IMAGE SEGMENTATION USING LOCAL SPECTRAL HISTOGRAMS

Xiuwen Liu

Dept. of Computer Science
Florida State University
Tallahassee, F1, 32306-4530

liux@cs.fsu.edu

ABSTRACT

We propose a new algorithm for image segmentation.
We use spectral histogram, which is a vector consist-
ing of marginal distributions of responses from chosen
filters as a generic feature for texture as well as inten-
sity images. Motivated by a new segmentation energy
functional, we derive an iterative and deterministic ap-
proximation algorithm for segmentation. Based on the
relationships between different scales and neighboring
windows, we also develop an algorithm which can au-
tomatically detect homogeneous regions in an input
image, which may consist of texture regions. To re-
duce the boundary uncertainty due to the large spa-
tial window used for spectral histograms, we propose a
novel local feature by building precise probability mod-
els based on current segmentation results. We have ap-
plied our algorithm to intensity, texture, and natural
images and obtained good results with accurate texture
boundaries.

1. INTRODUCTION

Segmentation can be defined as a constrained parti-
tion problem. Each partitioned region should be as ho-
mogeneous as possible and neighboring regions should
be as different as possible. To define a perceptually
meaningful homogeneity measure, we use a local spec-
tral histogram, defined as a vector of marginal distri-
butions of responses of chosen filters as a general fea-
ture statistic for intensity as well as texture images.
The spectral histogram has been successfully used to
capture the appearance of texture as well as intensity
images [2],[7],[3]. We then derive an efficient algorithm
by extending Mumford-Shah energy functional for seg-
mentation [4]. Because the solution space for segmen-
tation must be piece-wise constant by the definition,
the Mumford-Shah energy functional becomes [4]:
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where

kri(9) = I_I;J / /R 4 g9(x, y)dzdy

Here |R;| is the area of region R;. There are several
limitations of the energy functional (1). The feature to
be used is limited to the mean value of a region, which is
not sufficient for characterizing texture regions and also
may give undesirable solutions when the mean values
of two regions are very close. Another problem is that
a result obtained by minimizing the energy functional
is unpredictable in regions which cannot be described
by their mean values. Some of problems are resolved
in [6].

In this paper, we extend the model (1) using the
spectral histogram and the associated distance mea-
sure. We develop an algorithm which couples the fea-
ture detection and segmentation steps together by ex-
tracting features based on the currently available seg-
mentation result. We also develop an algorithm which
identifies regional features in homogeneous texture re-
gions automatically and one for boundary localization.

2. SEGMENTATION ALGORITHM

Following the notations used in Mumford and Shah [4],
let R be a grid defined on a planar domain and R;,
1=1,---,n be a disjoint subset of R, I'; be the piece-
wise smooth boundary of R;, and I" be the union of
I, i=1,--- ,n. A feature F; is associated with each
region R;, i = 1,--- ,n. We also define Ry, which is
called background [5], as Rp = R — (R1 U --- Ry).

Based on the energy functional by Mumford and
Shah [4], given an input image I, we define an energy
functional for segmentation as

E(Ri,n) = ARY.i, Z(z,y)em D(Fri(z,v), Fi)—
AF Yier 21 D(Fs, Fj)+
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Here D is a distance measure between a feature at a
pixel location and the feature vector of the region, Ag,
Ar, and Az are weights that control the relative con-
tributions of the corresponding terms.

The functional given in (2) extends a special case
of the functional by Mumford and Shah [4], as shown
in (1). In (2), the first term encodes the homogeneity
requirement in each region R; and the second term re-
quires that the features of the regions should be as dif-
ferent as possible. The third term requires that bound-
aries of regions should be as short as possible, or as
smooth as possible. The last term is motivated by the
fact that some regions may not be described well by the
selected features and should be treated as background,
which can be viewed as grouping through inhomogene-
ity.

We use spectral histograms as features vectors {3],
ie., Fp,(z,y) = HW((i) o where W((;,)y) is a local neigh-
borhood, the size and ’ghape of which are given by inte-
gration scale W) for segmentation. W) is a prede-
fined neighborhood. A local spectral histogram is de-
fined as the marginal distributions of filter responses.
The size of the input image window is called integration
scale. Because marginal distribution of each filter re-
sponse is a distribution, a similarity measure is defined
as x2-statistic.

Given the energy functional defined in (2) and local
spectral histogram model, we use an iterative but deter-
ministic algorithm. We assume that the feature vectors
for regions, which may be given manually or detected
automatically, are close to the true region vectors. For
a given pixel (z,y) to be updated, we first estimate the
spectral histogram using a window around the pixel
and the local updating rule is given by

mi(z,y) = (1- )‘F)P(X2(HW((s> )7Hi))+
L}’V(x Y )(zlayl)
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Here L’}V(x,y)(x,y) is the number of pixels in N(z,y)
whose current labels are ¢ and N(z,y) is a user-defined
neighborhood, and Ar is a parameter that controls the
relative contributions from the region and boundary
terms. The new label of (z,y) is assigned as the one
that gives the maximum 7;(z,y). A special case of (3)
is for pixels along boundaries between the background
region and a given region because we do not assume any
model for the background region. For pixel (z,y) € Ry,
which is adjacent to region R;, i # 0, if

X2(HW((a) )7Hi) < Ap*xTj,
ERY

we assign label 7 to (z,y). Here T} is a threshold for
region R;, which is determined automatically and Ag
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Fig. 1. Gray-level image segmentation using spectral
histograms. W) is 15 x 15, Ap = 0.2, and Ap = 3.
Two features are given at (32,64) and (96,64). (a) A
synthetic image with size 128 x 128. The image is gen-
erated by adding zero-mean Gaussian noise with dif-
ferent o’s at left and right regions. (b) Initial classifi-
cation result. (c) Segmentation result. Each region is
represented by a manually assigned grey value. All the
pixels are perfectly segmented.

is a parameter which determines relative penalty for
unsegmented pixels. To etimate the probality model
and parameter T3, first feature vectors F; are extracted
from windows centered at given or detected pixel loca-
tions, the size of which is specified by integration scale
W), Then the image is classified using feature vec-
tors JF;, and the classification result is used as the ini-
tial segmentation. We compute the histograms of the
x?-statistic between the computed and given spectral
histograms. Parameter T; is determined by the first
trough after the first peak from its histogram. Based
on the assumption that feature vectors F; are close to
the true feature vectors, we derive a probability model
by assigning zero probability for values larger than T;.
Then the initial segmentation result is refined through
an iterative procedure similar to region growing but
with fixed region features. This results in a fast con-
vergence speed. Because spectral histograms character-
ize texture properties well, we obtain good experimen-
tal results even with this simple procedure. Fig. 1(a)
shows an image consisting of two images with similar
mean values but different variances. Fig. 1(b) shows
the initial classification result and the segmentation re-
sult is shown in Fig. 1(c), where all the pixels are seg-
mented correctly.

3. AUTOMATED SEED SELECTION

In this section, we attempt to develop a solution for
identifying seed points automatically based on the spec-
tral histogram. The basic idea of the proposed method
is to identify homogeneous texture regions within a
given image. The spectral histogram can be defined on
image patches with different sizes and shapes and those



spectral histograms defined on different patches can be
compared using the sirnilarity/dissimilarity measure as
spectral histograms are naturally normalized.

We identify homogeneous texture regions based on
the divergence between two integration scales. Let
W@ be an integration scale larger than W{s) the inte-
gration scale for segmentation. We define the distance
between the two scales centered at pixel (z,y)

¢(s,a) (Ia y) = l)(HW(')(z,y)7 HW(“)(I,y))' (4)

Within a homogeneously defined texture region, (%)
should be small because HW"’ (z,y) and HW® (z,y)
should be similar. We also define a distance measure
between different windows at scale W) within the
window given by W),

) (z,y) = g}a;f)'D(HW(-’)(x,y)7HW(‘)(zl,yl))' (5)
Equation (5) is approximated in implementation using
four corner windows within W(®). Finally, we want to
choose features that are as different as possible from
those already chosen. Suppose we choose n features
already, where, F; = HW(,)(Iwy), fori=1,...,n, we
define

d)(c) (:1:, y) = 1[21'571 D(HW(‘)(z,y)v f,) (6)
We have the following saliency measure
'll)(:l:, y) = (1 - A(7)(AA X w(s’u)(a“a y)+
(1= Xa) x P (z,y))— (7

/\C X w(C)(zv y)

Here A4 and A¢ are parameters to determine the rela-
tive contribution of each term.

To save computation, we compute-1)(z, y) on a coar-
ser grid. Feature vectors are chosen according to the
value of ¥(z,y) until

)‘A X dj(s’a)(zay) + (1 - AA) X w(s,s)(z,y) < TA,

where T4 is a threshold.

4. EXPERIMENTAL RESULTS

Fig. 2 shows the segrentation results for texture im-
ages. First the feature vectors are identified automat-
ically and initial result is then obtained using a mini-
mum distance classifier using the found region features.
As shown in these examples, the texture boundaries are
localized well and all the homogeneous texture regions
are identified by the seed selection algorithm.

Natural images in general consist of many regions
that are not homogeneous texture regions and we are
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Fig. 2. Texture image segmentation. W) is 29 x 29,
W) is 43 x 43, A\¢ = 0.1, Ag = 0.2, Ap = 5.0, A\pr =
0.4, and T4 = 0.20. (a) Input texture image. Here the
representative pixels are detected automatically. (c)
Segmentation result.

interested in some meaningful regions, called region of
interest. This is achieved in our system by identifying
only a few region features. We apply the same algo-
rithm but with one region identified for the two exam-
ples shown in Fig. 3. Fig. 3(a) shows a cheetah image
and the segmentation result is shown in Fig. 3(b). To
show the accuracy of segmented boundary, the result
is embedded into the original image by reducing the
intensity of unsegmented regions. Fig. 3(c) shows a
natural image of a giraffe and Fig. 3(d) shows the seg-
mentation result. Given that our system is generic and
there is no image specific training and filter selection,
our results are comparable with the best available re-
sults.

5. LOCALIZATION OF TEXTURE
BOUNDARIES

Because textures need to be characterized by spatial
relationships among pixels, relatively large integration
windows are needed in order to extract meaningful fea-
tures. The large integration scale we use however re-
sults in large errors along texture boundaries due to
the uncertainty introduced by large windows [1]. For
arbitrary texture boundaries, the errors along bound-
aries can be large even when the overall segmentation
performance is good. For example, Fig. 4(b) shows a
segmentation result using spectral histograms. While
the segmentation error is only 6.55%, visually the seg-
mentation result is intolerable due to large errors along
texture boundaries.

In order to reduce the uncertainties along bound-
aries, we first build a probability model for given m
pixels from a texture region. To capture the spatial re-
lationship, we choose for each texture region a window
as a template. In our case, the template is the same
window from which the region feature F is extracted.
For the selected m pixels, we define the distance be-
tween those pixels and a texture region as the mini-



(b)

Fig. 3. (a) A cheetah image with size 324 x 486. (b)
The segmentation result for (a). (c) A giraffe image
with size 300 x 240. (d) The segmentation result for
(c¢). To demonstrate the accuracy of the results, the
segmentation results are embedded into the original im-
age by lowering the intensity values of the background
region.

mum mean square distance between those pixels and
the template. Based on the obtained result, we build a
probability model for each texture region with respect
to the proposed distance measure. Intuitively, if the m
pixels belong to a texture region, it should match the
spatial relationship among pixels when the m pixels are
aligned with the texture structure.

After the probability model is derived, we use the
local updating equation given in (3) by replacing W((:?y)
by the m pixels in a texture region along its bound-
ary and x? (HW((,) ; H;) by the new distance measure.
Fig. 4(c) shows ‘tyhe refined segmentation result with
m = 11 pixels. The segmentation error is reduced to

(@) ) () ©

Fig. 4. (2) A texture image with size 256x256. (b) The
segmentation result using spectral histograms. The
segmentation error is 6.55%. (c) Refined segmentation
result. The segmentation error is 0.95%.
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0.95% and visually the segmentation result is improved
significantly.

6. CONCLUSION

We have proposed a novel algorithm for segmenting
natural images. By using local spectral histograms, our
algorithm can handle texture as well as non-texture im-
ages in a unified way. One distinctive advantage of our
approach is that our algorithm also provides an explicit
feature for regions which can be used for classification
and recognition. Our boundary location algorithm im-
proves the boundary accuracy significantly.
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