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Abstract

Low dimensional representations of images impose equivalence relations in the image space; the induced equivalence class of an image is

named as its intrinsic generalization. The intrinsic generalization of a representation provides a novel way to measure its generalization and

leads to more fundamental insights than the commonly used recognition performance, which is heavily influenced by the choice of training

and test data. We demonstrate the limitations of linear subspace representations by sampling their intrinsic generalization, and propose a

nonlinear representation that overcomes these limitations. The proposed representation projects images nonlinearly into the marginal

densities of their filter responses, followed by linear projections of the marginals. We use experiments on large datasets to show that the

representations that have better intrinsic generalization also lead to better recognition performance.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, appearance-based methods have become

a common choice for building recognition systems based on

images. The main motivation is that variations in images of

objects can be captured through (a large number of) training

images, which avoids the necessity of building complex

probability models. Due to the high dimensionality of

images, low dimensional representations become necessary

in order to develop computationally efficient systems. For

example, principal component analysis (PCA) (Hotelling,

1933), also known as Karhunen and Loève transformation

(Karhunen, 1947; Loève, 1955), has become a widely used

tool for dimension reduction. One of the major limitations of

PCA representation is that it is not able to capture statistics

higher than the second order. Independent component

analysis (ICA) (Comon, 19941 see Hyvärinen, Karhunen,

& Oja, 2001 for a review) has been used to overcome this

limitation by imposing statistical independence among the

linear coefficients. By maximizing a discrimination measure

among different classes, Fisher discriminant analysis (FDA)

offers another popular linear sub-space representation

(Fisher, 1936). In computer vision, these representations

have been applied to face recognition (Belhumeur,

Hepanha, & Kriegman, 1997; Turk & Pentland, 1991;

Sirovich & Kirby, 1987).

As the recognition performance of a classifier depends

heavily on the choice of training data, it becomes important

to study the generalization of a low dimensional represen-

tation through the equivalence relation it imposes on the

image space. The importance of studying the equivalence

classes for generalization is greatly emphasized by Vapnik

(2000). In fact, Vapnik named the cardinality of equivalence

classes a new concept (to be studied) for learning from small

samples (Vapnik, 2000, p. 296). While the cardinality of

equivalence classes is important for reducing dimension-

ality, for recognition performance, it is also important to

study the properties of images in a particular equivalence

class. Ideally, only images with similar underlying models

should be grouped into an equivalence class. We will name

this semantics-related aspect of generalization as intrinsic

generalization. This isolates an intrinsic aspect of a

representation that affects the recognition performance.

Our study of intrinsic generalization for linear subspaces of

images reveals that these representations group images from

different models within the same equivalent class and are

inherently sensitive to noise and deformations. By analyzing

two problems with linear subspace representations, we

propose a way to improve their intrinsic generalization,
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the advantage of which is demonstrated by recognition

results. We emphasize that our goal is to characterize an

important aspect of a representation through the study of

intrinsic generalization, which leads to an important

measure to compare different representations.

This paper is organized as follows. Section 2 gives a

definition of generalization and then introduces intrinsic

generalization and shows that of linear subspaces. Section 3

briefly describes the spectral histogram representation of

images, and spectral histogram subspace analysis (SHSA),

and shows the intrinsic generalization of SHSA through

object synthesis. Section 4 shows the experimental results

on recognition of large datasets. Section 5 concludes the

paper with a discussion on a number of related issues.

2. Intrinsic generalization

In this paper, an image I is defined on a finite lattice

L , Z;2 the intensity at pixel location ~v [ L is denoted by

Ið~vÞ [ G ¼ ½r1; r2�; where r1; r2 bound the dynamic range of

the imaging sensor, and V the set of all images on L. A

representation is a mapping defined as f : V! RK : For a

low dimensional representation, we require K p lLl:
Before we introduce the notion of intrinsic generalization,

we first give a formal definition of generalization of

representations.

2.1. Generalization of low dimensional representations

In learning-based recognition of objects from images, a

classifier/recognizer is often trained using some training

data and is applied to classify/recognize future inputs in the

form of test data. A key issue is to extend good performance

on test inputs using information limited to the training set; it

is commonly known as the generalization problem (Bishop,

1995).

There are several ways of formulating the generalization

problem and we have chosen the framework laid out by

Bishop (1995). Let the observed images be generated from

an unknown probability density P on V and the underlying

true recognition function be denoted by h : V 7! A; where

A is the set of all classes. For any classifier function g; its

average generalization ability is defined as the probability

that gðIÞ ¼ hðIÞ; i.e.

GðgÞ ¼ Pr{IlI [ V; gðIÞ ¼ hðIÞ}: ð1Þ

According to Eq. (1), obtaining good generalization

becomes an optimization over all the possible classifier

functions. In practice, since the underlying model PðIÞ and

hðIÞ are generally unknown, several ways have been

proposed. One way is to estimate GðgÞ directly through a

set separate from the training one with known class labels

such as cross-validation (Bishop, 1995). Another way is to

impose additional constraints on GðgÞ based on some

generic heuristics such as Akaike in-formation criterion

(Akaike, 1973) and minimum description length (Rissanen,

1978), where a model with more free parameters is

penalized. Yet another approach is to optimize an analytical

bound based on statistical analysis such as the worst-case

performance of all the implementable classifiers of a neural

network architecture (Baum & Haussler, 1989). Note that all

the existing efforts on generalization have been focused on

the generalization of classifiers.

Because of the high dimensionality of images, dimension

reduction becomes necessary for computational reasons. In

case of using a low dimensional representation f ; the

average generalization ability then becomes the probability

that ĝðf ðIÞÞ ¼ hðIÞ for an input I randomly sampled

according to PðIÞ; where ĝ is a classifier based on a low

dimensional representation f : In other words, we have

Gðĝ; f Þ ¼Pr{IlI [ V; gðf ðIÞÞ ¼ hðIÞ}

¼
X

f ðIÞ

Pr{JlJ [ V; f ðJÞ ¼ f ðIÞ1}ĝðf ðIÞÞ¼hðIÞ; ð2Þ

where 1x¼y is an indicator function, and we use f ðIÞ as the

range of f on V: From Eq. (2), it is clear that f has a

significant effect on the generalization of ĝ: Ideally, we want

to group all the images from each class as a single

equivalence class (in this case, the classifier is trivial).

While this is generally not possible for real applications, we

want to group images from each class into a small number of

equivalence classes, with each class having a large

cardinality, as emphasized by Vapnik (2000). This also

reduces the number of necessary training images. However,

when making each equivalence class as large as possible, we

do not want to include images from other classes, as this will

make a good classification performance impossible. This

leads to the need of analyzing equivalence class structures

of low dimensional representations to achieve a good

generalization performance.

2.2. Intrinsic generalization

The previous analysis shows that the equivalence class

structures of low dimensional representations are essential

for a good generalization performance. In this paper, we

focus on studying the images of a particular equivalence

class through statistical sampling.

Definition 1. Given a representation f ; the intrinsic

generalization of an image I under f is defined as

SIðIÞ ¼ {JlJ [ V; f ðJÞ ¼ f ðIÞ} , V: ð3Þ

In other words, intrinsic generalization of image I includes

all the images that cannot be distinguished from I under

representation f : The recognition performance based on f

depends critically on the intrinsic generalizations of training2 http://www.uk.research.att.com/facedatabase.html
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images as the images in their intrinsic generalizations are

implicitly included in the training set. We define S0
I ðIÞ as the

images sharing the same underlying probability models with

I. Ideally, SIðIÞ should be as close as possible to S0
I ðIÞ: As

S0
I ðIÞ is generally not available, to explore SIðIÞ; we employ

statistical sampling through the following probability model

qðJ;TÞ ¼
1

ZðTÞ
exp{ 2 Dðf ðJÞ; f ðIÞÞ=T}: ð4Þ

Here T is a temperature parameter, Dð·; ·Þ a Euclidean or

other distance measure, and ZðTÞ is a normalizing function,

given as ZðTÞ ¼
P

J[V exp{ 2 Dðf ðJÞ; f ðIÞÞ=T}: This model

has been used for texture synthesis (Zhu, Liu, & Wu, 2000)

and we generalize it to any representation. It is easy to see

that as T ! 0; qðJ;TÞ defines a uniform distribution on SIðIÞ

(Zhu et al., 2000). The advantage of using a sampler is to be

able to generate typical images in SIðIÞ so that SIðIÞ under f

can be examined in a statistical sense.

2.3. Intrinsic generalization of linear subspaces

Linear subspace representations of images, including

PCA, ICA, and FDA, assume that f is a linear map, and SIðIÞ

forms a linear subspace. While these methods are successful

when applied to images belonging to a specific nature, e.g.

face images, their generalization seems poor if we consider

SIðIÞ under these linear subspace methods in V:

If S0
I ðIÞ is available then one can analyze the overlap

between the sets S0
I ðIÞ and SIðIÞ: If not, then one has to resort

to some indirect techniques such a random sampling to

compare elements of the two sets. Random sampling seems

sufficient in that the typical images in SIðIÞ are very different

from I. To illustrate these ideas, we have used PCA of the

ORL face dataset2, which consists of 40 subjects with 10

images each; we have obtained similar results using other

linear subspaces. We calculate the eigen faces correspond-

ing to the 50 largest eigen-values. Under PCA, given an

image I, f (I) is the projection of I along eigen faces. We

define the reconstructed image3 of I as pðIÞ ¼
PK

i¼1 , I;

Vi . Vi; where Vi is the ith eigen face and k·,·l is the

canonical inner product. Fig. 1(a) shows a face image in the

dataset and Fig. 1(b) shows the reconstructed image with

K ¼ 50: We then use a Gibbs sampler to generate samples

of SIðIÞ by sampling from qðJ;TÞ given by Eq. (4). Fig.

1(c)–(f) show four samples of SIðIÞ (For Fig. 1(f), the object

in the middle is used as boundary condition, i.e. pixels on

the object are not updated). In other words, all these images

have the same 50 eigen decompositions. Note that SIðIÞ is

defined on V and these images are far from each other in V:

As expected, the corresponding reconstructed images are

identical to Fig. 1(b).

Because SIðIÞ consists of images from various

underlying probability models, the linear subspace

representations can make the subsequent classification

intrinsically sensitive to noise and other deformations. To

show that, Fig. 2(a) gives three different face images

which share exactly the same eigen representation

(bottom row). On the other hand, Fig. 2(b) shows three

similar images whose eigen representations correspond to

three different faces.

We emphasize here that the sampling is very different

from reconstruction. The sampling is to draw a typical

sample from the set of all the images with a particular low

dimensional representation while reconstruction gives one

in the set whose coefficients are zero along the dimensions

complement to the given subspace. To illustrate this, Fig. 3

shows an example of a one-dimensional subspace in a two-

dimensional space. In this case, the reconstructed ‘image’ of

‘x’ is the point given by ‘ þ ’ in Fig. 3(a) while the sampling

can return any point with equal probability along the solid

line shown in Fig. 3(b). This shows clearly that the

reconstructed image may not provide much information

about all the other images having the same low dimensional

representation. This has an important implication for

building low dimensional generative models. For recog-

nition purpose, it is not sufficient to show that the

synthesized image based on a generative model has certain

desirable properties as in PCA; to be a good model, all the

images in the intrinsic generalization should also exhibit the

desirable properties. As generative models become popular

in modeling, their intrinsic generalizations should also be

studied and analyzed.

These results, while generated using PCA, are valid for

an arbitrary linear subspace since the sampling tries to

match the representation. The main problems of linear

subspace representations, as revealed here, are that these

Fig. 1. (a) A face image. (b) Reconstructed image using K ¼ 50 principal

components. (c)–(f) Four random samples from the set SIðIÞ; with pðIÞ

identical to the one shown in (b).

3 We assume the mean is taken care of properly.
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representations cannot account for the fact that most images

in the image space are white noise images. Additionally,

they cannot incorporate important spatial constraints in

images.

3. Spectral histogram subspace analysis

3.1. Spectral histogram representation of images

As discussed earlier, an ideal representation f for I will

be such that SIðIÞ ¼ S0
I ðIÞ: There are two important

limitations of the linear methods that need to be addressed:

(i) As the vast majority images in V are white noise images,

a good approximation of S0
I ðIÞ for an image of object(s) must

handle white noise images effectively; otherwise, SIðIÞ will

concentrate on white noise images. Experiments show that

linear representations suffer from this problem. (ii) Another

issue is the linear superposition assumption, where each

basis contributes linearly independently to the image. In

contrast, pixels on objects are dependent and efficient

models should exploit this dependency.

The issue of white noise images can be dealt with

effectively through the method of types (Csiszar &

Korner, 1981) as the white noise images are grouped

together under types. However, the direct use of types

does not provide enough constraints as only the

histogram of images is used. We generalize the type

definition by including marginals of filter responses (of

the input image) with respect to a set of filters, which

also incorporates local pixel dependence through

filtering.

The representation of using marginals of filtered

images can be justified in many ways: (i) by assuming

that small disjoint regions in the frequency domain are

statistically independent. That is, partition the frequency

domain into small disjoint regions and model each region

by its marginal distribution. The partitioning of the

frequency also leads to spatial filters. (ii) Wavelet

decompositions of images are local in both space and

frequency, and hence, provide attractive representations

for objects in the images. We convolve an image with

the filters and compute the histograms of the resulting

images. Each image is then represented by a vector

consisting of all the marginal distributions. We shall call

this representation spectral histogram representation (Liu

& Wang, 2002), each of these vectors a spectral

histogram, and the set of all valid vectors the spectral

histogram space. Elements of a spectral histogram relate

to the image pixels in a nonlinear fashion, and hence,

avoid the linearity issue mentioned earlier.

This representation has also been suggested through

psychophysical studies on texture modeling (Chubb,

Econopouly, & Landy, 1994), and has been used in texture

modeling and synthesis (Heeger & Bergen, 1995; Liu &

Wang, 2002; Zhu, Wu, & Mumford, 1997), texture

classification (Liu & Wang, 2003), and face recognition

(Liu & Cheng, 2003). Both the histogram of input images

(Swain & Ballard, 1991) and joint histograms of local fields

(Schiele & Crowley, 2000) have been used for object

recognition.

Fig. 2. Examples of different images with identical eigen decompositions

and similar images with different eigen decompositions. The top row shows

the images and the bottom reconstructed. (a) Three different images with

the same eigen representations; (b) three similar images with different eigen

representations.

Fig. 3. An illustration example of the difference between sampling and

reconstruction. Here the dashed line represents a one-dimensional subspace

in a two-dimensional space. For a training example (marked as ‘x’), the

sampling is to draw a random point along the solid line in (b) while the

reconstructed image is a single point given by ‘ þ ’ in (a).
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3.2. Spectral histogram subspace analysis

In this method, the strategy is to first represent each

image in the spectral histogram space and then apply a

linear subspace method, such as PCA, ICA or FDA, in the

spectral histogram space4. Name these corresponding

methods as SHPCA, SHICA, and SHFDA, and call them

collectively as SHSA.

To demonstrate the effectiveness of SHSA represen-

tations, we explore their intrinsic generalization through

sampling. As in the linear subspace case, we use SHPCA for

experiments; similar results have been obtained using other

linear spectral histogram subspaces.

First, bases in the spectral histogram space are computed

based on training images. Given an image, its spectral

histogram representation is computed and then projected

onto a spectral histogram subspace. We use a Gibbs

sampling procedure to generate images that share the

same spectral histogram representation. Fig. 4 shows two

sets of examples; Fig. 4(a) shows three texture images and

Fig. 4(b) shows three objects. These examples show that the

spectral histogram subspace representation captures photo-

metric features as well as topological structures, which are

important to characterize and recognize images.

4. Experimental results for recognition

To demonstrate the effectiveness of SHSA represen-

tations, we use several data sets and compare their

performance with that of linear subspace representations.

In our experiments, the number of principal components is

determined by thresholding the ratio of a component’s

eigen-value and the largest eigen-value. (If the same

threshold is applied to PCA, it tends to keep more

components, as the dimension of the input space here is

much larger). We have used the same number of

components for ICA, FDA, SHICA, and SHFDA as PCA

and SHPCA, respectively. Here ICA is calculated using the

FastICA algorithm (Hyvärinen, 1999) and FDA based on an

algorithm by Belhumeur et al. (1997). We use the nearest

neighbor classifier for recognition. To calculate the spectral

histogram, we use a fixed set of 21 filters. These filters were

chosen automatically from a larger set of Gabor and

Laplacian of Gaussian filters using a filter selection

algorithm (Liu & Wang, 2001) for the ORL face dataset.

A classifier’s performance in a low dimensional space

depends on intrinsic generalization of the representation to

the test data. The result for a new image of a classifier is

determined by the decision region partitions in the feature

space and thus in the image space. Given a training set B, we

define the extrinsic generalization set of I [ B as

SEðIÞ ¼ {JlJ [ V;LðJlBÞ ¼ LðIÞ}\{JlJ [ V; LðJlB\IÞ

¼ LðIÞ}: ð5Þ

Here L(I) is the label of I and LðJlBÞ is the label of image J

assigned by the classifier trained on the set B. To separate

the effectiveness of a representation from that of the choice

of training and test data, we have also used (uniformly)

randomly generated bases, which we call random com-

ponent analysis (RCA) and spectral histogram random

component analysis (SHRCA).

First we use the Columbia Object Image Library

(COIL-100)5 dataset, which consists of images of 100 3-D

objects with varying pose, texture, shape and size, 21 of

which are shown Fig. 5. Pontil and Verri (1998) applied

Support Vector Machines method (SVM) to 3D object

Fig. 4. Samples from SHPCA intrinsic generalization. In each panel the top

row shows the input image and the bottom a typical sample from its

intrinsic generalization. (a) Three textures. (b) One object and one face

image. Boundary conditions need to be taken with care when sampling

from SIðIÞ:

4 Note a reconstructed spectral histogram may be outside the spectral

histogram space and here we ignore this complication. 5 Available at http://www.cs.columbia.edu/CAVE
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recognition. Yang, Roth, and Ahuja (2000) proposed a

learning algorithm, named Sparse Network of Winnows

(SNoW) for appearance based recognition and applied

their learning algorithm to the full COIL dataset and

compared with SVM methods. They tested their method

by varying the number of training views. For a fair

comparison with the results in Yang et al. (2000), these

color images were converted to gray level images and

downsampled to size 32 £ 32, which are used in all the

experiments described here.

As in Yang et al. (2000), we vary the number of training

views per object. Table 1 shows the recognition rates on the

dataset using PCA, ICA, FDA, SNoW (Yang et al., 2000)

and Linear SVM (Yang et al., 2000) as well as SHSA

methods. While the COIL-100 dataset is considered to be

easy with enough training data, Table 1 reveals clearly the

generalization capability of different representations. Under

all the conditions, SHSA methods outperform the other

methods. Among the SHSA methods, SHFDA gives the best

performance. However, FDA in the image space does not

outperform other linear methods; this is because these

images are not linearly separable in the image space and

linear FDA bases are not effective. This result is consistent

with that of Martinez and Kak (2001), which showed that

FDA may not outperform PCA in general. Another

interesting point of Table 1 is that RCA and SHRCA give

comparable results to those of other bases, suggesting that

the choice of commonly used different bases within a space

may not be that critical for recognition as none of them is

considerably better than a random one in term of recognition

performance.

While SHSA representations are translation invariant by

definition, the linear subspaces of images are not as

translation will change the random variables associated

with pixels in the images. Theoretically speaking, SHSA

representations are not rotation invariant in general as filters

are orientation sensitive. It has been shown that Gabor filters

can tolerate a certain amount of rotation (Lades et al., 1993).

Tables 2 and 3 show the recognition results using PCA,

ICA, SHPCA, and SHICA representations with respect to 2-

D translations and rotations; similar results have been

obtained using other linear subspaces. Here 12 views were

used for training and the remaining 60 views were used for

testing for each object and borders with background color

were added to images so that translations and rotations can

be done without clipping the objects. As Table 2 shows,

PCA and ICA are very sensitive to translation. While neither

PCA, ICA, SHPCA, or SHICA is rotation invariant, SHPCA

and SHICA are less sensitive to rotation as shown in

Table 3. In addition, for SHPCA and SHICA the correct

recognition rate to the closest three does not decrease much,

suggesting that SHPCA and SHICA can be used as an

effective means to propose candidates for more accurate

models.

Eigen faces have been used widely for face recognition

applications (Kirby & Sirovich, 1990; Sirovich & Kirby,

Fig. 5. Twenty one selected objects from the 100 objects in the database.

Table 1

Recognition results for the coil-100 dataset

Methods Training/test per object (%)

36/36 18/54 8/64 4/68

PCA 98.6 96.7 87.2 75.8

ICA 98.6 96.5 87.9 76.0

RCA 98.6 96.3 87.0 75.4

FDA 97.6 92.6 82.1 56.8

SNoW (Yang et al., 2000) 95.8 92.3 85.1 81.5

Linear SVM (Yang et al., 2000) 96.0 91.3 84.8 78.5

SHPCA 99.4 97.1 89.3 82.9

SHICA 99.4 97.0 89.2 82.7

SHRCA 99.4 96.9 89.1 83.0

SHFDA 99.9 98.9 94.4 87.4

Table 2

Recognition results for the coil-100 dataset with respect to translation

Methods Horizontal/vertical translation (%)

0/0 2/0 0/2 2/2 4/4

PCA 93.3 81.7 46.4 32.3 4.9

ICA 93.2 81.9 46.8 32.3 5.1

SHPCA 94.7 94.7 94.7 94.7 94.7

SHICA 94.6 94.6 94.6 94.6 94.6

Table 3

Recognition results for the coil-100 dataset with respect to 2D rotation

Methods Rotation angle (8)

0 5 10 15 20

Recognition rate with the correct to be among the first (%)

PCA 93.3 91.6 83.2 60.8 38.1

ICA 93.2 91.7 82.6 61.8 39.0

SHPCA 94.7 93.4 89.5 79.4 66.3

SHICA 94.6 93.2 89.2 79.0 66.1

Recognition rate with the correct to be among the first three (%)

PCA 96.9 96.5 93.7 80.8 60.6

ICA 96.9 96.5 93.6 81.3 60.9

SHPCA 97.1 96.9 95.9 92.5 83.0

SHICA 97.0 96.9 95.9 92.3 82.8
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1987; Turk & Pentland, 1991). We have also applied our

method to ORL6, a standard face dataset. The dataset

consists of faces of 40 subjects with 10 images for each. The

images were taken at different times with different lighting

conditions on a dark background. While only limited side

movement and tilt were allowed, there was no restriction on

facial expression. The procedure is the same as that for 3D

object recognition. We use the same 21 filters and vary the

number of the training images per subject and the remaining

ones are used for testing. We randomly choose the training

images from the dataset to avoid potential bias due to the

choice of training faces. The average and worst results of

100 trials from linear subspace representations as well as

SHSA ones are shown in Table 4. SHSA performance is

significantly better than the corresponding linear subspace

in the image space essentially because different lighting

conditions and facial expressions make the pixel-wise

representation not reliable for recognition (Zhang, Yan, &

Lades, 1997). The results obtained here are also signifi-

cantly better than those obtained in Zhang et al. (1997) on

the same dataset.

We have also applied our method to a dataset of 40 real

texture images7 with size of 256 £ 256. This dataset

contains different kinds of natural textures. Also some of

textures are similar to others in the dataset, making the

classification very challenging.

To do the texture classification, we partition each texture

image into nonoverlapping patches with size 32 £ 32,

resulting in a total of 64 patches per texture type. We then

choose a specified number of patches as the training set and

the rest are used for testing. As in the face recognition

experiment, we randomly choose a given number of patches

as training and run our method 100 times. Table 5 shows the

average, best, and worst classification results of 100 trials

with 32 training patches and 32 test patches per texture type.

It is clear that the SHSA representations give significantly

better results. Not surprisingly, linear subspaces of images

do not give satisfactory results as the pixel-wise difference

between textures is not a meaningful distance for textures.

5. Discussion

One of the major obstacles of developing a generic vision

system is the generalization of the adopted underlying

representation. By studying the intrinsic generalization of a

representation, we can better understand and predict its

performance under different conditions. To our knowledge,

this is the first attempt to provide a quantitative generaliz-

ation measure intrinsic to a representation; in contrast,

generalization is commonly tied to recognition perform-

ance, which depends on the choice of the classifier and the

choice of training and test data, as shown by the experiments

here. Our study on the intrinsic generalization of linear

subspace representations in the image space shows that they

cannot generalize well as images from different models tend

to be grouped into one equivalence class; we emphasize that

this result holds for any low dimensional linear subspace in

the image space. We have suggested a way to improve the

intrinsic generalization by implementing linear subspaces in

the spectral histogram space. We have demonstrated

substantial improvement in recognition on large datasets.

However, our goal is not to show that SHSA represen-

tation is optimal in general. In fact, if classes consist of

white noise like images, SHSA representations would be

very ineffective. Rather our emphasis is on the importance

of the underlying representation for object images. An ideal

representation of image I is S0
I ðIÞ; which can be

implemented only when the true underlying object models

and the physical imaging process are available; this leads to

the analysis-by-synthesis paradigm (Grenander, 1993).

When S0
I ðIÞ is not available explicitly, one needs to

approximate it. There is a trivial solution for a good

approximation by forcing SIðIÞ ¼ {I}: However, the

generalization is very poor and it requires literally all

possible images in the training set. A good representation

should approximate S0
I ðIÞ well and lSIðIÞl should be as large

as possible. These two constraints provide the axes of

Table 4

Recognition results for the ORL face dataset of 100 trials with different

number of training/test faces

Methods Training/test per subject

Average rate (%) Worst rate (%)

5/5 3/7 5/5 3/7

PCA 94.5 88.0 89.0 80.7

ICA 94.0 86.0 89.0 75.4

FDA 98.9 96.3 95.5 91.1

RCA 85.6 73.7 79.5 65.7

SHPCA 98.5 94.6 95.0 87.9

SHICA 98.15 94.10 94.00 87.86

SHFDA 99.3 98.5 98.0 95.7

SHRCA 96.2 90.2 92.5 84.6

Table 5

Average recognition results for the texture dataset

Methods Average rate (%) Best rate (%) Worst rate (%)

PCA 22.8 24.2 21.1

ICA 23.2 25.4 21.6

FDA 57.5 60.8 17.6

RCA 17.8 19.5 16.5

SHPCA 94.2 95.3 92.8

SHICA 93.8 94.9 92.7

SHFDA 97.9 98.5 97.1

SHRCA 88.3 89.8 87.0

6 http://www.uk.research.att.com/facedatabase.html
7 Available at http://www-dbv.cs.uni-bonn.de/image/texture.tar.gz
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forming a continuous spectrum of different representations

and allow us to study and compare them. For example, only

marginal distributions are used in the spectral histogram

representation; one can describe and synthesize image I

better by incorporating joint statistics (Portilla & Simon-

celli, 2000); however, this obviously decreases lSIðIÞl:
Within linear subspace methods, one can also decrease lSI

ðIÞl by imposing additional constraints on bases and

coefficients, such as the nonnegative constraints (Lee &

Seung, 1999)8. Due to the complexity of S0
I ðIÞ; a very close

approximation using some low dimensional representations

may not be feasible. An alternative is to combine the

analysis-by-synthesis paradigm (Grenander, 1993) and a

low dimensional representation based approach. The

hypothesis pruning by Srivastava, Liu, and Grenander

(2002) provides such an example, where a low dimensional

representation selects plausible hypotheses for an analysis-

by-synthesis model. In this framework, the difference

among low dimensional representations is their effective-

ness of selecting good hypotheses rather than providing a

final answer.

Within the spectral histogram representation, in addition

to linear subspace methods, the dimension can also be

reduced by choosing a subset of filters. Filter selection for

performance optimization has been studied by Liu and

Wang (2003). Filters can also be learned by optimizing a

heuristic-based measure such as statistical independence

(Liu & Cheng, 2003) or by maximizing the recognition

performance (Liu & Srivastava, 2003). We have also

developed a two-parameter analytical form for the margin-

als of filter responses (Grenander & Srivastava, 2001;

Srivastava et al., 2002), which reduces the dimension of

spectral histogram representation significantly.

An important question for recognition applications,

which is not addressed here, is which representation is

optimal given the choice of the representation space. The

experimental results here suggest that the SHFDA in general

gives the best performance; however, no optimality can be

established theoretically as SHFDA’s optimality requires

that the underlying probability distributions are Gaussian

and linear discrimination functions are used (Liu, Srivas-

tava, & Gallivan, 2003). To find optimal representations,

computationally efficient algorithms have recently been

developed (Liu et al., 2003; Liu & Srivastava, 2003) and

their effectiveness has been demonstrated in the image

space and in the spectral histogram space.
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Loève, M. M. (1955). Probability theory. Princeton, NJ: Van Nostrand.

Lades, M., Vorbruggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C.,

Wurtz, R. P., & Konen, W. (1993). Distortion invariant object

recognition in the dynamic link architecture. IEEE Transactions on

Computers, 42, 300–311.

Lee, D. D., & Seung, S. (1999). Learning the parts of objects by non-

negative matrix factorization. Nature, 401, 788–791.

Liu, X., & Cheng, L. (2003). Independent spectral representations of

images for recognition. Journal of the Optical Society of America, in

press.

Liu, X., Srivastava, A (2003). Stochastic geometric search for optimal

linear representations of images. In Proceedings of the Fourth

International Workshop on Energy Minimization Methods in Computer

Vision and Pattern Recognition, in press.

Liu, X., Srivastava, A., Gallivan, K (2003). Optimal linear representations

of images for object recognition. In Proceedings of the IEEE Computer

8 Rigorously speaking, the bases with nonnegative constraints do not

form linear subspaces anymore.

X. Liu et al. / Neural Networks 16 (2003) 537–545544



Society Conference on Computer Vision and Pattern Recognition, in

press.

Liu, X., & Wang, D. L. (2001). Appearance-based recognition using

perceptual components. In Proceedings of the International Joint

Conference on Neural Networks, 1943–1948.

Liu, X., & Wang, D. L. (2002). A spectral histogram model for texton

modeling and texture discrimination. Vision Research, 42, 2617–2634.

Liu, X., & Wang, D. L. (2003). Texture classification using spectral

histograms. IEEE Transactions on Image Processing, in press.

Martinez, A. M., & Kak, A. C. (2001). PCA versus LDA. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 23, 228–233.

Pontil, M., & Verri, A. (1998). Support vector machines for 3D object

recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 20, 637–646.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14,

465–471.

Portilla, J., & Simoncelli, E. P. (2000). A parametric texture model based on

joint statistics of complex wavelets. International Journal of Computer

Vision, 40, 49–71.

Schiele, B., & Crowley, J. L. (2000). Recognition without correspondence

using multidimensional receptive field histograms. International

Journal of Computer Vision, 36, 31–50.

Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and

neural representation. Annual Review of Neuroscience, 24, 1193–1216.

Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the

characterization of human faces. Journal of the Optical Society of

America A, 4, 519–524.

Srivastava, A., Liu, X., & Grenander, U. (2002). Universal analytical forms

for modeling image probabilities. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23, 1200–1214.

Swain, M. J., & Ballard, D. H. (1991). Color indexing. International

Journal of Computer Vision, 7, 11–32.

Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of

Cognitive Neuroscience, 3, 71–86.

Vapnik, V. N. (2000). The nature of statistical learning theory (2nd ed.).

New York: Springer-Verlag.

Yang, M.H., Roth, D., Ahuja, N (2000). Learning to recognize 3D objects

with SNoW. In: Proceedings of the Sixth European Conference on

Computer Vision (pp. 439–454).

Zhang, J., Yan, Y., & Lades, M. (1997). Face recognition: Eigenface,

elastic matching, and neural nets. Proceedings of IEEE, 85,

1423–1435.

Zhu, S. C., Liu, X., & Wu, Y. (2000). Exploring texture ensembles by

efficient Markov chain Monte Carlo. IEEE Transactions on Pattern

Recognition and Machine Intelligence, 22, 554–569.

Zhu, S. C., Wu, Y. N., & Mumford, D. (1997). Minimax entropy principle

and its application to texture modeling. Neural Computation, 9,

1627–1660.

X. Liu et al. / Neural Networks 16 (2003) 537–545 545


	Intrinsic generalization analysis of low dimensional representations
	Introduction
	Intrinsic generalization
	Generalization of low dimensional representations
	Intrinsic generalization
	Intrinsic generalization of linear subspaces

	Spectral histogram subspace analysis
	Spectral histogram representation of images
	Spectral histogram subspace analysis

	Experimental results for recognition
	Discussion
	Acknowledgements
	References


