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Abstract
Separating singing voice from music accompaniment has
wide applications in areas such as automatic lyrics recog-
nition and alignment, singer identification, and music in-
formation retrieval. Compared to the extensive studies of
speech separation, singing voice separation has been little
explored. We propose a system to separate singing voice
from music accompaniment from monaural recordings. The
system has three stages. The singing voice detection stage
partitions and classifies an input into vocal and non-vocal
portions. Then the predominant pitch detection stage detects
the pitch contour of the singing voice for vocal portions. Fi-
nally the separation stage uses the detected pitch contour
to group the time-frequency segments of the singing voice.
Quantitative results show that the system performs well in
singing voice separation.

Keywords: Singing voice detection, predominant pitch de-
tection, singing voice separation

1. Introduction
A successful singing voice separation system is useful in
many areas such as automatic lyrics recognition and align-
ment, singer identification, and music information retrieval.
In this paper, we focus on singing voice separation from
monaural recordings. A monaural solution is indispensable
in many cases, such as separating the singing for live record-
ings (non-studio recordings). The development of a success-
ful monaural singing voice separation system could also en-
hance our understanding of how the human auditory system
performs such tasks.

Although singing voice is produced by the speech organ,
speech separation systems might not be directly applicable
to singing voice separation. This is mainly because of the
nature of other concurrent sounds. In a real acoustic envi-
ronment, interfering sounds in most cases are uncorrelated
with speech. For recorded songs, however, music accompa-
niment is correlated with singing voice since they are com-
posed to be a coherent whole. This difference makes the
separation of singing voice from music accompaniment po-
tentially more challenging.

The perceptual work by Bregman [1] and others has in-
spired researchers to studycomputational auditory scene
analysis(CASA). Compared to other sound separation ap-
proaches, such as spectral subtraction, CASA makes fewer
assumptions about concurrent sounds therefore shows greater
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Figure 1. Schematic diagram of the proposed system

promise in singing voice separation from monaural record-
ings. Mellinger [2] proposed a CASA system which ex-
tracts onset and common frequency variation and uses them
to group frequency partials from the same musical instru-
ment. Godsmark and Brown [3] developed a CASA system
which uses harmonicity and other auditory scene analysis
principles in a blackboard architecture for music sound sep-
aration. Recently a speech separation system developed by
Hu and Wang [4] exploits pitch and amplitude modulation
to separate voiced speech from various kind of interference.
Systematic evaluation shows that the system performs sig-
nificantly better than previous systems.

Since the Hu–Wang system allows the interference to be
harmonic, it is possible to apply the system to singing voice
separation. The accuracy of pitch detection is critical for
the Hu–Wang system. However, as shown in [5] their pitch
estimation is unreliable when singing voice is accompanied
by music. This problem can be alleviated by a predomi-
nant pitch detection algorithm we proposed in [5], which de-
tects more accurately the pitches of singing voice for differ-
ent musical genres. Because their system works for voiced
speech, it is necessary to have a mechanism to distinguish
portions where singing voice is present from those where
it is not. On the other hand, although their system is lim-
ited to voiced speech separation, this limitation is less se-
vere for singing voice separation because unvoiced singing
comprises a smaller percentage in terms of time and its con-
tribution to the intelligibility of singing is less than that to
the intelligibility of speech.

In this paper we propose a singing voice separation sys-
tem which consists of three stages, as shown in Fig. 1. The
first stage performs singing voice detection in which the in-
put is partitioned and classified into vocal and non-vocal
portions. Then vocal portions are used as input to the second
stage for predominant pitch detection. In the last stage, de-
tected pitch contours are used for singing voice separation
where we extend the Hu–Wang system [4]. The output of
the system is separated singing voice.

The remainder of this paper is organized as follows. Sec-
tion 2 describes each stage of the system. Section 3 presents
the evaluation and the last section concludes the paper.

2. System description
2.1. Singing voice detection
The goal of this stage is to partition the input into vocal
portions in which singing voice is present and non-vocal
portions in which singing voice is absent. Our strategy is



based on the observation that, when a new sound enters a
mixture, it usually introduces significant spectral changes.
Therefore the possible instance when a sound enters can be
determined by identifying significant spectral changes. This
idea is more suitable for singing voice detection since, in
order to conform with the rhythmic structure of a song, a
voice is more likely to join the accompaniment at beat times
when strong spectral perturbation occurs. Therefore in this
stage we first use a spectral change detector to partition the
input into spectrally homogeneous portions and then pool
the information within a portion for classification.

The spectral change detector used in this stage is pro-
posed by Duxbury et al. [6]. It calculates the Euclidian
distance in the complex domain between the expected spec-
tral value and the observed one in each frame. Significant
spectral changes are indicated as local peaks in the distance
values. After the input is partitioned into portions, each
portion is classified into vocal or non-vocal according to
the overall likelihood. Formally let{X1, X2, ..., XM} be
a set of feature vectors of a portion withM frames. Let
log p(X|cv) andlog p(X|cnv) represent the log likelihood
of an observed feature vectorX being in the vocal classcv
and the non-vocal classcnv, respectively. Then a portion is
classified as vocal if:

M∑

j=1

log p(Xj |cv) >

M∑

j=1

log p(Xj |cnv) (1)

Since mel-frequency spectral coefficients (MFCC) and Gaus-
sian mixture models (GMM) are widely used in audio classi-
fication tasks, we choose MFCCs as the features and GMMs
as the classifiers for likelihood evaluation.

2.2. Predominant pitch detection
In this stage, a predominant pitch detection algorithm pro-
posed in [5] is used to detect the pitch contour of singing
voice for vocal portions. The algorithm first decomposes
a vocal portion into its frequency components with a 128-
channel gammatone filterbank. A normalized correlogram
is then computed for each channel and each frame to ob-
tain periodicity information. The peaks in the normalized
correlogram contain the periodicity information of the in-
put. However, due to the presence of music accompaniment,
some peaks may give misleading information. To allevi-
ate the problem, channel and peak selection are applied to
all channels to extract reliable periodicity information. The
algorithm uses Hidden Markov Model (HMM) to describe
the pitch generation process. In each frame the observation
probability of a pitch hypothesis is calculated by integrating
the periodicity information across all frequency channels.
The transition probability between two consecutive frames
is determined by training. In order to reduce the interfer-
ence of other harmonic sounds from accompaniment, the
HMM tracks up to 2 predominant pitch contours simulta-
neously. Finally the Viterbi algorithm is used to find the
most likely sequence of pitch hypotheses and the first pitch
contour of this optimal sequence is considered as the pitch
contour of the singing voice. More details of the algorithm
can be found in [5, 7].

2.3. Singing voice separation
In this stage, the voiced speech separation algorithm devel-
oped by Hu and Wang [4] is extended for singing voice sep-

aration for vocal portions. The singing voice separation al-
gorithm first passes the input, i.e., a vocal portion, through
an auditory periphery which is a 128-channel gammatone
filterbank. The output of each channel is further divided
into 16–ms time frames with 50% overlap. In this way, the
input is decomposed into a time-frequency (T-F) map, each
element of which is called a T-F unit. For each T-F unit,
the following features are extracted: energy, autocorrela-
tion, cross-channel correlation, and cross-channel envelope
correlation.

Next, the algorithm forms segments by merging contigu-
ous T-F units based on temporal continuity and cross-channel
correlation. Only those T-F units whose energy and cross-
channel correlation both high are considered. Neighboring
units, either in time or frequency, are merged into segments
iteratively.

By comparing the local periodicity information indicated
in the autocorrelation of a T-F unit to the estimated period-
icity of the singing voice in the same frame, the T-F unit
is labeled as either singing voice dominant or accompani-
ment dominant. We use the pitch contour of the singing
voice obtained in the second stage to label each T-F unit.
More specifically, a T-F unit in frequency channelc and time
framem is labeled as singing dominant if:

A(c,m, τS(m))
A(c, m, τP (c,m))

> θT (2)

whereA(c,m, τ) is the autocorrelation of the unit with the
time lag indicated byτ , andθT is a threshold.τS(m) is
the time lag corresponding to the estimated pitch period in
framem while τP (c,m) is the time lag corresponding to
the global maximum ofA(c,m, τ) within the plausible pitch
range from 80 to 500 Hz. This periodicity criterion works
well for T-F units where harmonics are resolved — a har-
monic is resolved if it activates a dedicated auditory filter.
For filters responding to multiple harmonics, their responses
are amplitude-modulated. As a result, the time lag of the
global maximum ofA(c,m, τ) of those filters within the
pitch range might not correspond to the pitch period.

To deal with the problem of unresolved harmonics, the
algorithm extracts the amplitude modulation (AM) rate for
each unit and compares the AM rate with the estimated pitch
period. More specifically, a normalized envelope of a T-F
unit is first extracted. Then a single sinusoid with the same
period as the estimated pitch period is constructed. To com-
pare the sinusoid with the normalized envelope, the phase of
the sinusoid is adjusted such that the square error between
these two signals is minimized. After the phase is deter-
mined, the T-F unit is labeled as singing dominant if the en-
velope can be well described by the obtained sinusoid. This
AM criterion is formally defined as:

∑N−1
n=0 [r̂(c, n)− cos( 2πn

τS(m)fS
+ φcm)]2

∑N−1
n=0 r̂2(c, n)

< θAM (3)

where r̂(c, n) is the normalized envelope.φcm represents
the phase minimizing the square error andfS is the sam-
pling frequency of the input.n is the time index andN is
the length of the envelope.θAM is a threshold. For units
labeled as singing dominant by the AM criterion, additional
segments are generated based on temporal continuity and
cross-channel envelope correlation.



Table 1. Classification accuracy for different methods (%
frames)

-5 dB 0 dB 5 dB 10 dB
proposed method 80.3 85.0 90.2 91.1
frame-level classification 71.3 77.4 81.7 83.8
HMM 79.0 83.5 87.5 88.8

Table 2. Predominant pitch detection error rates with actual
classification (%)

-5 dB 0 dB 5 dB 10 dB
Proposed 44.2 31.7 24.3 21.6
Klapuri 55.5 41.7 31.7 26.5
Wu et al. 55.1 39.0 29.0 22.4

In the final step of the separation algorithm, segments
where a majority of T-F units is labeled as singing dominant
are grouped to form the foreground stream, which corre-
sponds to the singing voice. From the segments in the fore-
ground stream the singing voice can be obtained by resyn-
thesis. For more details of the Hu–Wang system, see [4].

3. Evaluation
We extracted 10 songs sampled at 16 kHz from karaoke CDs
for singing voice detection. These CDs are recorded with
multiplex technology. With proper de-multiplexing soft-
ware, clean singing voice and accompaniment can be ex-
tracted. We further extracted 25 clips from the 10 songs for
singing voice pitch detection and separation. These clips in-
clude rock and country music. We refer to the energy ratio
of singing voice to accompaniment as signal to noise ratio
(SNR) as in speech separation studies.

Fig. 2 shows the output of each stage of the proposed
system for a clip of rock music. Fig. 2(a) is the waveform
of the clean singing voice. The thick lines above the wave-
form indicate reference vocal portions obtained by applying
an energy-based silence detector on the clean singing voice.
The mixture in which the singing voice and the accompa-
niment are mixed in 0 dB is shown in Fig. 2(b). Fig. 2(c)
gives the result of singing voice detection on the mixture.
A high value indicates the frame is classified as vocal and a
low value as non-vocal. Fig. 2(d) gives the result of predom-
inant pitch detection on the detected vocal portions. The de-
tected pitches are plotted as dots against the reference pitch
contours which are plotted as solid lines. The output of the
singing voice separation stage is plotted in Fig. 2(e). As
can be seen, the separated singing voice matches the clean
singing voice well.

For singing voice detection, we trained the classifiers with
samples mixed in 0 and 10 dB and tested them in 4 different
SNRs using 10-fold cross validation. The average classifi-
cation accuracies (percentage of frames) are shown in the
first row of Table 1. For comparison purposes, the results
of frame-level classification (each frame is a portion) and
HMM similar to the one used in [8] are also shown in Ta-
ble 1. As can be seen, the proposed singing voice detection
method performs better for all SNRs.

For predominant pitch detection, we calculate the error
rates (at the frame level) of pitch detection for the first two
stages. Note that in this case the singing voice detection
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Figure 2. Output of each stage for a clip of rock music. (a) The
singing voice. (b) The mixture. (c) The output of the singing
voice detection stage. Vocal portions are indicated by high val-
ues and non-vocal portions by low values. (d) The output of the
predominant pitch detection stage. Dots indicate the detected
pitches and the solid lines indicate the reference pitches. (e)
The output of the singing voice separation stage.

stage also contributes to the pitch detection errors. The ref-
erence pitches are calculated using Praat [9]. An error oc-
curs if a detected pitch is not within 10% of the reference
pitch. The error rates of the proposed method as well as
those of two other methods are shown in Table 2. Kla-
puri’s algorithm [10] performs multipitch detection. We im-
plemented the algorithm and chose the first detected pitch
as the predominant one. The obtained pitch sequence was
smoothed to improve the pitch detection accuracy. The per-
formance of the original algorithm developed by Wu et al.
[7] is also listed in Table 2. As can be seen, for all SNRs,
our method has lower pitch detection error rates.

An important aspect of evaluating sound separation sys-
tems is the criterion, which is directly related to the com-
putational goal of a system. For musical applications, the
perceptual quality of the separated sound is emphasized in
some cases. However, perceptual quality is subjective and
hard to quantify. Here we adopt the notion of ideal binary
mask proposed in [4]: a T-F unit in the mask is assigned
1 if the energy of the target source in the unit is stronger
than that of other concurrent sounds, and 0 otherwise. This
notion is grounded on the well-established auditory mask-
ing phenomenon [11]. For more discussion of the ideal bi-
nary mask, the interested reader is referred to [12]. With
clean singing voice and accompaniment available, the ideal
binary mask can be readily constructed. Our informal lis-
tening experiments show that the quality of singing voice
resynthesized from the ideal binary mask is close to that of
the original one when SNR is high and it degrades gradually
with decreasing SNR. Therefore we suggest to use the ideal
binary mask as the computational goal for singing voice sep-
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Figure 3. SNR gain comparison.

aration.
The performance of the system can be quantified by cal-

culating the SNR before and after the separation using the
singing voice resynthesized from the ideal binary mask as
the ground truth [4]:

SNR = 10 log 10[
∑

n I2(n)∑
n(I(n)−O(n))2

] (4)

whereI(n) is the ground truth. In calculating the SNR after
separation,O(n) is the output of the system. In calculat-
ing the SNR before separation,O(n) is the mixture resyn-
thesized from an all-one mask, which compensates for the
distortion introduced in the resynthesis.

We evaluate the performance of the proposed system for
4 different SNRs: -5, 0, 5, and 10 dB. Fig. 3 shows the
SNR gains after separation for different cases. The SNR
gains using the ideal pitch as input to the separation stage
are shown as the line on the top. This gives the ceiling per-
formance of our pitch-based separation system. The second
line from the top gives the SNR gains using reference vo-
cal portions (ideal classification) and pitch detection. As
the predominant pitch detection stage introduces errors to
the system, the gains are lower than that using ideal pitch.
The third line from the top shows the SNR gains of the
system, i.e., using actual classification and pitch detection.
As the singing voice detection stage also makes errors, the
performance is further decreased. Although the SNR af-
ter separation of the proposed system for the 10 dB case
is not improved, the system achieves SNR improvements
of 7.1, 5.5, and 3.7 dB for the input SNR of -5, 0, and 5
dB, respectively. This demonstrates that the proposed sys-
tem works better for low SNR situations. We also compare
the proposed separation system with a standard comb fil-
tering method [13], which extracts the spectral components
at the multiples of a given pitch. As shown in the bot-
tom line in Fig. 3, the performance of the comb filtering
method is consistently worse than that of the proposed sys-
tem. Since the classification stage rejects energy from the
accompaniment, this stage alone is expected to contribute
to the SNR gains. Quantitatively the SNR gains from the
classification stage alone are 1.4, 1.0, 1.1, and 0.2 dB for

-5, 0, 5, and 10 dB cases, respectively. Therefore the SNR
gains are mainly contributed from the pitch-based separa-
tion. Demos of singing voice separation can be found at
http://www.cse.ohio-state.edu/˜liyip/Research/Publication/2
006/singingdemo.htm.

4. Conclusion
In this paper, we have proposed a monaural system to sep-
arate singing voice from music accompaniment. Our sys-
tem first detects vocal portions and then applies predomi-
nant pitch detection to each vocal portion to obtain the pitch
contour of singing voice. Finally the system uses detected
pitch contours to separate the singing voice from music ac-
companiment by extending a voiced speech separation sys-
tem. Quantitative evaluation of the system shows that it per-
forms well for singing voice separation, especially in low
SNR conditions.

5. Acknowledgments
This research was supported in part by an AFOSR grant
(F49620-04-1-0027) and an NSF grant (IIS-0534707). We
thank G. Hu for many useful discussions.
References

[1] A. S. Bregman,Auditory Scene Analysis, MIT Press, Cam-
bridge, MA, 1990.

[2] David K. Mellinger,Event Formation and Separation in Mu-
sical Sound, Ph.D. thesis, Stanford University, Department
of Computer Science, 1991.

[3] D. Godsmark and G. J. Brown, “A blackborad architecture
for computational auditory scene analysis,”Speech Commu-
nication, vol. 27, no. 4, pp. 351–366, 1999.

[4] Guoning Hu and DeLiang Wang, “Monaural speech segre-
gation based on pitch tracking and amplitude modulation,”
IEEE Transactions on Neural Networks, vol. 15, pp. 1135–
1150, 2004.

[5] Yipeng Li and DeLiang Wang, “Detecting pitch of singing
voice in polyphonic audio,” inProc. IEEE ICASSP, 2005,
vol. 3, pp. 17–20.

[6] Chris Duxbury, Juan Pablo Bello, Mike Davies, and Mark
Sandler, “Complex domain onset detection for musical sig-
nals,” inProc. of the 6th Conference on Digital Audio Effect
(DAFx-03), London, U.K., 2003.

[7] Mingyang Wu, DeLiang Wang, and Guy J. Brown, “A mul-
tipitch tracking algorithm for noisy speech,”IEEE Trans-
actions on Speech Audio Processing, vol. 11, pp. 229–241,
2003.

[8] Adam L. Berenzweig and Daniel P. W. Ellis, “Locating
singing voice segments within music signals,” inProc. IEEE
WASPAA, 2001, pp. 119–122.

[9] P. Boersma and D. Weenink, “Praat: Do-
ing phonetics by computer, version 4.0.26,”
(http://www.fon.hum.uva.nl/praat), 2002.

[10] A.P. Klapuri, “Multiple fundamental frequency estima-
tion based on harmonicity and spectral smoothness,”IEEE
Transactions on Speech Audio Processing, vol. 11, pp. 204–
816, 2003.

[11] Brian C. J. Moore, An Introduction to the Psychology of
Hearing, fifth edition, Academic Press, London, U.K., 2003.

[12] DeLiang Wang, “On ideal binary mask as the computa-
tional goal of auditory scene analysis,” inSpeech Separa-
tion by Humans and Machines, P. Divenyi, Ed., pp. 181–197.
Kluwer Academic, Boston, MA, 2005.

[13] J. R. Deller, J. G. Proakis, and J. H. L. Hansen,Discrete-
Time Processing of Speech Signals, Macmillan, New York,
1993.


