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Abstract
This study investigates deep learning based signal-to-noise

ratio (SNR) estimation at the frame level. We propose to em-
ploy recurrent neural networks (RNNs) with long short-term
memory (LSTM) in order to leverage contextual information
for this task. As acoustic features are important for deep learn-
ing algorithms, we also examine a variety of monaural features
and investigate feature combinations using Group Lasso and se-
quential floating forward selection. By replacing LSTM with
bidirectional LSTM, the proposed algorithm naturally leads to
a long-term SNR estimator. Systematical evaluations demon-
strate that the proposed SNR estimators significantly outper-
form other frame-level and long-term SNR estimators.
Index Terms: frame-level SNR estimation, long short-term
memory, recurrent neural networks, feature combination.

1. Introduction
As speech is almost always interfered by various noises in real
life, speech processing is a challenging task. SNR, which is
defined as the ratio of signal power to noise power, provides
information about the level of noise present in an original noisy
signal. SNR knowledge is useful for many speech applications,
such as hearing aids [1] and speech enhancement [2].

There are two categories for measuring SNR in a noisy sig-
nal. The first category is short-term SNR, where the short-term
duration is usually in the range of 20 ms to several seconds.
The a priori SNR is a widely used short-term subband SNR
measure, and can be used for speech enhancement directly. The
decision-directed (DD) estimator of Ephraim and Malah [3] is
a common method to estimate the a priori SNR. It performs a
weighted linear combination of two a priori SNR-like com-
ponents. This approach can greatly reduce the variations of
a priori SNR estimates, which helps to reduce musical tones
significantly [4]. In [1], the authors extend three short-term sub-
band SNR estimation algorithms to short-term broadband SNR
estimation under different frame lengths.

The second category defines SNR at the utterance level, re-
ferred to as global or long-term SNR. Long-term SNR consid-
ers the entire signal and provides noise level information for the
whole mixture. The widely used NIST SNR estimator [5] builds
a histogram of short-term signal power of noisy speech to esti-
mate noise and noisy speech distribution. The peak SNR is cal-
culated from estimated distributions. Obviously, the peak SNR
is an overestimation of the real SNR. In [6], Narayanan and
Wang employ computational auditory scene analysis (CASA)
for filtered global SNR estimation. An estimated ideal binary
mask (IBM) is utilized to classifying time-frequency (T-F) units
of noisy speech as noise-dominant or speech-dominant. Energy
within each of these classes of T-F units is summated to derive
the filtered global SNR within the bandwidth of a filterbank.

They also design an SNR converter to transform the estimated
filtered SNR into broadband SNR.

Recently, supervised learning algorithms are proposed to
perform SNR estimation and have achieved substantial im-
provements over traditional methods. Suhadi et al. [7] pro-
posed a data-driven approach where two trained neural net-
works are used to estimate the a priori SNR. In [8], Pa-
padopoulos et al. proposed a channel adapted deep neural net-
work (DNN) that uses energy ratio features and i-vectors to
train a DNN model for global SNR estimation in known and
unknown channel conditions. In [9], the authors estimate the
global SNR using a two-stage approach. The first stage pro-
duces noise residuals from a speech enhancement model. The
second stage uses the noise residuals and a DNN to predict the
global SNR.

In this paper, we investigate short-term broadband SNR es-
timation, where the duration is the frame length (20 ms) or
frame-level SNR estimation. Unidirectional and bidirectional
RNNs are proposed for causal and non-causal SNR estimation,
respectively. Broadly speaking, a deep learning-based model
consists of two main components: models and features [10].
While RNNs are powerful learning machines, input features
need to be sufficiently discriminative [11, 12]. In this paper,
we systematically examine a wide variety of monaural features
for SNR estimation under the LSTM-based and BLSTM-based
models. In addition, since each feature reveals certain charac-
teristics of the speech signal, a set of features can be leveraged
to boost SNR estimation performance. Hence, we further in-
vestigate feature combinations using Group Lasso [13, 11] and
sequential floating forward selection (SFFS) [14, 12] methods.
By substituting BLSTM for LSTM, the proposed algorithm nat-
urally becomes a long-term SNR estimator.

The rest of this paper is organized as follows. We present
our proposed algorithm in Section 2. Experimental setup and
results are presented in Sections 3 and 4, respectively. We con-
clude this paper in Section 5.

2. Algorithm Description
2.1. Computational Objectives

In this study, we aim to predict the frame-level SNR, defined as

SNR(m) = 10 log 10

∑
c |S(m, c)|2∑
c |N(m, c)|2

, (1)

where S(m, c) and N(m, c) refer to clean speech and noise,
respectively, for the T-F unit at time frame m and frequency c.
In this paper, the frame length is 20 ms with 10 ms frame shift
and all mixtures are sampled at 16 kHz. The SNR value to be
estimated is limited to the dB range of [−30, 30], i.e., it will be
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set to -30 dB for any values lower than -30, and to 30 dB for
any values higher than 30.

In order to convert a frame-level SNR estimator to a long-
term SNR estimator, we assume speech and noise are uncorre-
lated, which is a common assumption. Based on this assump-
tion, we have

|Y (m, c)|2 = |S(m, c)|2 + |N(m, c)|2 , (2)

where Y denotes the mixture. According to Equation (1) and
(2), the estimated noise energy at frame m can be estimated by
Equation (3),

ÊN (m) =
EY (m)

10
ŜNR(m)

10 + 1
, (3)

where EY (m) =
∑

c |Y (m, c)|2 and ŜNR(m) denotes the es-
timate of SNR(m). Then, the long-term SNR can be estimated
as:

ŜNR = 10 log10

∑
m

(
EY (m)− ÊN (m)

)
∑

m ÊN (m)
. (4)

2.2. Acoustic Features

In this paper, we systematically examine 18 monaural features
that have been introduced in different areas of speech process-
ing:

• Waveform signal (WAV) [12].
• Mel-frequency cepstral coefficient (MFCC).
• Log-Mel filterbank feature (LOG-MEL).
• Multiresolution cochleagram (MRCG) [11].
• MRCG-causal.
• Perceptual linear prediction (PLP) [15].
• Relative spectral transform of PLP (RASTA-PLP) [16].
• Gammatone feature (GF).
• Gammatone frequency cepstral coefficient (GFCC) [17].
• Gammatone frequency modulation coefficient (GFMC)

[18].
• Relative autocorrelation sequence MFCC (RAS-MFCC)

[19].
• Autocorrelation sequence MFCC (AC-MFCC) [20].
• Power normalized cepstral coefficients (PNCC) [21].
• Gabor filterbank feature (GFB) [22].
• Amplitude modulation spectrogram (AMS) [23].
• Pitch-based feature (PITCH) [11].
• Magnitude spectral feature (MAG).
• Suppression of slowly-varying components and the

falling edge of the power envelope (SSF) [24].

The MRCG is calculated at each frame by smoothing 11
past and future frames in a 64-channel cochleagram. For causal
SNR estimation, we propose the MRCG-causal feature, which
is the same as MRCG except for using 22 past frames and no
future frame for smoothing.

All the features are normalized to zero mean and unit vari-
ance by using the statistics of the training data.

2.3. Network Architecture

An overview of the proposed RNN is shown in Fig. 1. The RNN
has an input layer, four LSTM (or BLSTM) layers, and an out-
put layer. The output layer is a linear layer that is used to map
the output dimension to one. Each LSTM layer has 512 units.
Each BLSTM layer has 300 units. The numbers of parameters
in the LSTM-based and BLSTM-based model are comparable.

Figure 1: Diagram of the proposed frame-level SNR estimation
model. The input to the model is a noisy speech signal. The
output is the frame-level SNR.

The models are trained using the Adam optimizer [25] with
a learning rate of 0.001 and the L1-norm is used to define as the
loss function. The minibatch size is set to 64 at the utterance
level. The algorithms are run for 50 epochs, and the best model
is selected by cross-validation.

3. Experimental Setup
3.1. Data Preparation

We evaluate the proposed models on the WSJ0 SI-84 dataset
[26], which includes 7138 utterances from 83 speakers (42
males and 41 females). We randomly select and set aside six
(three males and three females) of these speakers for testing.
In other words, 77 remaining speakers are used to training the
models. Of the utterances from the 77 training speakers, we
hold out 150 randomly selected utterances to create a validation
set with a babble noise from the NOISEX-92 dataset [27]. For
training, we use the 10,000 noises from a sound effect library1,
which has a total duration of about 126 hours. For testing, we
use six noises, i.e., babble and cafeteria noise from an Auditec
CD2, factory and speech shape noise (SSN) from NOISEX-92,
and park and traffic noise from the DEMAND noise set [28].
Our training set contains 100,000 mixtures, and the total dura-
tion is about 160 hours. To create a training mixture, we mix
a randomly selected training utterance and a random segment
from the 10,000 training noises. The SNR is randomly sampled
from -5 dB to 10 dB with a 1 dB increment. The validation set
contains 800 utterances. The SNR of the validation utterances is
randomly selected from -5 dB to 10 dB with a 1 dB increment,

1https://www.soundideas.com
2http://www.auditec.com
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which is the same as in the training set. The test set includes
1200 mixtures that are created from 25 × 6 utterances of the
6 untrained speakers. The test set SNR is randomly selected
from -10 dB to 15 dB with a 5 dB increment. Note that speech
and noise signals are different between training and testing, and
some of the test SNRs are not used during training.

3.2. Metrics

The accuracy of SNR estimation is measured by mean absolute
error (MAE) between the true SNR and an estimated SNR:

MAE =
1

M

M∑
m=1

∣∣∣SNR(m)− ŜNR(m)
∣∣∣. (5)

For frame-level SNR estimation, M indicates the total num-
ber of frames of all the utterances in an evaluation corpus. For
long-term SNR estimation, MAE measures the average of all
utterances of an evaluation corpus.

3.3. Baseline Systems for Comparison

We compare the proposed frame-level SNR estimator with two
baselines. The first algorithm uses a DNN to predict the ideal ra-
tio mask (IRM) for speech enhancement (SE-based). The deep
learning model used is the same as the BLSTM-based model,
except that the output layer has 161 units with the sigmoidal
activation function. The input feature is MRCG, which is con-
cluded to be the best feature in [11]. After obtaining an es-
timated IRM, the speech and noise energy in a frame can be
readily estimated to calculate the frame-level SNR. The second
algorithm uses a minimum mean-square error (MMSE) estima-
tor to predict the clean speech power spectral density (PSD) [1]
. The ratio of speech PSD and noisy speech power in each frame
is utilized to estimate the frame-level SNR, hence referred to as
PSD-based.

We compare the proposed long-term SNR estimator with
four baselines, i.e., WADA [29], CASA [6], SE-based, and
Residual-based [9]. The SE-based baseline is the same as the
corresponding baseline in frame-level SNR estimation. After
obtaining an estimated IRM, the energy of speech and noise at
the utterance level can be estimated to calculate long-term SNR.

4. Evaluation Results
In this section, we first evaluate individual features and perform
feature combinations. We then evaluate the performance of the
proposed frame-level and long-term SNR estimators and com-
pare with the baseline models.

4.1. Feature Evaluations

4.1.1. Single Features

Table 1 shows the SNR estimation results of the individual fea-
tures using the LSTM-based and BLSTM-based RNN, in the
MAE order for the LSTM model. The BLSTM-based model
performs better than the LSTM-based model, to be expected
as BLSTM can captures both past and future information. The
best single features for LSTM-based and BLSTM-based mod-
els are MRCG and GF, respectively. MRCG performs 0.1 dB
better than MRCG-causal for the LSTM-based model. For the
BLSTM-based model, the performances of these two features
are close, as expected.

The noise-robust features of SSF, RAS-MFCC, PNCC,
RASTA-PLP, GFMC, and PITCH are generally worse than

Table 1: SNR estimation results in terms of MAE for LSTM-
based and BLSTM-based models evaluated on individual fea-
tures. The ‘Causal’ column indicates whether the algorithm is
causal.

Feature LSTM model BLSTM model
MAE Causal MAE Causal

MRCG 3.197 N 2.633 N
MAG 3.276 Y 2.641 N

MRCG-causal 3.288 Y 2.638 N
WAV 3.291 Y 2.748 N

LOG-MEL 3.353 Y 2.727 N
MFCC 3.592 Y 2.921 N

SSF 3.620 N 3.025 N
PLP 3.625 Y 2.796 N

AC-MFCC 3.729 Y 3.108 N
GF 3.777 Y 2.556 N

GFB 3.838 Y 3.516 N
GFCC 3.843 Y 2.694 N

RAS-MFCC 3.923 Y 3.303 N
RASTA-PLP 4.344 Y 3.452 N

AMS 4.825 Y 4.067 N
PNCC 4.970 N 4.660 N
GFMC 5.375 Y 4.049 N
PITCH 6.930 N 6.412 N

other features. The reason may be that these features are de-
signed for robust speech separation or automatic speech recog-
nition (ASR), potentially making them relatively insensitive to
the level of noise in a noisy speech signal. The sensitivity to
noise level is important for SNR estimation, as SNR is deter-
mined by both speech and noise levels. Therefore, the noise-
robust features are not robust to SNR estimation. It is inter-
esting to note that the WAV feature, the raw waveform input,
performs quite well for SNR estimation. This is consistent with
the above argument regarding noise robustness.

4.1.2. Feature Combinations

Individual features are designed to reveal certain characteris-
tics of noisy speech. The combination of features may boost
SNR estimation performance. In this paper, two feature selec-
tion algorithms are used to explore feature combinations. For
the LSTM-based model, we only use causal features to ensure
that the algorithm can work in real time. The feature set used
is {WAV, MFCC, LOG-MEL, MRCG-causal, PLP, PASTA-
PLP, GF, GFCC, GFMC, AC-MFCC, GFB, AMS, MAG}. All
features except MRCG-causal are used in the BLSTM-based
model.

The first feature combination algorithm is Group Lasso
[13]. In [12, 11, 30], Group Lasso is used to find complemen-
tary relations between features. After performing Group Lasso
on the features, we find that MRCG-causal, GFB, and MAG are
the only features with significant responses and all other fea-
tures have zero or negligible responses. Accordingly, we use
MRCG-causal+GFB+MAG as the complementary feature set
from Group Lasso in the LSTM-based model. For the BLSTM-
based model, MRCG and PITCH are the features with signifi-
cant responses. Hence, MRCG and PITCH are used as the com-
plementary feature set from Group Lasso in the BLSTM-based
model.

The SFFS algorithm [14] systematically adds and drops
features until a desired number of features is selected. In this
paper, the desired number of the features is unknown. We
adopt the modified version proposed in [12], where the algo-
rithm will stop when no improvement is achieved by adding the
next feature. For the LSTM-based model, the feature set ob-
tained by SFFS consists of MAG, GFB, MRCG-causal, GF, and
GFCC. For the BLSTM-based model, the feature set selected is
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Table 2: SNR estimation results in MAE for feature combina-
tions with LSTM-based model.

Method Noise Avg.babble cafeteria park traffic factory SSN
MAG 3.98 3.80 2.73 2.46 3.77 2.96 3.28

Group Lasso 3.87 3.46 2.46 2.18 3.42 2.71 3.02
SFFS 3.44 3.42 2.38 1.91 3.17 2.33 2.77

Table 3: SNR estimation results in MAE for feature combina-
tions with BLSTM-based model.

Method Noise Avg.babble cafeteria park traffic factory SSN
GF 3.04 2.85 2.61 1.92 2.79 2.15 2.56

Group Lasso 6.83 4.28 3.23 2.47 3.51 2.82 3.86
SFFS 2.90 2.81 2.03 1.82 2.75 2.15 2.41

GF+LOG-MEL+AMS+PLP.
We compare the performance of feature combinations with

that of the best single feature. It should be noted that since
MRCG is a non-causal feature, we select MAG as the best sin-
gle feature associated with the LSTM-based model. The results
of the LSTM-based and BLSTM-based model are shown in Ta-
bles 2 and 3, respectively. In both algorithms, the feature sets
from the SFFS algorithm obtain the best performance under all
noise conditions. For the LSTM-based model, the SFFS fea-
ture set has two more features than the Group Lasso feature set.
By adding GF and GFCC, the average MAE is reduced by 0.25
dB. Babble noise achieves the biggest improvement among all
noises, and it has decreased MAE by 0.43 dB. On average, the
SFFS feature set results in 0.51 dB improvement over the MAG
feature. In Table 3, the BLSTM algorithm using SFFS feature
set is 0.15 dB better than using the single best feature of GF.
The average MAE with the MRCG feature is 2.63 dB (see Ta-
ble 1). After combining the PITCH feature, the average MAE is
increased to 3.86 dB. The reason is pitch is hard to track, espe-
cially for babble noise which combines many speech utterances,
and the inaccurate PITCH feature would decrease the perfor-
mance of a feature set. As Group Lasso is a linear regression
algorithm, it may not be strong enough to handle the nonlinear
relationship between input features and the target SNR.

4.2. SNR Estimation

4.2.1. Frame-level Estimation

Table 4 shows the frame-level results in terms of MAE of the
proposed LSTM-based algorithm and the baseline models for
different noises. In the table, each result represents the aver-
age of the test SNRs. The features used are the best feature
sets selected through SFFS feature combinations, which are
MAG+GFB+MRCG-causal+GF+GFCC for the LSTM-based
algorithm and GF+LOG-MEL+AMS+PLP for the BLSTM-
based algorithm (see Sect. 4.1).

The proposed BLSTM-based algorithm shows the best per-
formance under all noise conditions. On average, the MAE

Table 4: Frame-level SNR estimation results in MAE for differ-
ent methods under different noise conditions.

Method Noise Avg.babble cafeteria park traffic factory SSN
PSD-based 8.70 6.39 7.96 5.11 6.56 5.41 6.69
SE-based 5.54 5.36 2.83 2.93 4.65 4.54 4.31

LSTM-based 3.44 3.42 2.38 1.91 3.17 2.33 2.77
BLSTM-based 2.90 2.81 2.03 1.82 2.75 2.15 2.41

value of the proposed BLSTM-based algorithm is 2.41 dB,
which is 4.28 dB better than the PSD-based algorithm and 1.9
dB better than the SE-based algorithm. The algorithm based
on BLSTM is about 0.36 dB better than the algorithm based on
LSTM. However, the LSTM-based algorithm is a causal system
that can estimate SNR in real time. When a background noise is
non-stationary or SNR is low, the PSD-based algorithm makes
large estimation errors. Compared with the SE-based algorithm
which predicts the IRM as an intermediate result, the proposed
algorithms directly estimate the SNR and obtain better results.

Table 5: Long-term SNR estimation results in MAE for different
methods.

Method SNR (dB) Avg.-10 -5 0 5 10 15
WADA 5.78 2.41 0.97 0.95 1.11 1.76 2.16
CASA 2.44 1.29 0.78 0.91 1.39 2.12 1.49

Residual-based 2.47 1.37 2.42 2.49 2.08 2.63 2.24
SE-based 0.71 0.35 0.19 0.25 0.32 0.48 0.38
Proposed 0.58 0.34 0.15 0.13 0.15 0.29 0.27

4.2.2. Long-term Estimation

The estimation results of long-term SNR for different methods
are shown in Table 5, where each MAE value represents the av-
erage of different noises. The results of the proposed method are
calculated using the BLSTM-based model and the feature set of
GF+LOG-MEG+AMS+PLP (see Sect. 4.1). The proposed al-
gorithm achieves the best results across all test SNRs. The sec-
ond best algorithm is SE-based. It is around 0.1 dB worse than
the proposed algorithm. If we look further at each SNR condi-
tion, the MAEs of the SE-based and the proposed methods are
closest at -5dB, which are 0.35 and 0.34 dB, respectively. As
the SNR increases or decreases, the performance of SE-based
method gradually becomes worse than the proposed method.
The proposed method obtains an optimal MAE performance in
the case of 5 dB, where the MAE is 0.13 dB. The CASA-based
algorithm depends on whether noisy T-F units can be accurately
classified, and it does not always work well, especially in low
SNR conditions. WADA performs reasonably at relatively high
SNRs. But in low SNR conditions, noisy speech does not follow
the Gamma distribution assumed by WADA, resulting in poor
results. The Residual-based method first uses a DNN to predict
a complex ratio mask, and then uses noise residuals to predict
global SNR. It is difficult to estimate global SNR by using noise
residuals alone.

5. Conclusion
In this paper, we have proposed a deep learning algorithm for
frame-level SNR estimation. Our algorithm shows clear im-
provements over previous methods. We have also examined a
wide range of acoustic features for their effectiveness in SNR
estimation and investigated feature combinations using Group
Lasso and SFFS. We have found that feature combinations can
boost SNR estimation performances. Based on the frame-level
SNR estimator, we have additionally derived a long-term SNR
estimator, which outperforms other long-term SNR estimation
methods.
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