change as well as spectral fluctuations, we
apply weighted dynamic thresholding to identify the instances
of significant spectral changes. Specifically, a frame m will be
recognized as an instance of significant spectral change if n(m)
is a local peak, and n(m) is greater than the weighted median
value in a window of size H

s> € o (1 (m~ 1) oo (4 )

“)
where C' is the weighting factor. Finally, two instances are
merged if the enclosed interval is less than 7T,,;,; specifically,
if two significant spectral changes occur within 7,;,, only the
one with the larger spectral change value n(m) is retained.

After the input is partitioned, we pool the information in a
whole portion to obtain more reliable classification. A portion
is classified as vocal if the overall likelihood of the vocal
class is greater than that of the nonvocal class. Formally let
{X1,X5,..., X} be a set of feature vectors for a portion
with M frames. Let logp(X|c,) and log p(X|cn,) represent
the log likelihood of an observed feature vector X being in the
vocal class ¢, and the nonvocal class c,,,,, respectively. Then a
portion is classified as vocal if

M

Zlogp (Xjlew) > > logp(Xlenw)- )

j=1 j=1

We choose MFCC as the feature vector and the GMM as the
classifier since they have been widely and successfully used for
audio classification tasks [2], [23]. Specifically, we calculate a
D-dimensional MFCC feature vector for each frame using the
auditory toolbox by Slaney [36]. A Gaussian mixture model
with K components, each having a diagonal covariance matrix,
is used to model the MFCC distribution of the two classes: ¢,
and cy,,,. The parameters of the GMMs are estimated using the
toolbox by Murphy [29]. The parameter estimation is initialized
using a k-mean algorithm and stopped after 1000 iterations.
For easy reference, we summarize the parameters and their
values used in the singing voice detection stage in Table I.

B. Predominant Pitch Detection

In the second stage, portions classified as vocal are used as
input to a predominant pitch detection algorithm we proposed in
[24]. This algorithm is extended from the one by Wu ez al. [46],
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TABLE 1
PARAMETER VALUES USED FOR SINGING VOICE DETECTION

H C D K

Tmin

10 15 100ms 13 4

which detects multiple, simultaneous pitch contours for noisy
speech. Compared to the original algorithm, we improve their
channel/peak selection method and obtain optimal statistics of
pitch dynamics for singing voice. As will be clear later, these
improvements directly contribute to our significantly better per-
formance compared to the original one.

Our predominant pitch detection starts with an auditory pe-
ripheral model for frequency decomposition. The signal is sam-
pled at 16 kHz and passed through a 128-channel gammatone
filterbank. The center frequencies of the channels are equally
distributed on the equivalent rectangular bandwidth (ERB) scale
between 80 Hz and 5 kHz. Channels with center frequencies
lower than 800 Hz are designated as low-frequency channels,
and others are designated as high-frequency channels. In each
high-frequency channel, the envelope of the filter output is ex-
tracted using the Teager energy operator and a low-pass filter
with the stop frequency 800 Hz [46].

After peripheral processing, a normalized correlogram is
computed for each channel c with a frame length of 32 ms and a
frame shift of 10 ms, as shown by (6) at the bottom of the page,
where 7 is the filter output for low-frequency channels and the
envelope of the filter output for high-frequency channels. m is
the frame index, and n is the time step index. Here, N = 512
corresponds to the frame length of 32 ms and 7' = 160 the
frame shift of 10 ms. The normalized correlogram is calculated
for time lag 7 from O to 200. The normalization converts cor-
relogram values to the range of [—1, 1] with 1 at zero time lag.

The peaks in the normalized correlograms indicate the pe-
riodicity of the input. However, the presence of accompani-
ment makes the peaks in some channels misleading. Percussive
accompaniment usually has significant energy in the low-fre-
quency channels, which makes the peaks in those channels par-
ticularly unreliable. Consequently, we apply channel selection
to the low-frequency channels. Specifically, a channel is se-
lected if the maximum value of its normalized correlogram in
the plausible pitch range (80-500 Hz) exceeds a threshold 6.
is related to the degree of periodicity within a channel and we
choose § = 0.945, the same as in [46]. Our evaluation shows
this threshold value gives the highest pitch detection accuracy
and is not sensitive to the tested samples. Note that in a selected
channel, usually only one harmonic is dominant, and this har-
monic may or may not belong to singing voice. For a selected

N/2
En——N/2

r(e,mT +n)r(c,mT +n+7)

cm'r

(6)

\/ZN/2_N/2 (e,mT +n \/ZN/2N/2 2(ec,mT +n+7)
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low-frequency channel, the time lags of peaks are included in
the set of peaks ®. For high-frequency channels, unlike in [46],
we retain all the channels and apply peak selection to conform
with the beating phenomenon [17]. Specifically, only the first
peak at a nonzero lag in the plausible pitch range of the normal-
ized correlogram is retained and the corresponding time lag is
included in ®.

Not applying channel selection in the high-frequency chan-
nels may introduce noisy peaks, whose time lags do not cor-
respond well to the fundamental period of the singing voice.
However, we have found experimentally that the time lag of
the first peak within the pitch range in a noisy high-frequency
channel is still a good indicator of the true pitch of singing voice
in many cases. We emphasize that this is not caused by the
singing formant since for the genres tested the singing formant
is not present. It is, however, possible that the high-frequency
components become more salient because of singing. More im-
portantly, keeping all the high-frequency channels makes more
channels available, which is important for distinguishing dif-
ferent harmonic sources as well as for reducing pitch-halving
errors. The peak selection method in high-frequency channels
is motivated by the beating phenomenon, i.e., high-frequency
channels respond to multiple harmonics and the envelope of
the response fluctuates at the fundamental frequency [17], [18].
Therefore, the selected time lag of the first peak corresponds
to the fundamental period of some harmonic source. Compared
to [46], this channel/peak selection method is tailored for the
pitch detection of singing voice in the presence of music ac-
companiment. As a result, our method along with the following
statistical cross-channel integration substantially improves the
performance of pitch detection for singing voice.

Next, the probability of a pitch hypothesis is evaluated. No-
tice that, if voiced singing is dominant in a channel, the distance
0 between the true pitch period d and the time lag of the closest
observed peak [ tends to be small. With clean singing voice
available, the statistics of § can be extracted. This statistic can be
quantitatively described by a Laplacian distribution [46], which
centers at zero and exponentially decreases as |6| increases

1 6
L(6; M) = o OXP (—L\—|) @)

where the distribution parameter ). indicates the spread of the
Laplacian distribution. The probability distribution of § in a
channel c is defined as

pe(6) = (1 = @) L(6; Ac) + qU(63nc) ®)

where the uniform distribution U(§;7.) is used to model back-
ground noise, and 7). indicates the plausible range of pitch pe-
riods. g is the partition factor (0 < ¢ < 1).
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The Laplacian distribution parameter ). gradually decreases
as the channel center frequency increases. When estimated for
each frequency channel, we approximate this relation by A\, =
ag + a1 c. A maximum-likelihood method is used to estimate the
parameters ag, a1, and ¢ according to the statistics of ¢ collected
from singing voice alone. Due to the different properties of low-
and high-frequency channels, the parameters are estimated in
these two ranges separately.

The statistics of § when singing voice is accompanied by mu-
sical instruments can also be extracted. Since the sound of each
musical instrument in the accompaniment is not available, we
only collect 6 from channels where singing voice is dominant,
i.e., the energy of singing voice is stronger than that of accom-
paniment. Here, we assume that  in other channels is similarly
distributed. The probability distribution of ¢ is denoted as p’,(§)
and has the same form as in (8). Distribution parameters are also
estimated using the maximum-likelihood method based on the
statistics collected from mixtures of singing voice and accom-
paniment. The resulting parameters for p.(6) and p..(6) are sim-
ilar to those in [46] therefore are not listed here. For more details
about parameter estimation as well as the probability formula-
tion described in (7), (8) and in the following (9)—(13), the in-
terested reader is referred to [24], [46]. All the statistics used to
train the model are collected from a small database which con-
sists of clips different from those used for testing.

With the distribution of § available, the channel conditional
probability for one- and two-pitch hypotheses can be formu-
lated. By estimating up to two simultaneous pitches rather than
one, the interference from concurrent pitched sounds can be
dealt with directly. When a mixture contains more than two
pitches, our algorithm should produce the two most dominant
ones. Since singing voice tends to be dominant when present, we
choose to produce no more than two pitches at a single frame.

For the 1-pitch hypothesi:

_ (‘(6)7
Pe(®eld) = {Zq)l(C)U(O;nc)v

where d is the hypothesized pitch, and ¢ is the difference be-
tween d and the time lag of the closest peak in ®., which is the
set of peaks selected for channel c. g;(c¢) is the partition factor
for channel c in the one-pitch case. If a channel is not selected,
then the probability of background noise channels is used.

The channel conditional probability of a two-pitch hypoth-
esis can be formulated, as shown by (10) at the bottom of the
page, where d; and d, are the hypothesized pitches. ¢2(c) is the
partition factor for channel c¢ in the two-pitch case. p,(®.|d) is
the same as p.(§) mentioned before. Channel ¢ belongs to d;
if the distance between d; and the time lag corresponding to
the closest peak in that channel is less than 5)\.. This condition

if channel c is selected
otherwise

©)

q2(c)U(0;7c),

Pe (Rel(dr, d2)) = § pl(Pclda),

maz (pe(®eldy), p(Peld2)) ,

if channel c is not selected
if channel ¢ belongs to d;
else

10)
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essentially tests whether channel ¢ is dominated by d;. In
this way, the formulation distinguishes p.(®.|(d1,d2)) from
pL(®.|(d2,dy1)). In the former case, the dominance of d; is
first tested, while in the latter case the dominance of d is
first tested. If the hypothesized pitch d; dominates channel
¢, pl(®.|(dy,d2)) exceeds p.(P.|(d2,dy)), and vice versa.
In other words, the first pitch in a two-pitch hypothesis is the
dominant one.

Due to the wideband nature of singing voice, the responses
of different channels are correlated therefore the statistical inde-
pendence assumption is generally invalid. However, according
to [16], this can be partially remedied by taking a root greater
than 1 to smooth the combined probability estimates. Hence, the
probability of the one-pitch and two-pitch hypotheses across all
the frequency channels can be obtained by

p(@|d) =ky /] [ pe(®cld)

P (®|(dy, da)) = ks o[ ] P (@cl(da, d))

(1)

12)

where k1 and k9 are the normalization factors. b is used to com-
pensate for statistical dependency among channels. Note that
the combined probability estimate preserves the dominance of
the first pitch in a two-pitch hypothesis.

The final part of our pitch detection algorithm performs
pitch tracking by an HMM, which models the pitch generation
process. The pitch state space is a union of three 7-dimensional
subspaces U?:o Q;, each of which represents the collection
of hypotheses with ¢ pitches. In each frame, a hidden node
represents the pitch state space, and the observation node
represents the set of observed peaks ®. The observation prob-
ability is calculated as (11) and (12). The pitch transition
between consecutive frames, i.e., between different states in
the pitch state space, is described by pitch dynamics, which has
two components: the transition probability between different
pitch configurations in the same pitch subspace and the jump
probability between different pitch subspaces. The transition
behavior within €24 is well described by a Laplacian distribution

P(A) = o~ exp <—u>

2 A (13)

where A is the change of pitch periods in two consecutive
frames of a pitch contour, and p is the mean of the changes.
We extract A from the true pitch contours of clean singing
voice and estimate p and A using the maximum-likelihood
method. For singing voice, the estimated values are A = 0.7
and p = 0, respectively. The zero value of 1 indicates that pitch
contours of singing voice do not exhibit systematic drift. This
is different from natural speech where y is estimated to be 0.4
[46]. Compared to [46], the value of A for singing voice is also
smaller (0.7 versus 2.4), which indicates that the distribution
is more narrow. The transition behavior within €25 can be
described as p(A1)p(As) by assuming the two pitch contours
evolve independently. A; is the change of pitch periods in
two consecutive frames of the +th pitch contour. The transition
probability between different pitch subspaces is determined by
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TABLE II
TRANSITION PROBABILITIES BETWEEN STATE SUBSPACES OF PITCH

—-Qy —Q —Q
Qo 0.2875 0.7125 0.0000
Q;  0.0930 0.7920 0.1150
Qg 0.0000 0.0556 0.9444

examining the pitch contours of singing voice and the pitch
contours of the dominant sound in the accompaniment. The
later one can be obtained by inspecting the spectrogram of
the accompaniment. Table II shows the estimated transition
probability between different pitch subspaces using the training
data.

The Viterbi algorithm is used to decode the most likely se-
quence of pitch hypotheses. If a pitch hypothesis in the optimal
sequence contains two pitches, the first pitch is considered as
the pitch of singing voice. This is because, as mentioned before,
the first pitch is the dominant one in our formulation.

C. Singing Voice Separation

For our separation task, we extend the algorithm by Hu and
Wang [18], originally proposed to separate voiced speech from
interference. Their algorithm has two main steps: segmentation
step and grouping step. In the segmentation step, the input, a
vocal portion, is passed through a model of auditory periphery,
similar to the one used in our predominant pitch detection. The
output of each channel is then divided into overlapping time
frames with the 16-ms frame length and the same frame shift
of 10 ms as used in the first two stages. Note that we use a
longer frame for pitch detection than for separation. Our eval-
uation using the same frame length as that for pitch detection
shows worse separation performance, probably because the as-
sumption that singing voice is stationary is valid only for a short
duration.

After the input is decomposed into T-F units, our algorithm
extracts following features for each T-F unit: energy, autocor-
relation, cross-channel correlation, and cross-channel envelope
correlation. Next, segments are formed by merging contiguous
T-F units based on temporal continuity and cross-channel cor-
relation. Only those T-F units with significant energy and high
cross-channel correlation are considered. Neighboring units ei-
ther in time or frequency are iteratively merged into segments.

In the grouping step, the Hu—Wang algorithm applies an
iterative method to estimate the pitch contours of the target
signal. Since we have already obtained pitch contours in the
second stage, we directly supply detected pitch contours in the
grouping step. The grouping step then proceeds with labeling
T-F units based on detected predominent pitches. Briefly
speaking, a T-F unit is labeled as singing dominant if its local
periodicity matches the detected pitch of the frame. If the
majority of the T-F units within a certain frame are labeled
as singing dominant, the segment is said to be dominated by
singing voice at this frame. If a segment has more than half of
its frames dominated by singing voice, the entire segment is
labeled as singing voice dominant. All the singing dominant
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segments are grouped to form the foreground stream, which
corresponds to the singing voice.

Our separation stage differs from the original Hu—Wang al-
gorithm in the grouping step. Specifically, their algorithm uses
the longest segment for grouping, which makes the dominant
source limited in time to the longest segment. To relax this limi-
tation, we perform grouping directly on the basis of labeled T-F
units as described above. As a result, our separation is simpler
and less constrained.

The separation stage outputs singing voice resynthesized
from the segments in the foreground stream. For more details
of the Hu—Wang algorithm, see [18], and for the corresponding
program code, see http://www.cse.ohio-state.edu/pnl/software.
html.

IV. EVALUATION AND COMPARISON

Systematic evaluation is important for gauging the perfor-
mance of a sound separation system. Although several common
databases currently exist for speech separation, there is none
for singing voice separation. The difficulty of constructing such
a database mainly lies in getting separately recorded singing
voice and music accompaniment. In modern studios, singing
voice and accompaniment are usually recorded separately and
then mixed together. However, such separate recordings are not
accessible due to copyright issues. On the other hand, some
modern commercial karaoke compact disks (CDs) are recorded
with multiplex technology in which singing voice and accompa-
niment are multiplexed and stored in a single file. With proper
demultiplexing software, separate singing voice and accompa-
niment can be extracted. We extracted ten songs from karaoke
CDs obtained from [1] to construct a database for singing voice
detection. These songs are sampled at 16 kHz with 16-bit res-
olution. Among these ten songs, five are rock music and the
other five are country music. Clips are extracted to form another
database for singing voice pitch detection and separation. We
refer to the energy ratio of singing voice to accompaniment as
signal-to-noise ratio (SNR) as in speech separation studies. In
the following subsections, we evaluate the performance of each
stage as well as the performance of the whole separation system.

A. Singing Voice Detection

With separate singing voice available, vocal and nonvocal
portions can be easily labeled for training and testing pur-
poses. We apply a simple energy-based silence detector on
clean singing voice signals to distinguish vocal portions from
nonvocal portions. Few systems developed for singing voice
detection consider the effect of SNRs on classification. We
found that a classifier trained at one SNR often performs poorly
when tested at another SNR because of the mismatch between
training and testing. Nwe et al. [31] pointed out that different
sections of a song (intro, verse, chorus, bridge, and outro) have
different SNRs, and a singing voice detector needs to handle
different sections properly. To address this problem, we train
a classifier with samples mixed in different SNRs. In this way,
the classifier is trained over a range of SNRs. Specifically, we
mix the singing voice track and the accompaniment track of
each song at SNRs of 10 and 0 dB and then use the mixtures
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Fig. 2. Singing voice detection for a clip of rock music. (a) The waveform of
the singing voice signal. The thick lines above the waveform indicate vocal por-
tions. (b) The mixture of the singing voice and the accompaniment in 0 dB SNR.
(c) The spectrogram of the mixture. Brighter area indicates stronger energy. The
vertical lines in (d) indicate the spectral change moments identified by the spec-
tral change detector. (e) The frame-level classification of the clip. A high value
indicates the frame is classified as vocal and a low value as nonvocal. (f) The
final classification using the spectral change detection and the overall likelihood.

to train the classifier. The SNR of the songs in the database is
1.5 dB on average.

Fig. 2 shows the classification result for a clip of rock music.
The clean singing voice is shown in Fig. 2(a), and in Fig. 2(b),
it is mixed with music accompaniment to give an overall SNR
of 0 dB. The thick line above the waveform in Fig. 2(a) shows
the vocal portions obtained from silence detection. In Fig. 2(c),
the spectrogram of the mixture is plotted. The vertical lines in
Fig. 2(d) show the instances of significant spectral changes iden-
tified by our spectral change detector. The input is over-parti-
tioned to some extent, but the beat times and the time instances
when the singing voice enters are well captured except at times
around 0.7 and 1.1 s. Fig. 2(e) gives the result of frame-level
classification, i.e., a frame is classified as vocal (indicated as a
high value) if its likelihood of ¢, is greater than that of ¢,
and vice versa. As can be seen, frame-level classification is
not very reliable. Fig. 2(f) shows the final classification, which
matches the reference labeling indicated in Fig. 2(a) well except
at around 1.5 s for a very short nonvocal portion. Many frames
around 2.7 s are misclassified as vocal in the frame-level clas-
sification but are correctly classified as nonvocal as shown in
Fig. 2(f).

We perform tenfold cross validation to access the overall per-
formance of the proposed detection method. Each time, 90% of
the data is used for training and the rest is used for testing. This
process is repeated ten times, and the average of classification
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Fig. 3. Performance of the proposed singing voice detection algorithm in dif-
ferent SNRs. For comparison, the performances of four alternative methods are
also shown.

accuracy (percentage of frames) is taken as the performance of
the method. The total amount of data for training and testing is
about 30 min.

Fig. 3 shows the error rates of our singing voice detection
method in four different SNR situations. An error rate is
calculated as the percentage of frames that are correctly clas-
sified. For comparison purposes, the performances of several
other methods are also presented. Frame-level classification
is as described before. The HMM method is similar to the
one used in [2]. Each class is modeled as a one-state HMM
using the trained GMM as the observation distribution. The
exiting probability from the state is the inverse of the average
duration of portions of each class. In magnitude-based change
detection, we detect spectral changes in the real domain instead
of the complex domain but the classification is still based on
the overall likelihood. Another method combines the spectral
change detection and a majority vote to determine the labeling
of a portion. By a majority vote we mean that if the majority
of frames of a portion is classified as vocal the portion is
classified as vocal, and vice versa. As can be seen from Fig. 3,
the proposed method has the lowest error rates for the 0, 5, and
10 dB cases and is only slightly worse than that with majority
vote in the —5-dB case.

To give another evaluation of the singing voice detection
stage, we also calculate the precision and recall values of
singing voice for all the SNR conditions, and the results are
shown in Table III. The precision is the percentage of the frames
that are correctly classified as vocal over the frames that are
classified as vocal. The recall is the percentage of the frames
that are correctly classified as vocal over all the vocal frames.
The precision value becomes lower as SNR decreases, indi-
cating that more nonvocal portions are misclassified. The recall
values are high for all SNRs, indicating that most of the vocal
portions are correctly classified. This evaluation suggests that,
when making errors, this stage tends to misclassify nonvocal
portions as vocal portions, especially in low SNR conditions.
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TABLE III
PRECISION AND RECALL (%) OF SINGING VOICE

-5dB 0dB 5dB 10dB
precision 739  79.2 848 87.1
recall 93.6 947 947 948
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Fig. 4. Predominant pitch detection on the clip of rock music. (a) Cochleagram
of the clip. Brighter area indicates stronger energy. The vertical axis shows the
center frequencies of frequency channels. (b) Results of pitch detection. The
thin solid lines indicate the reference pitch contours and the dots represent the
detected pitches. The thick lines at the top indicate the detected vocal portions.

B. Predominant Pitch Detection

In order to evaluate the applicability of the proposed system
to a wide range of polyphonic audio for singing voice detection
and separation, we further extract a total of 25 clips from the ten
songs used in the singing voice detection. The average length of
each clip is 3.9 s, and the total length of all the clips is 97.5 s.
The clips include both male and female singers. In some clips,
singing voice is present all the time; in some other clips, singing
voice is present either at the beginning, the middle, or the end of
a clip. For each clip, the singing voice and the accompaniment
are mixed at four different SNRs: —5, 0, 5, and 10 dB. The
variety in the testing database is designed to better access the
proposed system.

Since separate singing voice tracks are available, accurate
reference pitch contours can be determined. The reference pitch
contours are calculated using Praat [4], which is a standard
system of pitch detection for clean signals. The clean singing
voice is processed by Praat, and the detected pitch contours
are visually inspected to correct obvious pitch halving and
doubling errors.

Fig. 4 shows the result of the pitch detection for the same clip
in Fig. 2(b). The clip is partitioned into vocal and nonvocal por-
tions by the first stage. The cochleagram of the clip is shown in
Fig. 4(a). Unlike the spectrogram as in Fig. 2(c), the cochlea-
gram is an auditory spectrogram of a signal with a quasi-log-
arithmic frequency scale similar to that of the human auditory
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system. In this case, the cochleagram is calculated over 32-ms
time frames with 10-ms frame shift and a gammatone filterbank
with 128 frequency channels whose center frequencies are dis-
tributed on the ERB scale. It can be seen that the singing voice is
dominant in high-frequency channels, while the low-frequency
channels are severely corrupted by the accompaniment. The pre-
dominant pitch detection algorithm is applied to the detected
vocal portions. In Fig. 4(b), the detected pitches are plotted as
dots against the reference pitch contours which are plotted as
solid lines. In this example, the detected pitches well match the
reference most of the time. For unvoiced singing, such as the
portion from 2.2 to 2.3 s, the pitch detector gives pitches be-
longing to some other source. The thick lines in Fig. 4(b) indi-
cate the detected vocal portions.

Since pitch detection depends on classification, we consider
three cases to evaluate different aspects of the predominant pitch
detection stage.

1) No Classification: No classification is used and the pre-
dominant pitch detector is applied to the whole clip. The
results in this case should demonstrate the value of singing
voice detection.

2) Ideal Classification: The reference classification is used
and the predominant pitch detector is applied to vocal por-
tions only. This evaluates the performance of the pitch de-
tector alone.

3) Actual Classification: The classification obtained in the
first stage is used, and the predominant pitch detector is
applied to the detected vocal portions. This gives the com-
bined result for the first two stages.

Fig. 5 shows the gross error rates of pitch detection for dif-
ferent algorithms measured at the frame level; a gross error oc-
curs if the detected pitch is not within 10% of the reference pitch
in frequency. For nonvocal portions, the reference pitches are
set to 0 Hz. Since the pitch range for the types of singing ex-
amined in this study is relatively small compared to that of op-
eratic singing, we set 80-500 Hz as the plausible pitch range
for all algorithms. The correlogram algorithm for predominant
pitch detection has been used in several studies [35], [44] and is
used in [18] to get the initial pitch estimation. The performance
of the original algorithm by Wu et al. [46] is also presented.
Ryyninen and Klapuri [34] developed an algorithm for singing
voice pitch detection. Their algorithm detects multiple pitches
for each frame and then uses note models for tracking. Their al-
gorithm performs very well in the melody detection contest in
MIREX 2005. We obtained the software from the authors for
comparison purposes.

Fig. 5(a) and (b) shows the error rates for the cases of “No
classification” and “Ideal classification,” respectively. Since
the algorithm by Ryynédnen and Klapuri implicitly performs
singing voice detection, its performance is only included in
Fig. 5(c) for the case of “Actual classification.” As can be seen,
our predominant pitch detection algorithm performs substan-
tially better than the correlogram algorithm and also improves
the accuracies over the Wu et al. algorithm. The Ryynénen and
Klapuri algorithm performs slightly better than ours for the
10-dB case, but our algorithm produces higher accuracies for
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Fig. 5. Pitch detection error rates in different cases for different algorithms.
(a) No classification is performed prior to predominant pitch detection. (b) Ideal
classification is performed prior to predominant pitch detection. (c) Actual clas-
sification is performed prior to predominant pitch detection.
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Fig. 6. Pitch detection error rates using different frame lengths. The same frame
shift rate is used for all evaluations.

the other SNRs, especially for the —5-dB case. In an earlier
study [24], we also compared our algorithm to the one by
Klapuri [21] and found that ours performs predominant pitch
detection significantly better.

We have also investigated the effects of frame length on pitch
detection. Fig. 6 shows the error rates of pitch detection using
four different frame lengths along with actual classification. As
can be seen, our algorithm performs best overall for the frame
length of 32 ms, and similar results are achieved with the frame
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length of 64 ms. The error rates are a little higher with the 16-ms
frame length, which is used in [46] for pitch detection of speech.
For the frame length of 128 ms, the error rates are considerably
higher at all the SNR conditions.

C. Singing Voice Separation

As mentioned in Section II, few systems are devoted to
singing voice separation. As a result no criterion has been
established for evaluating the separation of singing voice. A
fundamental question related to evaluation criteria is what the
computational goal of a singing voice separation system should
be. The Hu—Wang system [18] uses a notion called ideal binary
mask to quantify the computational goal. The ideal binary
mask is defined as follows: a T-F unit in the mask is assigned
1, if the energy of the target source in the unit is stronger than
that of the total interference, and 0, otherwise. This notion is
grounded on the well-established auditory masking phenom-
enon [28]. Human speech intelligibility experiments show that
target speech reconstructed from the ideal binary mask gives
high intelligibility scores, even in very low SNR conditions
[8], [9], [32]. More discussion of the ideal binary mask as the
computational goal of CASA can be found in [43].

For musical applications, the perceptual quality of the sepa-
rated sound is emphasized in some cases. However, perceptual
quality is not well defined and hard to quantify. Our informal
listening experiments show that the quality of singing voice re-
constructed from the ideal binary mask is close to the original
one when SNR is high and it degrades gradually with decreasing
SNR. Consistent with speech separation, we suggest to use the
ideal binary mask as the computational goal for singing voice
separation.

To quantify the performance of the system, we then calculate
the SNR before and after the separation using the singing voice
resynthesized from the ideal binary mask as the ground truth
[18]

2o, I2(n)
>, (I(n) = O(n))*

where I(n) is the resynthesized singing voice from the ideal
binary mask, which can be obtained from the premixing singing
voice and accompaniment. The clean reference singing voice is
available, but it is not used because of the computational goal
of our system as well as the distortion introduced in the signal
representation and resynthesis (see [18]). In calculating the SNR
after separation, O(n) is the output of the separation system.
In calculating the SNR before separation, O(n) is the mixture
resynthesized from an all-one mask, which compensates for the
distortion introduced in the resynthesis.

Fig. 7 shows a separation example of the same clip used in
Figs. 2 and 4. Fig. 7(a) is the clean singing voice resynthesized
from the all-one mask. Fig. 7(b) is the mixture resynthesized
from the all-one mask. Fig. 7(c) shows the resynthesized wave-
form from the ideal binary mask, and Fig. 7(d) is the output
of our separation system. As can be seen, the output waveform
well matches that from the ideal binary mask. It also matches
the original signal shown in Fig. 7(a) well.

Fig. 8(a) and (b) shows the ideal binary mask and the mask
estimated by the separation system, respectively. It is clear that

SNR = 101logy, (14)

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

0 0.4 0.8 1.2 .6 2 24 2.8

1
Time(s)

Fig. 7. Waveform comparison. (a) Singing voice. (b) Mixture. (¢) Ground truth
resynthesized from the ideal binary mask. (d) Output of the proposed separation
system. The vertical axis in each plot indicates the amplitude of the waveform.
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Fig. 8. Mask comparison. (a) Ideal binary mask obtained from the premixed
singing voice and accompaniment. White pixels indicate 1 and black pixels in-
dicate 0. (b) The mask of singing voice estimated by the separation system.

the estimated mask is similar to the ideal mask and retains most
of the energy of the singing voice.

Since separation depends on classification and pitch detec-
tion, we consider three cases in the evaluation, each character-
izing a different aspect of the system.

1) Ideal Pitch: The reference pitch contour is used for separa-
tion. This gives the ceiling performance of the separation
system.

2) Ideal Classification with Pitch Detection: Use the refer-
ence classification but use detected pitch for separation.
This isolates the classification stage and gives the perfor-
mance of the last two stages.

3) Actual Classification with Pitch Detection: This gives the
performance of the whole system.

Fig. 9 shows the SNR gains after separation by the proposed
system for the three cases. When the ideal pitch contour is given
(as shown by the Case 1 line), the SNR gains for low SNRs, e.g.,
—5 and 0 dB, are significant. However, for the SNR of 10 dB,
the gain is relatively small. One reason is that in some cases the
pitches of singing voice may change rapidly. When the pitches
change fast, the separation stage does not group properly. An-
other reason is the presence of unvoiced consonants. Unvoiced
constants cannot be recovered by the pitch-based separation al-
gorithm. Also the Hu—-Wang system gives only an estimate of the
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Fig. 9. SNR gain comparison. The SNR gains for the three cases are displayed
(see Section IV-C). Also displayed are the SNR gains of a comb filtering method.

ideal binary mask, and it makes certain errors in grouping seg-
ments belonging to the singing voice. When the original SNR
is high, the accompaniment is weak and the energy loss of the
singing voice may be comparable to the rejected energy of the
accompaniment. As the SNR decreases, the accompaniment be-
comes stronger and the energy loss of the singing energy be-
comes less compared to the rejected energy of the accompa-
niment. Therefore, the separation stage works better when the
original SNR is lower. For example, the system achieves an SNR
gain of 11.4 dB for the input SNR of —5 dB. We note that for
many applications, such as those mentioned in Section I, singing
separation is particularly needed for low SNR situations.

The use of the pitch detection algorithm given the ideal clas-
sification is subject to pitch detection errors. Erroneous pitch
estimates make some segments group incorrectly. As a result,
the overall performance (Case 2 in Fig. 9) is worse than that
with ideal pitch contours. For the SNR of 10 dB, the SNR after
separation is even slightly lower than that of the original mix-
ture. However, as the SNR decreases, the SNR after separation
is consistently higher. When the classification stage is also in-
cluded, i.e., the entire system is evaluated, the SNR gains (Case
3 in Fig. 9) are slightly lower than those in the second case.
Although the SNR after separation for the 10-dB case is not im-
proved, the system achieves SNR improvements of 7.3, 5.6, and
3.9 dB for the input SNR of -5, 0, and 5 dB, respectively. This
demonstrates that the proposed method works well for low SNR
situations.

For Case 3 where both actual classification and pitch de-
tection are used, we compare the proposed separation method
with a standard comb filtering method [11], which extracts the
spectral components at the multiples of a detected pitch. Note
that for the comb filtering method, actual classification is also
applied. The comb filter implemented has three coefficients and
is applied to every frame. After comb-filtering, the obtained
signal is passed through an all-one mask. This step makes the
comb-filtered signal comparable to the resynthesized signal
from a binary mask. The performance of the comb filtering
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method, shown in Fig. 9, is consistently worse than that of
our approach. For example, the SNR gain is 0.9 dB lower
in the 10-dB case and 2.1 dB lower in the —5-dB case. The
worse performance is mainly caused by the fact that the comb
filter passes all frequency components close to the multiples
of a given pitch, which include those belonging to music
accompaniment.

The classification stage alone is expected to contribute to
the SNR gain by rejecting the energy from accompaniment. To
quantify this contribution, we calculate the SNR gains resulted
from classification alone. More specifically, after classification,
the vocal portions of the input are retained while the nonvocal
portions are rejected. The retained signal, after being passed
through an all-one mask, is used in (14) for the SNR calcu-
lation. The SNR gains from the classification stage alone are
1.4, 1.0, 1.1, and 0.2 dB for —5, 0, 5, and 10-dB cases, respec-
tively. Therefore, except for the 10-dB case, the contribution
of the classification stage to the overall SNR gain is small. In
other words, the overall system is responsible for the perfor-
mance improvements.

Since the separation stage is only applied to vocal portions,
we also measure SNR improvements using just vocal portions.
Compared to those using whole mixtures, the corresponding
SNR improvements are lower: 5.4, 3.5, 1.0, and —2.9 dB at input
SNR of —5, 0, 5, and 10-dB, respectively. In this case, the orig-
inal SNRs are higher and, as discussed earlier, our system does
not perform as well in high input SNR situations.

We have also directly applied the original Hu—Wang system to
the vocal portions obtained from the first stage. In this case, the
pitch contour of singing voice is iteratively refined starting from
the estimates obtained from the correlogram pitch detection al-
gorithm. It is found that the resulted SNR gains are lower. This
indicates that the proposed predominant pitch detection stage is
important for the performance of the overall system.

V. DISCUSSION AND CONCLUSION

As mentioned in the Introduction, few systems have been pro-
posed for singing voice separation. By integrating singing voice
classification, predominant pitch detection, and pitch-based sep-
aration, our system represents the first general framework for
singing voice separation. This system is also extensible. Cur-
rently, we use pitch as the only organizational cue. Other ASA
cues, such as onset/offset and common frequency modulation,
can also be incorporated into our system, which would be able
to separate not only voiced singing but also unvoiced singing.

Another important aspect of the proposed system is its adapt-
ability to different genres. Currently, our system is genre inde-
pendent, i.e., rock music and country music are treated in the
same way. This, in a sense, is a strength of the proposed system.
However, considering the vast variety of music, a genre-depen-
dent system may achieve better performance. Given the genre
information, the system can be adapted to the specific genre. The
singing voice detection stage can be retrained using genre-spe-
cific samples. The observation probability and the transition
probability of the HMM in the pitch detection stage are also re-
trainable. The genre information can be obtained from the meta-
data of a musical file or by automatic genre classification [39].
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Our classification stage is based on MFCC features. Re-
cently long-term features, such as modulation spectrum [10],
have been used with some success in related tasks such as
speech/music classification. We have attempted to incorporate
the modulation spectrum into the first stage, but the overall
classification accuracy is not improved. It seems that the modu-
lation spectrum of vocal and nonvocal segments does not have
enough discrimination power to produce further improvement.

Our pitch detection system uses an auditory front-end for
frequency decomposition and an autocorrelation function for
pitch detection. One problem with this autocorrelation-based
pitch detection approach is that the frequency resolution in the
high-frequency range is limited. As a result the proposed system
cannot be used to separate high-pitched singing voice, as en-
countered in operatic singing. However, most types of singing,
such as in pop, rock, and country music, have a smaller pitch
range and, therefore, this system can potentially be applied to a
wide range of problems.
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