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Abstract—It is important to know the presence and the rela-
tive level of background noise for many speech processing tasks.
Frame-level signal-to-noise ratio (SNR) provides a measure of in-
stantaneous noise level of a noisy signal, and its estimation has been
researched for decades. This problem can be approached from a
supervised learning perspective by predicting SNR from features of
noisy speech. In this study, we introduce a deep learning algorithm
for frame-level SNR estimation. The proposed algorithm employs
recurrent neural networks (RNNs) with long short-term memory
(LSTM) to leverage contextual information. We also systemati-
cally examine a range of acoustic features and investigate feature
combinations using Group Lasso and sequential floating forward
selection (SFFS). The proposed algorithm naturally leads to an
utterance-level SNR estimator. Systematical evaluations show that
the proposed algorithm provides an accurate estimate of frame-
level SNR, as well as utterance-level SNR, under different noise
conditions, outperforming other estimators.

Index Terms—Frame-level SNR estimation, feature
combination, long short-term memory, recurrent neural networks.

I. INTRODUCTION

S PEECH processing is a challenging task in real life since
various types of noise interfere with a speech signal. Signal-

to-noise ratio (SNR) indicates the amount of noise interference
in an acoustic environment. Knowledge of the SNR has many
applications, including speech enhancement [9], [10] and hear-
ing aids [24].

There are typically two ways to measure SNR in a noisy
signal. The first is short-term or frame-level SNR, also referred to
as instantaneous SNR. The duration is usually in the range of tens
to hundreds milliseconds. Short-term SNR can be narrowband
or broadband, and the former is defined in dB as

SNR(m, c) = 10 log10
|S(m, c)|2
|N(m, c)|2 (1)
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whereS(m, c) andN(m, c) denote the complex spectra of clean
speech and noise, respectively, for the time-frequency (T-F) unit
at time frame m and frequency c. Broadband SNR is defined as

SNR(m) = 10 log10

∑
c |S(m, c)|2∑
c |N(m, c)|2 (2)

These definitions correspond to a priori SNR in traditional
speech enhancement literature. For example, the decision-
directed method of Ephraim and Malah [8] is a commona priori
SNR estimator, which helps to reduce musical tones [1]. Nemer
et al. [26] make use of higher-order statistics of speech and
noise, assuming a sinusoidal model for band restricted speech
and a Gaussian model for noise. Other methods for short-term
SNR estimation include a spectral histogram based method [15],
energy clustering to distinguish speech and noise portions of the
mixture [4], [5], and voice activity detection [21].

The second way measures SNR at the utterance level, referred
to as global, long-term or utterance-level SNR. Utterance-level
SNR considers the entire speech signal and provides noise level
for the whole mixture. Similar to short-term SNR, utterance-
level SNR can be narrowband,

SNR(c) = 10 log10

∑
m |S(m, c)|2∑
m |N(m, c)|2 (3)

or broadband:

SNR = 10 log10

∑
m,c |S(m, c)|2∑
m,c |N(m, c)|2 (4)

The widely used NIST SNR estimator [27] builds a histogram
of short-term signal power using noisy speech to estimate noise
and noisy speech distribution. The peak SNR is then calculated
from the estimated distributions. Obviously, the peak SNR is an
overestimate of global SNR. The method of Kim and Stern [17]
is based on waveform amplitude distribution. It assumes that
clean and noisy speech have Gamma distributions, and noise has
a Gaussian distribution. The method uses a maximum likelihood
estimation to find the parameters of the Gamma distribution
to infer the utterance-level SNR. Narayanan and Wang employ
computational auditory scene analysis (CASA) for global SNR
estimation [25]. An estimate of the ideal binary mask (IBM) is
utilized to classify T-F units of noisy speech as noise-dominant
or speech-dominant. Energy within each of these classes is
summated to derive the global SNR within the bandwidth of
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a filterbank. They also design an SNR converter to transform
the estimated band-limited SNR to the broadband SNR.

Recently, supervised learning algorithms are proposed to
perform SNR estimation and have achieved substantial improve-
ments over conventional methods. Suhadi et al. [35] propose
a data-driven approach that employs two feedforward neural
networks to estimate the a priori SNR, each with one hidden
layer of 10 neurons and one output neuron. Papadopoulos et al.
use energy ratio features to train regression models for different
noises to estimate the utterance-level SNR [30]. In the test phase,
if the noise type is known, the corresponding model is used to
estimate the SNR; if the noise type is unknown, a deep neural
network (DNN) model is used to find the “closest” regression
model to estimate the SNR. In [29], they further use i-vectors
to provide information about noise, as well as energy ratio
features to train a feedforward DNN model for utterance-level
SNR estimation in known and unknown channel conditions. The
DNN model consists of 4 hidden layers where each has 1024
units. Dong and Williamson [7] propose a two-stage approach
to estimate the utterance-level SNR. The first stage produces
noise residuals from a speech separation model. The second
stage uses the noise residuals and a feedforward DNN to predict
utterance-level SNR. They use complementary features [39]
extracted from residuals as inputs to the DNN. These features
consist of amplitude modulation spectrogram, relative spec-
tral transform perceptual linear prediction, and Mel-frequency
cepstral coefficients. They also add delta features to capture
temporal dynamics. Their DNN has three hidden layers with
512, 256, and 128 units, respectively.

This paper investigates short-term broadband SNR estima-
tion. Unidirectional and bidirectional recurrent neural networks
(RNNs) are proposed for causal and non-causal frame-level
SNR estimation, respectively. Compared with the feedforward
DNNs used in [35] [30] [29] [7], RNNs are better suited for
modeling sequential data with long-term dependencies. In [42],
[41], [46], RNNs with long short-term memory (LSTM) are used
to perform speech enhancement. Chen and Wang [3] employ an
RNN with four LSTM layers to address speaker generalization
of noise-independent speech enhancement.

Broadly speaking, a deep learning based model consists of two
components: models and features [38]. While RNNs are pow-
erful learning machines, input features need to be sufficiently
discriminative [2], [6]. To explore the influence of different
acoustic features, we systematically examine acoustic features.
As individual features reveal certain characteristics of noisy
speech, it would be useful to leverage a combination of features.
Hence, we further study different feature combinations using
Group Lasso [44], [2] and sequential floating forward selec-
tion (SFFS) [32], [6]. As a frame-level estimator, the proposed
algorithm naturally leads to an utterance-level estimator. We
additionally evaluate the accuracy of the utterance-level SNR
estimator under different SNR conditions.

A preliminary version of this paper is included in [22]. The
current work provides a more detailed analysis, in addition to
expanded evaluations and comparisons. In addition, we have
documented SNR estimation results using a new metric and an
untrained speech corpus.

The rest of the paper is organized as follows. Section II
describes the acoustic features researched in this study. The
proposed algorithm is detailed in Section III. The experimental
setup is explained in Section IV. Performances of each individual
feature and feature combinations are evaluated in Section V.
SNR estimation compared with the baseline models are studied
in Section VI. Section VII concludes the paper.

II. ACOUSTIC FEATURES

We systematically examine 18 acoustic features that have
been used for many speech processing tasks:
� Waveform signal (WAV) [6].
� Mel-frequency cepstral coefficient (MFCC).
� Log-mel filterbank feature (LOG-MEL).
� Multi-resolution cochleagram (MRCG) [2].
� Causal MRCG (MRCG-causal).
� Perceptual linear prediction (PLP) [13].
� Relative spectral transform of PLP (RASTA-PLP) [14].
� Gammatone feature (GF).
� Gammatone frequency cepstral coefficient (GFCC) [43].
� Gammatone frequency modulation coefficient

(GFMC) [23].
� Relative autocorrelation sequence MFCC (RAS-

MFCC) [45].
� Autocorrelation sequence MFCC (AC-MFCC) [34].
� Power normalized cepstral coefficients (PNCC) [18].
� Gabor filterbank feature (GFB) [33].
� Amplitude modulation spectrogram (AMS) [19].
� Pitch-based feature (PITCH) [39].
� Magnitude spectral feature (MAG).
� Suppression of slowly-varying components and the falling

edge of the power envelope (SSF) [16].
The input signal is divided into 20 ms frames with 10 ms

frame shift to generate the WAV feature. A 320-point fast
Fourier transform is applied to the WAV feature to obtain the
spectrogram of the signal. The MAG feature is the magnitude
response of the spectrogram.

The MRCG encodes multi-resolution power distributions in
the T-F domain of a signal. Four cochleagrams at different
resolutions are concatenated to construct the MRCG feature.
A high resolution cochleagram (CG1) captures the local infor-
mation while three lower resolution cochleagrams (CG2, CG3,
CG4) capture spectrotemporal contexts at different scales. The
cochleagrams are calculated by the following steps:

i) Compute the first 64-channel cochleagram with the frame
length of 20 ms and frame shift of 10 ms. Then, a log
operation is applied to the cochleagram to form CG1.

ii) Compute the first 64-channel cochleagram with the frame
length of 200 ms and frame shift of 10 ms. Then, a log
operation is applied to the cochleagram to form CG2.

iii) CG3 is calculated by smoothing CG1 using the square
window of 11× 11.

iv) CG4 is calculated by smoothing CG2 using the square
window of 23× 23.

The MRCG feature uses future frames in steps (iii) and (iv),
making it non-causal. For causal SNR estimation, we construct
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Fig. 1. Diagram of the proposed model. The input to the model is a noisy
speech signal. The output is the frame-level SNR.

an MRCG-causal feature, which is the same as MRCG except
for using the past 10 and 22 frames in steps (iii) and (iv),
respectively, and no future frame for smoothing.

To calculate the PITCH feature, the cochleagram of a noisy
signal is first calculated. We use the PEFAC algorithm [12]
for pitch estimation at each time frame. Then six pitch-based
features are extracted in each T-F unit [39]. Finally, the extracted
features are concatenated across frequency to form the PITCH
feature.

We use publicly available programs to extract GFB,1 PNCC,
SSF,2 GF, GFCC and MRCG,3 LOG-MEL, AMS, GFMC, and
AC-MFCC,4 and use the RASTAMAT toolbox5 to obtain PLP,
RASTA-PLP, MFCC and RAS-MFCC. All the features are
normalized to zero mean and unit variance based on the statistics
of the training data.

III. PROPOSED ALGORITHMS

A. System Overview

An overview of the proposed framework is shown in Fig. 1.
The framework has an input layer, four LSTM (or BLSTM)
layers, and an output layer. The output layer is a linear layer to

1[Online]. Available: https://github.com/m-r-s/reference-feature-extraction
2[Online]. Available: http://www.cs.cmu.edu/∼chanwook
3[Online]. Available: http://web.cse.ohio-state.edu/pnl/software.html
4[Online]. Available: https://github.com/imu-HaoLi/Feature_tools
5[Online]. Available: http://labrosa.ee.columbia.edu/matlab/rastamat

TABLE I
NUMBERS OF TRAINABLE PARAMETERS FOR THE LSTM-BASED AND

BLSTM-BASED ALGORITHMS FOR DIFFERENT ACOUSTIC FEATURES

map the output dimension to one. Each LSTM layer has 512
units, and each BLSTM layer has 300 units. The LSTM- and
BLSTM-based models are used to explore causal and non-causal
SNR estimations, respectively. The numbers of trainable param-
eters for these two models under different acoustic features are
listed in Table I, and they are comparable.

The models are trained using the Adam optimizer [20] with a
learning rate of 0.001. The minibatch size is set to 64 at the
utterance level. Within a minibatch, all training samples are
padded with zeros to have the same number of time steps as
the longest sample. The algorithm is run for 50 epochs, and the
best model is selected by cross validation. The L1-norm is used
to define the loss function:

L(SNR,̂SNR) =
1

M

M∑
m=1

∣∣∣SNR(m)− ̂SNR(m)
∣∣∣ (5)

where SNR(m) and ̂SNR(m) denote the target and predicted
SNR of frame m, respectively. M is the number of frames in an
utterance.

B. Frame-Level SNR Estimation

We aim to predict the frame-level SNR defined in Eq. (2). The
frame length is 20 ms with 10 ms frame shift, and all signals are
sampled at 16 kHz. The range of the SNR value is (−∞,∞). The
infinite value range complicates SNR estimation. In this study,
the SNR to be estimated is limited to the dB range of [−30, 30],
i.e., it will be set to -30 dB for any values lower than -30, and
to 30 dB for any values higher than 30. This range should be
sufficient in practice.
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C. Utterance-Level SNR Estimation

As a frame-level estimator, the proposed algorithm readily
leads to an utterance-level SNR estimator. To calculate the
utterance-level SNR, we assume speech and noise are uncorre-
lated, which is a common assumption. Based on this assumption,
we have:

|Y (m, c)|2 = |S(m, c)|2 + |N(m, c)|2 , (6)

where Y denotes the mixture. According to Eq. (2) and Eq. (6),
the estimated noise energy at frame m is given by:

ÊN (m) =
EY (m)

10
̂SNR(m)

10 + 1
(7)

where EY (m) =
∑

c |Y (m, c)|2, and ̂SNR(m) denotes the
frame-level SNR obtained by the proposed methods. Then, the
estimated speech energy at frame m is obtained as follows:

ÊS(m) = EY (m)− ÊN (m) (8)

Finally, the utterance-level SNR in dB is estimated by:

̂SNR = 10 log10

∑
m ÊS(m)∑
m ÊN (m)

(9)

IV. EXPERIMENTAL SETUP

A. Data Preparation

We evaluate the proposed algorithm on the WSJ0 SI-84
dataset [31], which includes 7138 utterances from 83 speakers
(42 males and 41 females). Six (three males and three females) of
these speakers are randomly selected and set aside for testing. In
other words, 77 remaining speakers are used to train the model.
We also hold out 150 randomly selected utterances from the
77 training speakers to create a validation set with a babble
noise from the NOISEX-92 dataset [37]. We use the 10,000
noises from a sound effect library,6 which has a total duration
of about 126 hours, as the training noise set. For testing, we use
six noises, i.e., babble and cafeteria noise from an Auditec CD,7

factory and speech shape noise (SSN) from NOISEX-92, and
park and traffic noise from the DEMAND noise set [36]. These
test noises are selected to represent the kinds encountered in
practical situations. The training set contains 100,000 mixtures,
and the total duration is about 160 hours. To generate a training
mixture, we mix a randomly selected training utterance and
a random segment from the 10,000 training noises. The SNR
is randomly sampled from -5 dB to 10 dB with a step size of
1 dB. The validation set contains 800 utterances. The SNR of the
validation utterances is randomly selected from -5 dB to 10 dB
with a step size of 1 dB, which is the same as in the training
set. The test set includes 1,200 mixtures generated from 25 ×
6 utterances of the 6 untrained speakers. The test set SNR is
randomly selected from -10 dB to 15 dB with a step size of
5 dB. Note that speech and noise signals are different between
training and testing, and two test SNRs are not included in the
training set.

6[Online]. Available: https://www.soundideas.com
7[Online]. Available: http://www.auditec.com

B. Metrics

The accuracy of the SNR estimation is commonly measured
by mean absolute error (MAE) between true SNR and estimated
SNR, defined as:

MAE =
1

M

M∑
m=1

∣∣∣SNR(m)− ̂SNR(m)
∣∣∣ (10)

For frame-level SNR estimation, M indicates the total number
of frames of all the utterances in an evaluation corpus. For
utterance-level SNR estimation, MAE measures the average
error of all utterances of an evaluation corpus. The evaluation
metric is aligned with the loss function (see Eq. (5)).

We also use Pearson’s Correlation Coefficient (PCC) and
Spearman’s Rank Correlation (SRC) to complement MAE. PCC
is a correlation coefficient between the true SNR and an esti-
mated SNR given by Eq. (11), where an upper bar indicates
the mean and ̂SNR indicates estimated SNR. The closer PCC
is to 1, the stronger is the correlation between true SNRs and
estimated SNRs. SRC is similar to the PCC, but measured in
terms of ranked values between true SNRs and estimated SNRs.
While PCC assesses the linear relationship, SRC evaluates the
monotonic relationship, whether it is linear or not. In the fol-
lowing sections, PCC and SRC are displayed in percentage.

C. Baseline Systems for Comparison

We compare the proposed frame-level SNR estimators with
three strong baselines.

1) Power spectral density (PSD) baseline. This recent base-
line uses a minimum mean-square error estimator to
predict the clean speech PSD [24]. The ratio of speech
PSD and noisy speech power in each frame is utilized to
estimate the frame-level SNR.

2) Speech enhancement (SE) baseline. To our knowledge,
no frame-level SNR estimator exists that is based on deep
learning. Since an SE algorithm outputs estimated clean
speech at every frame, it can be readily converted to a
frame-level SNR estimator. This SE baseline uses DNN
to predict the the ideal ratio mask (IRM) of speech for
enhancement. The deep learning structure used is the same
as the BLSTM-based model, except that the output layer
has 161 units with the sigmoidal activation function. The
input feature is MRCG, the best feature proposed in [2].
After obtaining an estimated IRM, the estimated energies
of speech and noise in a frame are used to calculate frame-
level SNR.

3) SE+ baseline. DNN based speech enhancement algo-
rithms typically output a speech estimate, not a noise
estimate [38]. As SNR is equally sensitive to speech
and noise levels, we propose another SE baseline, called
SE+, that predicts both the speech IRM and the noise
IRM. We use LSTM and BLSTM to create causal and
non-causal SE+ versions, referred to as the LSTM-SE+
and BLSTM-SE+, respectively. The corresponding input
features are MRCG-causal and MRCG. Different from the
SE baseline, the output layer has 161×2 units.

Authorized licensed use limited to: The Ohio State University. Downloaded on September 15,2021 at 12:46:57 UTC from IEEE Xplore.  Restrictions apply. 

https://www.soundideas.com
http://www.auditec.com


2882 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

For SE and SE+ baselines, the mean squared error loss is
used, and it is defined in terms of the difference between the
IRM and an estimated IRM. The models are trained using the
Adam optimizer [20] with a learning rate 0.001, and run for 50
epochs. The best model is selected by cross validation.

Many methods have been proposed to perform utterance-level
SNR estimation. We compare the proposed utterance-level SNR
estimators with six representative baselines, including tradi-
tional and DNN based methods.

1) WADA baseline. This algorithm is a commonly used esti-
mator based on Waveform Amplitude Distribution Anal-
ysis (WADA) [17].

2) CASA baseline. The CASA-based method [25] performs
IBM estimation to identify speech-dominant and noise-
dominant T-F units as described in Section I.

3) SE. This algorithm is the same as the corresponding
baseline for frame-level SNR estimation. After obtaining
an estimated speech IRM, the energies of speech and
noise at the utterance level are estimated to calculate the
utterance-level SNR.

4) BLSTM-SE+. As the utterance-level SNR is estimated
over the whole mixture, the non-causal BLSTM-SE+ al-
gorithm is proposed as another baseline.

5) Residual-based. As described in Section I, this baseline
by Dong and Williamson [7] uses noise residuals and a
two-stage deep-learning model to estimate utterance-level
SNR.

6) Papadopoulos et al. baseline. As described in Section I,
this channel adapted DNN method [29] employs energy
ratio features and i-vectors for utterance-level SNR esti-
mation.

V. FEATURE EVALUATION RESULTS

In this section, we systematically examine each feature indi-
vidually and feature combinations. For feature evaluations, both
the LSTM-based and BLSTM-based models are employed.

A. Single Features

Table II shows SNR estimation results in terms of MAE and
PCC/SRC (shown in parentheses) evaluated on 18 individual
features for the LSTM-based and BLSTM-based models. The
features in the table are listed in the order of the MAE value from
low to high for the LSTM-based model. For LSTM-based model,
the three best features are MRCG, MAG, and MRCG-causal.
MRCG is better than MRCG-causal on MAE, PCC and SRC
by 0.1 dB, 0.2 and 0.3, respectively, which indicates that, for
the LSTM-based model, future information is helpful for SNR

TABLE II
SNR ESTIMATION RESULTS IN TERMS OF MAE AND PCC/SRC (IN

PARENTHESES) FOR LSTM-BASED AND BLSTM-BASED MODELS EVALUATED

ON INDIVIDUAL FEATURES. THE ‘CAUSAL’ COLUMN INDICATES WHETHER THE

ALGORITHM IS CAUSAL

estimation. Although MRCG achieves the best performance, it is
a non-causal feature, unable to estimate frame-level SNR in real
time. It is not surprising that the performances of MRCG and
MRCG-causal are better than GF, which is used to build MRCG
and MRCG-causal with additional contextual information. It is
worth noting that the simple MAG feature is a pretty well causal
feature. A log version of MAG is evaluated in [6] for speech
separation and it is just slightly worse than LOG-MEL.

For the BLSTM-based algorithm, MAE and PCC/SRC re-
sults are better than those of the LSTM-based algorithm, to be
expected as BLSTM captures both past and future information.
The three best features are GF, MRCG, and MRCG-causal. The
performances of MRCG and MRCG-causal are almost identical,
different from the results in LSTM-based model. The likely
reason is that BLSTM can make full use of future information,
hence filling the gap between these two features. Interestingly,
the GF feature performs better than MRCG and MRCG-causal,
probably because contextual information extracted in MRCG
and MRCG-causal is not as effective as learned by BLSTM.

Table II shows that the noise-robust features of SSF, RAS-
MFCC, PNCC, RASTA-PLP, GFMC, and PITCH generally
perform worse than other features. These features are designed
for robust speech separation or automatic speech recognition
(ASR), making them relatively insensitive to noise in a noisy
speech signal. However, the sensitivity to noise is important
for SNR estimation, as SNR is determined by both speech and
noise levels. Thus the noise-robust features may not be suitable

PCC =

M∑
m=1

(
SNR(m)− SNR(m)

) (
̂SNR(m)−̂SNR(m)

)
√

M∑
m=1

(
SNR(m)− SNR(m)

)2√ M∑
m=1

(
̂SNR(m)− ̂SNR(m)

)2
(11)
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Fig. 2. Magnitude response of causal features under Group Lasso.

for SNR estimation. We point out that the WAV feature, the
raw waveform input, performs quite well and achieves the best
results in park and traffic noises for the LSTM-based model. But
it is an ineffective feature for speech separation [6], consistent
with our explanation regarding noise robustness.

B. Feature Combinations

One feature uncovers certain characteristics of noisy speech.
For example, MRCG is designed for speech separation, and
PNCC and SSF are designed for robust ASR. A proven way for
further improvement is to combine features that complement
each other. We evaluate feature combinations to boost SNR
estimation performance. Here, two feature combination methods
are employed. The first is Group Lasso [44], which has been
used to find complementary features for speech separation [6],
[2], [40]. The second is SFFS [32], which also has been used for
feature selection in speech separation [6].

For the LSTM-based model, we only examine causal features
to ensure that the algorithm can work in real time. So, the features
are WAV, MFCC, LOG-MEL, MRCG-causal, PLP, RASTA-
PLP, RAS-MFCC, GF, GFCC, GFMC, AC-MFCC, GFB, AMS,
and MAG. For the BLSTM-based model, all features except
MRCG-causal are investigated.

1) Group Lasso: The Group Lasso objective function is de-
fined as:

αλ = argmin
α

∥∥∥∥∥
K∑

k=1

Xkαk − y

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖αk‖2 (12)

α =
[
αT

1 ,α
T
2 , . . . ,α

T
K

]T
(13)

where ‖ · ‖2 denotes the Euclidean norm, and y, a vector of
N frames, is the desired response indicating target SNR in this
paper. K is the number of the features. Xk, a N ×Dk matrix,
indicates the k-th feature, whereDk indicates the feature length.
αk, a Dk-dimensional vector, indicates feature coefficients. λ is
a parameter to control sparsity in groups of coefficients.

To do feature selection, all the features (14 types of features
for causal SNR estimation and 17 types for non-causal SNR
estimation) are concatenated together to form a long feature
vector, and each feature type is defined as a group. Then for
a fixed λ we can get αλ through Eq. (12) on the validation
set. αk with small or zero values means that the feature Xk

contributes little to the SNR estimation in the presence of the
other groups. Features shall be selected if the magnitudes of the
feature coefficients are greater than zero.

Fig. 2 and Fig. 3 show the magnitudes of average Group Lasso
coefficients, where λ = 0.2 is used. In Fig. 2, MRCG-causal,
GFB, and MAG are the only features with significant responses,

Fig. 3. Magnitude response of all features, except for MRCG-causal, under
Group Lasso.

and all other features have zero or negligible responses. Accord-
ingly, we use MRCG-causal+GFB+MAG as the complementary
feature set of Group Lasso for the LSTM-based model. In Fig. 3,
MRCG and PITCH are the only features with significant re-
sponses. Hence, MRCG+PITCH are used as the complementary
feature set of Group Lasso for the BLSTM-based model. It
appears that Group Lasso favors higher-dimensional features
(see Table I).

2) SFFS: The SFFS algorithm [32] starts with an empty
set and systematically adds and drops features until a desired
number of features is selected. Because the accuracy number of
the features is unknown, we adopt the modified version proposed
in [6], where the algorithm will stop when no improvement is
achieved by adding more features. The SFFS algorithm is shown
in Algorithm 1, where J(Oj) denotes the MAE performance on
the entire validation set and Oj indicates the input feature set.

Fig. 4 and Fig. 5 show the state of the selected features
in each step of the SFFS algorithm with the LSTM-based
and BLSTM-based models, respectively. For the LSTM-based
model, the feature set obtained by SFFS consists of MAG, GFB,
MRCG-causal, GF, and GFCC. For the BLSTM-based model,
the features selected are GF, LOG-MEL, AMS, and PLP.
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TABLE III
FRAME-LEVEL SNR ESTIMATION RESULTS IN MAE AND PCC/SRC FOR FEATURE COMBINATIONS WITH THE LSTM-BASED MODEL

TABLE IV
FRAME-LEVEL SNR ESTIMATION RESULTS IN MAE AND PCC/SRC FOR FEATURE COMBINATIONS WITH THE BLSTM-BASED MODEL

Fig. 4. Steps in the LSTM-based model with SFFS.

Fig. 5. Steps in the BLSTM-based model with SFFS.

3) Feature Combination Results: We compare the perfor-
mances of complementary features with the best single feature.
It should be noted that since MRCG is non-causal, we designate
MAG as the best single feature associated with the LSTM-based
model. The results of the LSTM-based and BLSTM-based
models are shown in Tables III and IV, respectively. In both
algorithms, the feature set obtained by the SFFS algorithm
achieves the best performances in all noise conditions.

For the LSTM-based model, the feature set selected by Group
Lasso is MAG+GFB+MRCG-causal, and the SFFS feature set
is MAG+GFB+MRCG-causal+GF+GFCC. The SFFS selected
set has two more features (i.e. GF and GFCC) than the Group
Lasso selected set. By adding these two features, the average
MAE is reduced by 0.12 dB. The biggest improvement occurs
for SSN noise, where MAE is reduced by 0.3 dB. On average,
the SFFS feature set reduces MAE by 0.38 dB over MAG, or
about 12% relative improvement.

In Table IV, the MAE performance of the SFFS feature set is
0.15 dB better than the GF feature. The set selected by Group
Lasso (MRCG+PITCH) is worse than the GF feature; the aver-
age MAE with MRCG is 2.63 dB (Table II), and after combining
with PITCH, it increases to 3.86 dB. The reason is that pitch
is difficult to track, especially for babble noise which combines
many speech utterances, and the inaccurate PITCH feature drags
the performance of the feature set. As Group Lasso is a linear
regression algorithm, it does not seem to handle the nonlinear
relationship between input features and the target SNR well.

VI. SNR ESTIMATION RESULTS

In this section, the evaluation and comparison results are first
presented for frame-level SNR estimation, and then utterance-
level SNR estimation. The generalization of the proposed meth-
ods in unseen corpus is also explored.

A. Frame-Level SNR Evaluation

Table V shows the frame-level MAE and PCC/SRC results
under different noise conditions for the proposed models as well
as four comparison baselines. For the LSTM- and BLSTM-
based algorithms the input features are MAG+GFB+MRCG-
causal+GF+GFCC and GF+LOG-MEL+AMS+PLP (see Sec-
tion V-B), respectively.

The proposed algorithms obtain the best performances on
most conditions in both causal and non-causal settings. For
the causal system, the average MAE value of the LSTM-based
algorithm is 2.9 dB, which is 3.8 dB and 0.25 dB better than
the PSD and LSTM-SE+ baselines, respectively, representing
56.7% and 7.9% relative improvement. For the non-causal sys-
tem, the average MAE value of the BLSTM-based algorithm is
2.41 dB, which is 0.37 better than the BLSTM-SE+ baseline.
For PCC and SRC, the deep-learning based methods achieve
comparable results, which are significantly better than PSD.
When a background noise is non-stationary or SNR is low, the
PSD baseline makes large estimation errors.

Fig. 6 plots the frame-level SNR estimation results in MAE
for different deep learning based methods with respect to frame-
level SNR. The proposed BLSTM-SE+ baseline obtains the
best performance in the range of [-20 dB, 0 dB], and the
proposed BLSTM-based algorithm achieves the best results in
other ranges. The performances of the SE and the BLSTM-SE+
baselines are close in low SNRs (<5 dB). As SNR increases,
the performance gap becomes larger, likely because the SNR
is sensitive to the estimated noise, especially at high SNRs.
Unlike the BLSTM-SE+ baseline, the SE baseline calculates
a noise estimate from the predicted speech. On the other hand,
the algorithms in Fig. 6 share a trend: when the SNR is less than
5 dB, MAE increases with the decrease of SNR; when SNR is
greater than 10 dB, MAE increases with the increase of SNR. In
low SNR conditions, speech is difficult to estimate, and in high
SNR conditions, noise is difficult to estimate. Around 5-10 dB
is where all SNR estimators achieve the best performance.
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TABLE V
FRAME-LEVEL SNR ESTIMATION RESULTS IN MAE AND PCC/SRC UNDER DIFFERENT NOISE CONDITIONS

TABLE VI
FRAME-LEVEL SNR ESTIMATION RESULTS IN MAE AND PCC/SRC UNDER DIFFERENT NOISE CONDITIONS

Fig. 6. Frame-level SNR estimation results in MAE for different methods with
respect to frame-level SNR.

Furthermore, we use the feature set selected by SFFS as the
input of the SE and SE+ baselines for additional comparisons.
In the SE method, the BLSTM and the SFFS feature set are used
to estimate the speech IRM (referred to as BLSTM-SFFS-SE).
For SE+, the MRCG feature is replaced by the SFFS feature
set to generate another two baselines: LSTM-SFFS-SE+ and
BLSTM-SFFS-SE+. The results are shown in Table VI. Compar-
ing with the results in Table V, we find that the SFFS feature set
produces slightly better results than the MRCG feature. Directly
estimating SNR achieves lower estimation errors than indirect
SNR estimation by first estimating the IRM, although PCC/SRC
results are similar. This is likely because MAE is used to measure
training loss in direct estimation.

B. Utterance-Level SNR Estimation

In this part, we present utterance-level SNR estimation results
for the proposed BLSTM-based algorithm and six comparison
baselines. The results of the proposed method are calculated
using the feature set of GF+LOG-MEG+AMS+PLP (see Sec-
tion V-B). It should be noted that, for the comparison with
Papadopoulos et al. [29], we use their test set in order to avoid

TABLE VII
UTTERANCE-LEVEL SNR ESTIMATION RESULTS IN MAE AND PCC/SRC

ACROSS NOISES

TABLE VIII
UTTERANCE-LEVEL SNR ESTIMATION RESULTS IN MAE FOR

PAPADOPOULOS et al. AND PROPOSED METHODS UNDER EIGHT NOISES

SNR estimation inaccuracies caused by our implementation of
their method.

Utterance-level SNR estimation results are shown in Table VII
and VIII. Table VII shows the average results across all test
noises. To obtain PCC/SRC statistics at the utterance level,
Eq. (11) is calculated over the entire evaluation set with 6
input SNRs. Overall the proposed algorithm achieves the best
results across all SNR conditions. The second best algorithm is
BLSTM-SFFS-SE+. The average MAE of the proposed algo-
rithm is 0.27 dB, about 0.09 dB better than the BLSTM-SFFS-
SE+ which represents 25% relative improvement. Looking
closer at each SNR condition, the MAEs of the SE+ and the pro-
posed algorithm are close at low SNRs. As the SNR increases,
the MAE performance gap becomes larger, which is consistent
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TABLE IX
UTTERANCE-LEVEL SNR ESTIMATION RESULTS IN MAE AND PCC/SNR FOR

REVISED VERSIONS OF THE RESIDUAL-BASED METHOD

with the trends shown in Fig. 6. The proposed algorithm obtains
the best performance in the range of 0−15 dB; for example, at
5 dB MAE is 0.13 dB. The CASA algorithm depends on whether
noisy T-F units can be accurately classified, and it performs rel-
atively poorly in low or high SNR conditions. WADA performs
reasonably at relatively high SNRs. But in low SNR conditions,
noisy speech does not follow the Gamma distribution assumed
by WADA, yielding poor results. The Residual-based method
shows difficulty to estimate utterance-level SNR using noise
residuals alone. Table VIII shows that the proposed algorithm
is substantially better than the Papadopoulos et al. algorithm,
which uses several energy ratio features and i-vectors extracted
from a noisy utterance as the inputs of DNN for utterance-level
SNR estimation. On average, the MAE of the proposed algo-
rithm is 1.6 dB better than the Papadopoulos et al. method.
The results indicate that the energy ratio features extracted from
noisy speech are insufficient for predicting utterance-level SNR
accurately.

For further comparisons, we revise the Residual-based model
in the following ways for a deeper examination: (1) Replace
its DNN with the BLSTM used in our methods; (2) Replace
its residual-based feature with the feature set selected by SFFS;
(3) Perform both (1) and (2). These three revised methods are
referred to as Residual-BLSTM, Residual-SFFS, and Residual-
BLSTM/SFFS, respectively. The results are shown in Table IX.
Residual-BLSTM/SFFS achieves the best results. Although they
are better than the original Residual-based method, they are still
substantially worse than the proposed method, demonstrating
that our overall algorithm is responsible for its superior perfor-
mance.

We also replace the BLSTM used in our model with the DNN
used in Papadopoulos et al. so that the two methods use the same
neural network, but different acoustic features. This variant of
our method is denoted by “Proposed-DNN,” and its results are
shown in Table VIII. The results in the last column of the table
demonstrate that the BLSTM used in our model outperforms the
DNN used by Papadopoulos et al.

C. Evaluation on Untrained Corpus

In the above experiments, the speakers and speech signals in
the test set are not included in the training set, but the training
and test utterances belong to the same corpus (WSJ0 SI-84)
with similar recording conditions. In this section, we explore
the robustness of supervised SNR estimation methods on an
untrained corpus. The test set is generated in the same way except
that 150 utterances are from the TIMIT corpus [11] rather than
WSJ0 SI-84.

TABLE X
FRAME-LEVEL SNR ESTIMATION RESULTS IN MAE AND PCC/SRC ON

TIMIT CORPUS

TABLE XI
UTTERANCE-LEVEL SNR ESTIMATION RESULTS IN MAE AND PCC/SRC ON

TIMIT CORPUS

Frame-level and utterance-level SNR estimation results aver-
aged across all noises are shown in Tables X and XI. Compared
with Tables V and VII, the performance of deep learning based
algorithms is decreased. On the other hand, the proposed meth-
ods still obtain the best results at most SNR conditions. These
evaluation results are consistent with a recent observation that
deep learning based methods have difficulty to generalize to new
corpora, mainly due to channel mismatch [28].

VII. CONCLUDING REMARKS

In this paper, we have addressed frame-level SNR estimation,
where recurrent neural networks with LSTM and BLSTM are
trained to perform the estimation. Our algorithm shows substan-
tial improvements over baseline models.

This study has examined a range of acoustic features for
their effectiveness for SNR estimation. The best single features
in the LSTM-based and BLSTM-based models are different,
while MRCG is the best for the LSTM-based model, and GF
performs the best for the BLSTM-based model. As SNR must
be sensitive to noise, noise robust features tend not to work well
for SNR estimation. On the other hand, relatively raw features,
such as GF, WAV and MAG, perform well. We have also found
that feature combinations significantly boost SNR estimation
performance; the best feature combination for the LSTM-based
model is MAG+GFB+MRCG-causal+GF+GFCC, and for the
BLSTM-based model is GF+LOG-MEL+AMS+PLP.

In addition, we have extended the frame-level estimation
to utterance-level SNR estimation, and the proposed method
outperforms other utterance-level SNR estimation methods.

Future research will investigate cross-corpus generalization,
and real-time, light-weight, robust SNR estimation that can be
deployed in practical applications.
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