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Abstract

In this paper we present a two-step boundary detection algorithm. The "rst step is a nonlinear smoothing algorithm
which is based on an orientation-sensitive probability measure. By incorporating geometrical constraints through the
coupling structure, we obtain a robust nonlinear smoothing algorithm, where many nonlinear algorithms can be derived
as special cases. Even when noise is substantial, the proposed smoothing algorithm can still preserve salient boundaries.
Compared with anisotropic di!usion approaches, the proposed nonlinear algorithm not only performs better in
preserving boundaries but also has a non-uniform stable state, whereby reliable results are available within a "xed
number of iterations independent of images. The second step is simply a Sobel edge detection algorithm without
non-maximum suppression and hysteresis tracking. Due to the proposed nonlinear smoothing, salient boundaries are
extracted e!ectively. Experimental results using synthetic and real images are provided. ( 1999 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

One of the fundamental tasks in low-level machine
vision is to locate discontinuities in images correspond-
ing to physical boundaries between a number of regions.
A common practice is to identify local maxima in local
gradients of images } collectively known as edge detec-
tion algorithms. The Sobel edge detector [1] consists of
two 3]3 convolution kernels, which respond maximally
to vertical and horizontal edges respectively. Local gradi-
ents are estimated by convolving the images with the two
kernels, and thresholding is then applied to get rid of
noisy responses. The Sobel edge detector is computation-
ally e$cient but sensitive to noise. To make the estima-
tion of gradients more reliable, the image can be convol-
ved with a low-pass "lter before estimation and two

in#uential methods are due to Marr and Hildreth [2]
and Canny [3]. By convolving the image with a Lap-
lacian of Gaussian kernel, the resulting local maxima,
which are assumed to correspond to meaningful edge
points, are zero-crossings in the "ltered image [2]. Canny
[3] derived an optimal step edge detector using varia-
tional techniques starting from some optimal criteria and
used the "rst derivative of a Gaussian as a good approxi-
mation of the derived detector. Edge points are then
identi"ed using a non-maximum suppression and hyster-
esis thresholding for better continuity of edges. As no-
ticed by Marr and Hildreth [2], edges detected at a "xed
scale are not su$cient and multiple scales are essentially
needed in order to obtain good results. By formalizing
the multiple scale approach, Witkin [4] and Koenderink
[5] proposed Gaussian scale space. The original image is
embedded in a family of gradually smoothed images
controlled by a single parameter, which is equivalent to
solving a heat equation with input as the initial condition
[5]. While Gaussian scale space has nice properties and is
widely used in machine vision [6], a major limitation is
that Gaussian smoothing inevitably blurs edges and
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Fig. 1. An example with non-uniform boundary gradients and substantial noise. (a) A noise-free synthetic image. Gray values in the
image: 98 for the left &[' region, 138 for the square, 128 for the central oval, and 158 for the right &]' region. (b) A noisy version of (a) with
Gaussian noise of p"40. (c) Local gradient map of (b) using the Sobel operators. (d)}(f) Smoothed images from an anisotropic
di!usion algorithm [13] at 50, 100, and 1000 iterations. (g)}(i) Corresponding edge maps of (d)}(f), respectively, using the Sobel edge
detector.

other important features due to its low-pass nature. To
overcome the limitation, anisotropic di!usion, which was
proposed by Cohen and Grossberg [7] in modeling the
primary visual cortex, was formulated by Perona and
Malik [8]:

LI

Lt
"div (g(DD+IDD)+I). (1)

Here div is the divergence operator, and g is a nonlinear
monotonically decreasing function and +I denotes the
gradient. By making the di!usion conductance depen-
dent explicitly on local gradients, anisotropic di!usion
prefers intra-region smoothing over inter-region smooth-
ing, resulting in immediate localization while noise is
reduced [8]. Because it produces visually impressive re-
sults, anisotropic di!usion generates much theoretical as
well as practical interest (see Ref. [9] for a recent review).
While many improvements have been proposed, includ-

ing spatial regularization [10] and edge-enhancing an-
isotropic di!usion [11], the general framework remains
the same. As shown by You et al. [12], anisotropic
di!usion given by Eq. (1) is the steepest gradient descent
minimizer of the following energy function:

E(I)"PX

f (DD+IDD) d) (2)

with

g(DD+IDD)"
f @ (DD+IDD)

DD+IDD
.

Under some general conditions, the energy function
given by Eq. (2) has a unique and trivial global minimum,
where the image is constant everywhere, and thus inter-
esting results exist only within a certain period of di!u-
sion. An immediate problem is how to determine the
termination time, which we refer to as the termination
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problem. While there are some heuristic rules on how to
choose the stop time [10,11], in general it corresponds
to the open problem of automatic scale selection. As in
Gaussian scale space, a "xed time would not be su$cient
to obtain good results. Another problem of anisotropic
di!usion is that di!usion conductance is a deterministic
function of local gradients, which, similar to non-max-
imum suppresion in edge detection algorithms, makes an
implicit assumption that larger gradients are due to true
boundaries. When noise is substantial and gradients due
to noise and boundaries cannot be distinguished based
on magnitudes, the approach tends to fail to preserve
meaningful region boundaries.

To illustrate the problems, Fig. 1a shows a noise-free
image, where the gradient magnitudes along the central
square change considerably. Fig. 1b shows a noisy ver-
sion of Fig. 1a by adding Gaussian noise with zero mean
and p"40, and Fig. 1c shows its local gradient magni-
tude obtained using Sobel operators [1]. While the three
major regions in Fig. 1b may be perceived, Fig. 1c is very
noisy and the strong boundary fragment is barely visible.
Fig. 1d}f show the smoothed images by an anisotropic
di!usion algorithm [13] with speci"ed numbers of iter-
ations. Fig. 1g}i show the edge maps of Fig. 1d}f, respec-
tively, using the Sobel edge detection algorithm. While
at the 50th iteration the result is still noisy, the result
becomes meaningless at the 1000th iteration. Even
though the result at the 100th iteration is visually good,
the boundaries are still fragmented and it is not clear how
to identify a `gooda number of iterations automatically.

These problems to a large extent are due to the as-
sumption that local maxima in gradient images are good
edge points. In other words, due to noise, responses from
true boundaries and those from noise are not distinguish-
able based on magnitude. To overcome these problems,
contextual information, i.e., responses from neighboring
pixels, should be incorporated in order to reduce ambi-
guity as in relaxation labeling and related methods
[14}17]. In general, relaxation labeling methods use
pair-wise compatibility measure, which is determined
based on a priori models associated with labels, and
convergence is not known and often very slow in numer-
ical simulations [18]. In this paper, by using an orienta-
tion-sensitive probability measure, we incorporate con-
textual information through the geometrical constraints
on the coupling structure. Numerical simulations show
that the resulting nonlinear algorithm has a non-uniform
stable state and good results can be obtained within a
"xed number of iterations independent of input images.
Also, the oriented probability measure is de"ned on input
data, and thus no a priori models need to be assumed.

In Section 2, we formalize our contextual nonlinear
smoothing algorithm and show that many nonlinear
smoothing algorithms can be treated as special cases.
Section 3 gives some theoretical results as well as numer-
ical simulations regarding the stability and convergence

of the algorithm. Section 4 provides experimental results
using synthetic and real images. Section 5 concludes the
paper with further discussions.

2. Contextual nonlinear smoothing algorithm

2.1. Design of the algorithm

To design a statistical algorithm, with no prior knowl-
edge, we assume a Gaussian distribution within each
region. That is, given a pixel (i

0
, j

0
) and a window

R
(i0, j0)

at pixel (i
0
, j

0
), consisting of a set of pixel locations,

we assume that

P(I
(i0, j0)

, R)"
1

J2pp
R

expG!
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(i0, j0)
!k

R
)2

2p2
R

H, (3)

where I
(i, j)

is the intensity value at pixel location (i, j). To
simplify notation, without confusion, we use R to stand
for R

(i0, j0)
. Intuitively, P(I

(i0, j0)
, R) is a measure of com-

patibility between intensity value at pixel (i
0
, j

0
) and

statistical distribution in window R. To estimate the
unknown parameters of k

R
and p

R
, consider the pixels in

R as n realizations of Eq. (3), where n"DRD. The likeli-
hood function of k

R
and p

R
is [19]
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By maximizing Eq. (4), we get the maximum likelihood
estimators for k

R
and p

R
:

k(
R
"

1

n
+

(i, j)|R

I
(i, j)

, (5a)

p(
R
"

1

Jn
J +

(i, j)|R

(I
(i, j)

!k(
R
)2. (5b)

To do a nonlinear smoothing, similar to selective
smoothing "lters [20,21], suppose that there are M win-
dows R(m), where 1)m)M, around a central pixel
(i
0
, j

0
). Here these R(m)'s can be generated from one or

several basis windows through rotation, which are
motivated by the experimental "ndings of orientation
selectivity in the visual cortex [22]. Simple examples are
elongated rectangular windows (refer to Fig. 6), which are
used throughout this paper for synthetic and real images.
The probability that pixel (i

0
, j

0
) belongs to R(m) can be

estimated from Eqs. (3), (5a) and (5b). By assuming that
the weight of each R(m) should be proportional to the
probability, as in relaxation labeling [14,15], we obtain
an iterative nonlinear smoothing "lter:

It`1
(i0, j0)

"

+
m
P(It

(i0, j0)
, R(m))k( t

R
(m)

+
m
P(It

(i0, j0)
, R(m))

(6)
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1Because the probability measure given by (1) is inversely
related to gradient measure used in most non-linear smoothing
algorithms, (8) is an increasing function instead of a decreasing
function in our method.

A problem with this "lter is that it is not sensitive to weak
edges due to the linear combination. To generate more
semantically meaningful results and increase the sensitiv-
ity even to weak edges, we apply a nonlinear function on
weights, which is essentially same as anisotropic di!usion
[8]:

It`1
(i0, j0)

"

+
m
g(P(It

(i0, j0)
, R(m)))k( t

R
(m)

+
m
g(P(It

(i0, j0)
, R(m)))

. (7)

Here g1 is a nonlinear monotonically increasing function.
A good choice for g is an exponential function, which is
widely used in nonlinear smoothing and anisotropic dif-
fusion approaches:

g(x)"exp(x2/K) (8)

Here parameter K controls the sensitivity to edges [23].
Eq. (7) provides a generic model for a wide range of
nonlinear algorithms, the behavior of which largely de-
pends on the sensitivity parameter K. When K is large,
Eq. (7) reduces to the equally weighted average smooth-
ing "lter. When K is around 0.3, g is close to a linear
function in [0, 1] and Eq. (7) then reduces to Eq. (6).
When K is a small positive number, Eq. (7) will be
sensitive to all discontinuities. No matter how small
the weight of one window can be, theoretically speaking,
if it is nonzero, when tPR, the system will reach
a uniform stable state. Similar to anisotropic di!usion
approaches, the desired results will be time-dependent
and the termination problem becomes a critical issue
for autonomous solutions. To overcome this limitation,
we restrict smoothing only within the window with the
highest probability similar to selective smoothing
[20,21]:

mH" max
1xmxM

(P(I
(i0, j0)

, R(m))). (9)

The nonlinear smoothing through Eq. (9) is desirable
in regions that are close to edges. By using appropriate
R(m)'s, Eq. (9) encodes discontinuities implicitly. But in
homogenous regions, Eq. (9) may produce arti"cial block
e!ects due to intensity variations. Under the proposed
statistical formulation, there is an adaptive method to
detect homogeneity. Based on the assumption that there
are M R(m) windows around a central pixel (i

0
, j

0
), where

each window has a Gaussian distribution, consider the
mean in each window as a new random variable:

k(m)"
1

DR(m)D
+

(i, j)|R(m)

I
(i, j)

. (10)

Because k(m) is a linear combination of random variables
with a Gaussian distribution, k(m) has also a Gaussian
distribution with the same mean and a standard devi-
ation given by

pk(m)"
1

JDR(m)D
p
R

(m). (11)

This provides a probability measure of how likely that
the M windows are sampled from one homogenous re-
gion. Given a con"dence level a, for each pair of windows
R(m1) and R(m2) we have

Dk(m1)!k(m2)D

)minAS
log(1/a)

DR(m1)D
p(
R

(m1),S
log(1/a)

DR(m2)D
p(
R

(m2)B. (12)

If all the pairs satisfy Eq. (12), the M windows are likely
from one homogenous region with con"dence a. Intuit-
ively, under the assumption of a Gaussian distribution,
when we have more samples, i.e., the window R(m) is
larger, the estimation of the mean is more precise and so
the threshold should be smaller. In a region with a larger
standard deviation, the threshold should be larger be-
cause larger variations are allowed.

The nonlinear smoothing algorithm outlined above
works well when noise is not very large. In cases when
signal to noise ratio is very low, the probability measure
given in Eq. (3) would be unreliable because pixel values
change considerably. This problem can be alleviated by
using the mean value of pixels sampled from R which are
close to the central pixel (i

0
, j

0
), or along a certain direc-

tion to make the algorithm more orientation sensitive.
To summarize, we obtain a nonlinear smoothing algo-

rithm. We de"ne M oriented windows which can be
obtained by rotating one or more basis windows. At each
pixel, we estimate parameters using Eqs. (5a) and (5b). If
all the M windows belong to a homogenous region
according to Eq. (12), we do the smoothing using all the
M windows. Otherwise, the smoothing is done only with-
in the most compatible window given by Eq. (9).

2.2. A generic nonlinear smoothing framework

In this section we will show how to derive several
widely used nonlinear algorithms from the nonlinear
smoothing algorithm outlined above. Several early non-
linear "lters [20,21] do the smoothing in a window where
the standard deviation is the smallest. These "lters can be
obtained by simplifying Eq. (3) to

P(I
(i0, j0)

, k( , p( )"
1

J2pp(
C (13)

where C is a constant. Then the solution to Eq. (9) is the
window with the smallest deviation. Recently, Higgins
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and Hsu [24] extended the principle of choosing the
window with the smallest deviation for edge detection.

Another nonlinear smoothing "lter is the gradient-
inverse "lter [25]. Suppose that there is one window, i.e.,
M"1, consisting of the central pixel (i

0
, j

0
) itself only,

the estimated deviation for a given pixel (i, j) in Eq. (5b)
now becomes

p("DI
(i, j)

!I
(i0, j0)

D. (14)

Eq. (14) is a popular way to estimate local gradients.
Using Eq. (13) as the probability measure, Eq. (6) be-
comes exactly the gradient inverse nonlinear smoothing
"lter [25].

Smallest Univalue Segment Assimilating Nucleus
(SUSAN) nonlinear smoothing "lter [26] is proposed
based on SUSAN principle. It is formulated as

It`1
(i0, j0)

"

+
(di, dj)E(0,0)

It
(i0`di, j0`dj)=(i

0
, j

0
, di, dj)

+
(di, dj)E(0,0)

=(i
0
, j

0
, di, dj)

, (15)

where

=(i
0
, j

0
, di, dj)"expA!

r2

2p2
!

(It
(i0`di, j0`dj)!It

(i0, j0)
)2

¹2 B.
Here (i

0
, j

0
) is the central pixel under consideration, and

(di, dj) de"nes a local neighborhood. Essentially, it inte-
grates Gaussian smoothing in spatial and brightness
domains. The parameter ¹ is a threshold for intensity
values. It is easy to see from Eq. (15) that the weights are
derived based on pair-wise intensity value di!erences. It
would be expected that the SUSAN "lter performs well
when images consist of relatively homogenous regions
and within each region noise is smaller than ¹. When
noise is substantial, it fails to preserve structures due to
the pair-wise di!erence calculation, where no geometrical
constraints are incorporated. This is consistent with the
experimental results, which will be discussed later. To get
the SUSAN "lter, we de"ne one window including the
central pixel itself only. For a given pixel (i, j) in its
neighborhood, Eq. (3) can be simpli"ed to

P(I
(i, j)

, R)"C expG!
(I

(i, j)
!k(

R
)2

¹2 H, (16)

where C is a scaling factor. Because now k(
R

is I
(i0, j0)

,
Eq. (6) with the probability measure given by Eq. (16) is
equivalent to Gaussian smoothing in the brightness do-
main in Eq. (15).

Now consider anisotropic di!usion given by Eq. (1).
By discretizing Eq. (1) in image domain with four
nearest-neighbor coupling [13] and rearranging terms,
we have

It`1
(i, j)

"gt
(i, j)

It
(i, j)

#j+
m

g(P(It
(i, j)

, R(m)))k( t
R

(m). (17)

If we have four singleton regions, Eq. (17) is essentially
a simpli"ed version of Eq. (7) with an adaptive learning
rate.

3. Analysis

3.1. Theoretical results

One of the distinctive characteristics of the proposed
algorithm is that it requires spatial constraints among
responses from neighboring locations through coupling
structure as opposed to pair-wise coupling structure.
Fig. 2 illustrates the concept using a manually construc-
ted example. Fig. 2a shows the oriented windows in
a 3]3 neighborhood, and Fig. 2b shows the coupling
structure if we apply the proposed algorithm to a small
image patch. The directed graph is constructed as fol-
lows. There is a directed edge from (i

1
, j

1
) to (i

0
, j

0
) if and

only if (i
1
, j

1
) contributes to the smoothing of (i

0
, j

0
)

according to Eqs. (12) and (9). By doing so, the coupling
structure is represented as a directed graph as shown in
Fig. 2b. Connected components and strongly connected
components [27] of the directed graph can be used to
analyze the temporal behavior of the proposed algo-
rithm. A strongly connected component is a set of
vertices, or pixels here, where there is a directed path
from any vertex to all the other vertices in the set. We
obtain a connected component if we do not consider the
direction of edges along a path. In the example shown in
Fig. 2b, all the black pixels form a strongly connected
component and so do all the white pixels. Also, there are
obviously two connected components.

Essentially our nonlinear smoothing algorithm can be
viewed as a discrete dynamic system, the behavior of
which is complex due to spatial constraints imposed by
coupling windows and adaptive coupling structure by
probabilistic grouping. We now prove that a constant
region satisfying certain geometrical constraints is
a stable state of the smoothing algorithm.

Theorem. If a region S of a given image I satisxes

(i
1
, j

1
)3S and (i

2
, j

2
)3SNI

(i1, j1)
"I

(i2, j2)
(18a)

∀(i, j)3SN& m R(m)
(i, j)

-S, (18b)

then S is stable with respect to the proposed algorithm.

Proof. Condition (18a) states that S is a constant region
and the standard deviation is zero if R(m) is within S ac-
cording to Eq. (5b). Consider a pixel (i

0
, j

0
) in S. Inequal-

ity (12) is satis"ed only when all R(m)'s are within S. In this
case, the smoothing algorithm does not change the inten-
sity value at (i

0
, j

0
). Otherwise, R(mH) according to Eq. (9)

must be within S because there exists at least one such
window according to Eq. (18b) and thus the smoothing
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Fig. 2. Illustration of the coupling structure of the proposed algorithm. (a) Eight oriented windows and a fully connected window
de"ned on a 3]3 neighborhood. (b) The resulting coupling structure. There is a directed edge from (i

1
, j

1
) to a neighbor (i

0
, j

0
) if and

only if (i
1
, j

1
) contributes to the smoothing of (i

0
, j

0
) according to Eqs. (12) and (9). Filled circles represent black pixels, empty circles

represent white pixels, and hatched circles represent gray pixels. Ties in Eq. (9) are broken according to left-right and top-down
preference of the oriented windows in (a).

algorithm does not change the intensity value at (i
0
, j

0
)

also. So S is stable. h

A maximum connected component of the constructed
graph is stable when its pixels are constant and thus
maximum connected components of the constructed
graph are a piecewise constant stable solution of the
proposed algorithm. For the image patch given in
Fig. 2b, for example, a stable solution is that pixels in
each of the two connected components are constant. The
noise-free image in Fig. 1a is also a stable solution by
itself, as we will demonstrate through numerical simula-
tions later on.

It is easy to see from the proof that any region which
satis"es conditions (18a) and (18b) during temporal
evolution will stay unchanged. In addition, due to the
smoothing nature of the algorithm, a local maximum at
iteration t cannot increase according to the smoothing
kernel by Eq. (12) or Eq. (9), and similarly, a local min-
imum cannot decrease. We conjecture that any given
image approaches an image that is almost covered by
homogenous regions. Due to the spatial constraints given
by Eq. (18b), it is not clear if the entire image converges to
a piece-wise constant stable state. Within each resulting
homogenous region, Eq. (18b) is satis"ed and thus the
region becomes stable. For pixels near boundaries,
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Fig. 3. Temporal behavior of the proposed algorithm with respect to the amount of noise. Six noisy images are obtained by adding
zero-mean Gaussian noise with p of 5, 10, 20, 30, 40 and 60, respectively, to the noise-free image shown in Fig. 1a. The plot shows the
deviation from the ground truth image with respect to iterations of the noise-free image and six noisy images.

corners, and junctions, it is possible that Eq. (18b) is not
uniquely satis"ed within one constant region, and small
changes may persist. The whole image in this case attains
a quasi-equilibrium state. This is supported by the fol-
lowing numerical simulations using synthetic and real
images. While there are pixels which do not converge
within 1000 iterations, the smoothed image as a whole
does not change noticeably at all.

The two maximum strongly connected components in
Fig. 2b satisfy condition (18b). Both of them are actually
uniform regions and thus are stable. Gray pixels would
be grouped into one of the two stable regions according
to pixel value similarity and spatial constraints.

3.2. Numerical simulations

Because it is di$cult to derive the speed of convergence
analytically, we use numerical simulations to demon-
strate the temporal behavior of the proposed algorithm.
Since smoothing is achieved using equally weighted aver-
age within selected windows, the algorithm should con-
verge rather quickly in homogenous regions. To obtain
quantitative estimations, we de"ne two measures similar
to variance. For synthetic images, where a noise-free
image is available, we de"ne the deviation from the
ground truth image as

D
(I)
"S

+
i
+

j
(I

(i, j)
!Igt

(i, j)
)2

DID
. (19)

Here I is the image to be measured and Igt is the ground
truth image. The deviation gives an objective measure of
how good the smoothed image is with respect to the true
image. To measure the convergence, we de"ne relative
variance for image I at time t:

<t
(I)
"S

+
i
+

j
(It

(i, j)
!It~1

(i, j)
)2

DID
. (20)

We have applied the proposed algorithm on the noise-
free image shown in Fig. 1a and six noisy images gener-
ated from it by adding zero-mean Gaussian noise with
p from 5 to 60. Fig. 3 shows the deviation from the
ground truth image with iterations, and Fig. 4 shows the
relative variance of the noise-free image and four selected
noisy images to make the "gure more readable. As we
can see from Fig. 3, the noise-free image is a stable
solution by itself, where the deviation is always zero. For
the noisy images, the deviation from the true image is
stabilized within a few number of iterations independent
of the amount of noise. Fig. 4 shows that relative variance
is bounded with a small upper limit after 10 iterations.
This variance is due to the pixels close to boundaries,
corners and junctions that do not belong to any resulting
constant region. As discussed before, because the spatial
constraints cannot be satis"ed within one homogenous
region, these pixels have connections from pixels belong-
ing to di!erent homogenous regions, and thus #uctuate.
These pixels are a small fraction of the input image
in general, and thus the #uctuations do not a!ect the
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Fig. 4. Relative variance of the proposed algorithm for the noise-free image shown in Fig. 1a and four noisy images with Gaussian noise
of zero-mean and p of 5, 20, 40 and 60, respectively.

Fig. 5. Relative variance of the proposed algorithm for real images shown in Figs. 9}12.

quality of the smoothed images noticeably. As shown in
Fig. 3, the deviation is stabilized quickly.

Real images are generally more complicated than syn-
thetic images statistically and structurally, and we have
also applied our algorithm to the four real images shown
in Figs. 9}12 which include a texture image. Fig. 5 shows
the relative variance in 100 iterations, where the variance
is bounded after 10 iterations independent of images.
This indicates that the proposed algorithm behaves sim-
ilarly for synthetic and real images.

4. Experimental results

4.1. Results of the proposed algorithm

The nonlinear smoothing algorithm formalized in this
paper integrates discontinuity and homogeneity through
the orientation-sensitive probability framework. Eq. (9)
represents discontinuity implicitly and Eq. (12) encodes
homogeneity explicitly. Because of the probability
measure, the initial errors for choosing smoothing
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Fig. 6. The oriented bar-like windows used throughout this paper for synthetic and real images. The size of each kernel is approximately
3]10 in pixels.

windows due to noise can be overcome by the coupling
structure. Essentially only when majority of the pixels
in one window make a wrong decision, the "nal result
would be a!ected. As illustrated in Fig. 2, the coupling
structure is robust.

To achieve optimal performance, the size and shape of
the oriented windows are application dependent. How-
ever, due to the underlying coupling structure, the pro-
posed algorithm gives good results for a wide range of
parameter values. For example, the same oriented win-
dows are used throughout the experiments in this paper.
As shown in Fig. 6, these oriented windows are generated
by rotating two rectangular basis windows with size of
3]10 in pixels. The preferred orientation of each window
is consistent with orientation sensitivity of cell responses
in the visual cortex [22]. Asymmetric window shapes are
used so that 2-D features such as corners and junctions
can be preserved.

As is evident from numerous simulations, the proposed
algorithm generates stable results around 10 iterations re-
gardless of input images. Thus, all the boundaries from the
proposed algorithm are generated using smoothed images
at the 11th iteration. As stated above, boundaries are detec-
ted using the Sobel edge detector due to its e$ciency.

Fig. 7 shows the results by applying the proposed
algorithm on a set of noisy images obtained from the
noise-free image shown in Fig. 1a by adding Gaussian
noise with p of 10, 40, and 60, respectively. Same para-
meters for smoothing are used for the three images.
When noise is relative small, the proposed algorithm
preserves boundaries accurately as well as corners and
junctions, as shown in Fig. 7a. When noise is substantial,
due to the coupling structure, the proposed algorithm is
robust to noise and salient boundaries are well preserved.
Because only local information is used in the system, it
would be expected that the boundaries are less accurate
when noise is larger. This uncertainty is an intrinsic
property of the proposed algorithm because reliable es-
timation gets more di$cult when noise gets larger as
shown in Fig. 7b and c. The results seem consistent with
our perceptual experience.

Fig. 8 shows the result for another synthetic image,
which was extensively used by Sarkar and Boyer [28]. As
shown in Fig. 8b, noise is reduced greatly and boundaries

as well as corners are well preserved. Even using the
simple Sobel edge detector, the result is better than the
best result from the optimal in"nite impulse responses
"lters [28] obtained using several parameter combina-
tions with hysteresis thresholding. This is because their
edge detector does not consider the responses from
neighboring pixels, but rather assumes the local maxima
as good edge points.

Fig. 9 shows an image of a grocery store advertisement
which was used throughout the book by Nitzberg et al.
[29]. In order to get good boundaries, they "rst applied
an edge detector and then several heuristic algorithms to
close gaps and delete noise edges. In our system, the
details and noise are smoothed out due to the coupling
structure and the salient boundaries, corners and junc-
tions are preserved. The result shown in Fig. 9c is compa-
rable with the result after several post-processing steps
shown on p. 43 of the book.

Fig. 10 shows a high-resolution satellite image of
a natural scene, consisting of a river, soil land, and
a forest. As shown in Fig. 10b, the river boundary which
is partially occluded by the forest is delineated. The
textured forest is smoothed into a homogenous region.
The major boundaries between di!erent types of features
are detected correctly.

Fig. 11 shows an image of a woman which includes
detail features and shading e!ects, the color version of
which was used by Zhu and Yuille [30]. In their region
competition algorithm, Zhu and Yuille [30] used a mix-
ture of Gaussian model. A nonconvex energy function
consisting of several constraint terms was formulated
under Bayesian framework. The algorithm, derived using
variational principles, is guaranteed to converge to
only a local minimum. For our nonlinear algorithm, as
shown in Fig. 11b, the details are smoothed out while
important boundaries are preserved. The "nal result in
Fig. 11c is comparable with the result from the region
competition algorithm [30] applied on the color version
after 130 iterations. Compared with the region competi-
tion algorithm, the main advantage of our approach
is that local statistical properties are extracted and utiliz-
ed e!ectively in the oriented probabilistic framework
instead of "tting the image into a global model which, in
general, cannot be guaranteed to "t the given data well.
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Fig. 7. The smoothed images at the 11th iteration and detected boundaries for three synthetic images by adding speci"ed Gaussian noise
to the noise-free image shown in Fig. 1a. Top row shows the input image, middle the smoothed image at the 11th iteration, and bottom
the detected boundaries using the Sobel edge detector.

Fig. 8. The smoothed image at the 11th iteration and detected boundaries for a synthetic image with corners.

To further demonstrate the e!ectiveness of the pro-
posed algorithm, we have also applied it to a texture
image as shown in Fig. 12a. As shown in Fig. 12b, the
boundaries between di!erent textures are preserved while
most of detail features are smoothed out. Fig. 12c shows

the detected boundaries by the Sobel edge detector.
While there are some noisy responses due to the texture
patterns, the main detected boundaries are connected.
A simple region growing algorithm would segment the
smoothed image into four regions. While this example is
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Fig. 9. The smoothed image at the 11th iteration and detected boundaries for a grocery store advertisement. Details are smoothed out
while major boundaries and junctions are preserved accurately.

Fig. 10. The smoothed image at the 11th iteration and detected boundaries for a natural satellite image with several land use patterns.
The boundaries between di!erent regions are formed from noisy segments due to the coupling structure.

Fig. 11. The smoothed image at the 11th iteration and detected boundaries for a woman image. While the boundaries between large
features are preserved and detected, detail features such as facial features are smoothed out.
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Fig. 12. The smoothed image at the 11th iteration and detected boundaries for a texture image. The boundaries between di!erent
textured regions are formed while details due to textures are smoothed out.

not intended to show that our algorithm can process
texture images, it demonstrates that the proposed algo-
rithm can be generalized to handle distributions that are
not Gaussian, which was assumed when formalizing the
algorithm.

4.2. Comparison with nonlinear smoothing algorithms

In order to evaluate the performance of the proposed
algorithm relative to existing nonlinear smoothing
methods, we have conducted a comparison with three
recent methods. The SUSAN nonlinear "lter [26] has
been claimed to be the best by integrating smoothing
both in spatial and brightness domains. The original
anisotropic model by Perona and Malik [8] is still widely
used and studied. The edge-enhancing anisotropic di!u-
sion model proposed by Weickert [9,11] incorporates
true anisotropy using a di!usion tensor calculated from
a Gaussian kernel, and is probably by far the most
sophisticated di!usion-based smoothing algorithm.

To do an objective comparison using real images is
di$cult because there is no universally accepted ground
truth. Here we use synthetic images where the ground
truth is known and the deviation calculated by Eq. (19)
gives an objective measure of the quality of smoothed
images. We have also tuned parameters to achieve best
possible results for the methods to be compared. For the
SUSAN algorithm, we have used several di!erent values
for the critical parameter ¹ in Eq. (15). For the Perona
and Malik model, we have tried di!erent nonlinear func-
tions g in Eq. (1) with di!erent parameters. For the
Weickert model, we have chosen a good set of para-
meters for di!usion tensor estimation. We in addition
choose their best results in terms of deviation from the
ground truth, which are then used for boundary detec-
tion.

Because the three methods and proposed algorithm all
can be applied iteratively, "rst we compare their tem-

poral behavior. We apply each of them to the image
shown in Fig. 7b for 1000 iterations and calculate the
deviation and relative variance with respect to the num-
ber of iterations using Eqs. (19) and (20). Fig. 13 shows
the deviation from the ground-truth image. The SUSAN
"lter, which quickly reaches a best state, and converges
quickly also to a uniform state due to the Gaussian
smoothing term in the "lter (see Eq. (15)). The temporal
behavior of the Perona-Malik model and the Weickert
model is quite similar while the Weickert model con-
verges more rapidly to and stay longer in good results.
The proposed algorithm converges and stabilizes quickly
to a non-uniform state, and thus the smoothing can be
terminated after several iterations.

Fig. 14 shows the relative variance of the four methods
along the iterations. Because the SUSAN algorithm con-
verges to a uniform stable state, the relative variance goes
to zero after a number of iterations. The relative variance
of Perona}Malik model is closely related to the g func-
tion in Eq. (1). Due to the spatial regularization using a
Gaussian kernel, Weickert model changes continuously
and the di!usion lasts much longer, which accounts for
the fact why good results exist for a longer period of time
than Perona}Malik model. As shown in Figs. 4 and 5, the
proposed algorithm generates bounded small ripples in
the relative variance measure. Those ripples do not a!ect
smoothing results noticeably as the deviation from the
ground truth, shown in Fig. 13, is stabilized quickly.

Now we compare the e!ectiveness of the four methods
in preserving meaningful boundaries. Following Higgins
and Hsu [24], we use two quantitative performance met-
rics to compare the edge detection results: P(AEDTE), the
probability of a true edge pixel being correctly detected
by a given method; P(TEDAE), the probability of a detec-
ted edge pixel being a true edge pixel. Due to the uncer-
tainty in edge localization, a detected edge pixel is con-
sidered to be correct if it is within two pixels from
ground-truth edge points using the noise-free image. For
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Fig. 13. Deviations from the ground truth image for the four nonlinear smoothing methods. Dashed line: The SUSAN "lter [26];
Dotted line: The Perona}Malik model [8]; Dash-dotted line: The Weickert model of edge enhancing anisotropic di!usion [11]; Solid
line: The proposed algorithm.

Fig. 14. Relative variance of the four nonlinear smoothing methods. Dashed line: The SUSAN "lter [26]; Dotted line: The Per-
ona}Malik di!usion model [8]; Dash-dotted line: The Weickert model [11]; Solid line: The proposed algorithm.

each method, the threshold on the gradient magnitude
of the Sobel edge detector is adjusted to achieve a best
trade-o! between detecting true edge points and rejecting
false edge points.

For the proposed algorithm, we use the result at the
11th iteration because the proposed algorithm converges
within several iterations. As mentioned before, for the
other three methods, we tune critical parameters and

choose the smoothed images with the smallest deviation.
Fig. 15 shows the smoothed images along with the detec-
ted boundaries using the Sobel edge detector, for the
image shown in Fig. 7a, where added noise is Gaussian
with zero mean and p"10. Table 1 summarizes the
quantitative performance metrics. All of the four
methods perform well and the proposed method gives the
best numerical scores. The boundary of the square is
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Fig. 15. Smoothing results and detected boundaries of the four nonlinear methods for a synthetic image shown in Fig. 7a. Here noise is
not large and all of the methods perform well in preserving boundaries.

Table 1
Quantitative comparison of boundary detection results shown in Fig. 15

Models SUSAN [26] Perona}Malik [8] Weickert [9,11] Our method

P(TEDAE) 0.960 0.963 0.877 0.988
P(AEDTE) 0.956 0.964 0.880 0.979
Average 0.958 0.963 0.878 0.983

preserved accurately. For the central oval, the proposed
algorithm gives a better connected boundary while the
other three have gaps. Also the proposed algorithm gen-
erated the sharpest edges while edges from Weickert
model are blurred most, resulting in the worst numerical
metrics among the four methods.

Fig. 16 shows the results for the image in Fig. 7b, where
noise is substantial, and Table 2 shows the quantitative
performance metrics. As shown in Fig. 16a, the SUSAN
"lter tends to fail to preserve boundaries, resulting in
noisy boundary fragments. The Perona}Malik model
produces good but fragmented boundaries. Due to that
only local gradient is used, the Perona}Malik model is
noise-sensitive and thus generates more false responses
than other methods in this case. The false responses
substantially lower the quantitative metrics of the model,
making it the worst among the four methods. The
Weickert model produces good boundaries for strong
segments but weak segments are blurred considerably.
The proposed algorithm preserves the connected bound-
ary of the square and partially fragmented boundaries of
the central oval also, yielding the best numerical metrics

among the four methods. As shown in Fig. 13, the
smoothed image of the Weickert model has a smaller
deviation than the result from our algorithm, but the
detected boundaries are fragmented. This is because our
algorithm produces sharp boundaries, which induce lar-
ger penalties according to Eq. (19) when not accurately
marked.

Comparing Tables 1 and 2, one can see that our
proposed method is most robust in that the average
performance is degraded by about 13%. Perona}Malik
model is most noise-sensitive, where the performance is
degraded by about 35%. For SUSAN and Weickert
model, the average performance is degraded by about
24% and 19%, respectively.

We have also applied the four methods on the natural
satellite image shown in Fig. 10 (Fig. 17). The result from
the proposed algorithm is at the 11th iteration as already
shown in Fig. 10b. The results from the other three
methods are picked up manually for best possible results.
Due to the termination problem, results from most non-
linear smoothing algorithms have to be chosen manually,
making them di$cult to be used automatically. The
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Fig. 16. Smoothing results and detected boundaries of the four nonlinear methods for a synthetic image with substantial noise shown in
Fig. 7b. The proposed algorithm generates sharper and better connected boundaries than the other three methods.

Table 2
Quantitative comparison of boundary detection results shown in Fig. 16

Models SUSAN [26] Perona}Malik [8] Weickert [9,11] Our method

P(TEDAE) 0.720 0.609 0.692 0.853
P(AEDTE) 0.713 0.618 0.688 0.854
Average 0.717 0.613 0.690 0.853

Fig. 17. Smoothing results and detected boundaries of a natural scene satellite image shown in Fig. 10a. Smoothed image of the
proposed algorithm is at the 11th iteration while smoothed images of the other three methods are chosen manually. While the other
three methods generate similar fragmented boundaries, the proposed algorithm forms the boundaries between di!erent regions due to
its coupling structure.

X. Liu et al. / Pattern Recognition 33 (2000) 263}280 277



results from the other three methods are similar, and
boundaries between di!erent regions are not formed. In
contrast, our algorithm generated connected boundaries
separating major di!erent regions.

5. Conclusions

In this paper we have presented a two-step robust
boundary detection algorithm. The "rst step is a nonlin-
ear smoothing algorithm based on an orientation sensi-
tive probability measure. This algorithm is motivated by
the orientation sensitivity of cells in the visual cortex
[22]. By incorporating geometrical constraints through
the coupling structure, the algorithm is robust to noise
while preserving meaningful boundaries. Even though
the algorithm was formulated based on Gaussian distri-
bution, it performs well for real and even textured images,
showing the generalization capability of the algorithm. It
is also easy to see that the formalization of the proposed
algorithm would extend to other known distribution by
changing Eqs. (3), (4), (5a) and (5b) accordingly. One such
an extension would be to use a mixture of Gaussian
distributions [31] so that the model may be able to
describe arbitrary probability distribution.

Compared with recent anisotropic di!usion methods,
our algorithm approaches a non-uniform stable state and
reliable results can be obtained after a "xed number of
iterations. In other words, it provides a solution for the
termination problem. When noise is substantial, our
algorithm preserves meaningful boundaries better than
the di!usion-based methods, because the coupling struc-
ture employed is more robust than pair-wise coupling
structure.

Scale is an intrinsic parameter in machine vision as
interesting features may exist only in a limited range of
scales. Scale spaces based on linear and nonlinear
smoothing kernels do not represent semantically mean-
ingful structures explicitly [32]. A solution to the prob-
lem could be to use parameter K in Eq. (8) as a control
parameter [23], which is essentially a threshold in gray
values. Under this formalization, Eq. (12) could o!er an
adaptive parameter selection. With the robust coupling
structure, our algorithm with adaptive parameter selec-
tion may be able to provide a robust multiscale boundary
detection method.

Another advantage of the probability measure frame-
work is that there is no need to assume a priori know-
ledge about each region, which is necessary in relaxation
labeling [14,15] and the comparison across windows
with di!erent sizes and shapes is feasible. This could lead
to an adaptive window selection that preserves small but
important features which cannot be handled well by the
current implementation.

There is one intrinsic limitation common to many
smoothing approaches including our proposed one. After

smoothing, the available feature is the average gray
value, resulting in loss of information for further proces-
sing. One way to overcome this problem is to apply the
smoothing in feature spaces derived from input images
[33]. Another disadvantage of the proposed algorithm
is relatively intensive computation due to the use of
oriented windows. Each oriented window takes roughly
as long in one iteration as the edge-enhancing di!usion
method [11]. On the other hand, because our algorithm
is entirely local and parallel, computation time would not
be a problem on parallel and distributed hardware. Com-
putation on serial computers could be reduced dramati-
cally by decomposing the oriented "lters hierarchically
so that oriented windows would be used only around
discontinuities rather than in homogenous regions. The
decomposition techniques for steerable and scalable "l-
ters [34] could also help to reduce the number of neces-
sary convolution kernels.
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