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Abstract— Low dimensional representations of images impose
equivalence relations in the image space; the induced equivalence
class of an image is named as its intrinsic generalization. The
intrinsic generalization of a representation provides a novel way
to measure its generalization and leads to more fundamental
insights than the commonly used recognition performance, which
is heavily influenced by the choice of training and test data. We
demonstrate the limitations of linear subspace representations by
sampling their intrinsic generalization, and propose a nonlinear
representation that overcomes these limitations. The proposed
representation projects images nonlinearly into the marginal
densities of their filter responses, followed by linear projections
of the marginals. We have used experiments on large datasets
to show that the representations that have better intrinsic
generalization also lead to a better recognition performance.

I. INTRODUCTION

In recent years, principal component analysis (PCA) [12]
has become a widely used tool for dimension reduction.
One of the major limitations of PCA representation is that
it is not able to capture statistics higher than the second
order. Independent component analysis (ICA) [6] * (see [14]
for a review) has been used to overcome this limitation by
imposing statistical independence among the linear bases. By
maximizing a discrimination measure among different classes,
Fisher discriminant analysis (FDA) offers another popular
linear subspace representation [8]. In computer vision, these
representations have been applied to face recognition [27],
[30], [3].

As the recognition performance of a classifier depends
heavily on the choice of training data, it becomes important to
study the generalization of a low dimensional representation
through the equivalence relation it imposes on the image space.
The importance of studying the equivalence classes for gener-
alization is greatly emphasized by Vapnik [31]. In fact, Vapnik
named the cardinality of equivalence classes a new concept
(to be studied) for learning from small samples (p. 296, [31]).
While the cardinality of equivalence classes is important for
reducing dimensionality, for recognition performance, it is aslo
important to study the properties of images in a particular
equivalence class. Ideally, only images with similar underlying
models should be grouped into an equivalence class. We
will name this semantics-related aspect of generalization as
intrinsic generalization. This isolates an intrinsic aspect of a

1As pointed out in [26], ICA is a misnomer as estimated independent
components are not guaranteed to be independent.
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representation that affects the recognition performance. Our
study of intrinsic generalization for linear subspaces reveals
that these representations group images from different models
within the same equivalent class and are inherently sensitive
to noise and deformations. By analyzing two problems with
linear subspace representations, we propose a way to improve
the intrinsic generalization of linear subspaces, the advantage
of which is demonstrated by recognition result. WWe emphasize
that our study is to characterize an important aspect of a
representation through the study of intrinsic generalization,
which leads to an important measure to compare different
representations.

This paper is organized as follows. Section Il gives a
definition of generalization and then introduces intrinsic gen-
eralization and shows that of linear subspaces. Section Il
briefly describes the spectral representation of images, and
spectral subspace analysis (SSA), and shows the intrinsic
generalization of SSA through object synthesis. Section 1V
shows the experimental results on recognition of large datasets.
Section V concludes the paper with a discussion on a number
of related issues.

Il. INTRINSIC GENERALIZATION

In this paper, an image I is defined on a finite lattice
L C Z2, the intensity at pixel location ¢ € £ is denoted
by I(¢) € G = [r1,r2], where r1, 72 bound the dynamic range
of the imaging sensor, and €2 the set of all images on £. A
representation is a mapping defined as f : @ — RX. For a
low dimensional representation, we require K < |L|. Before
we introduce the intrinsis generalization, here we first give a
formal definition of generalization of representations.

A. Generalization of Low Dimensional Representations

In learning-based recognition of objects from images, a
classifier/recognizer is often trained using some training data
and is applied to classify/recognize future inputs in the form
of test data. A key issue is to extend good performance on test
inputs using information limited to the training set, commonly
known as the generalization problem [4].

There are several ways of formulating the generalization
problems and we have chosen the framework laid out by
Bishop [4]. Let the observed images be generated from an
unknown probability density P on €2 and the underlying true
recognition function be denoted by h : Q — A, where A
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is the set of all classes. For any classifier function g, its
average generalization ability is defined as the probability that

g(I) = h(I), ie.
G(g) = Pr{IlT € Q,g(I) = h(I)}. 1)

According to (1), obtaining good generalization becomes an
optimization over all the possible classifier functions. In prac-
tice, since the underlying model P(I) and h(I) are generally
unknown, several ways have been proposed. One way is to
estimate G(g) directly through a set separate from the training
one with known class labels such as cross-validation [4].
Another way is to impose additional constraints on G/(g) based
on some generic heuristics such as Akaike information crite-
rion [1] and minimum description length [23], where a model
with more free parameters is penalized. Yet another approach
is to optimize an analytical bound based on statistical analysis
such as the worst case performance of all the implementable
classifiers of a neural network architecture [2]. Note that all
the existing efforts on generalization have been focused on the
generalization of classifiers.

Because of the high dimensionality of images, dimension
reduction becomes necessary for computational reasons. In
case of using a low dimensional representation f, the aver-
age generalization ability then becomes the probability that
g(f(I)) = h(I) for an input I randomly sampled according
to P(I), where g is a classifier based on a low dimensional
representation f. In other words, we have

G, f) = Pr{IlleQg(f(I)=nrI)}
= 2y Pr{IJ e f(JI)=fD} 2
Ly(s@)=h>

where 1,—, is an indicator function, and we use f(I) as the
range of f on Q. From (2), it is clear that f has a significant
effect on the generalization of §. Ideally, we want to group
all the images from each class as a single equivalence class.
(In this case, the classifier is trival.) While this is generally
not possible for real applications, we want to group images
from each class into a small number of equivalence classes,
with each class having a large cardinality, as emphasized by
Vapnik [31]. However, when making each equivalence class as
large as possible, we do not want to include images from other
classes, as this will make a good classification performance
impossible. This leads to the need of analyzing equivalence
class structures of low dimensional representations to achieve
a good generalization performance.

B. Intrinsic Generalization

The previous analysis shows that the equivalence class
structures of low dimensional representations are essential for
a good generalization performance. In this paper, we focus on
studying the images of a particular equivalence class through
statistical sampling.

Definition: Given a representation f, the intrinsic general-
ization of an image I under f is defined as

SiM) ={IJ e, f(J) = fD} cQ ®)

In other words, intrinsic generalization of image I includes
all the images that cannot be distinguished from I under repre-
sentation f. The recognition performance based on f depends
critically on intrinsic generalizations of training images as
the images in intrinsic generalizations are implicitly included
in the training set. We define S9(I) as the images sharing
the same underlying probability models with I. Ideally, S;(I)
should be as close as possible to S?(I). As S9(I) is generally
not available, to explore S (I), we employ statistical sampling
through the following probability model:

Zom SV -DU@.SO)T). (@

Here T is a temperature parameter, D(., .) a Euclidean or other
distance measure, and Z(T') is a normalizing function, given
as Z(T) = > yeqexp{—D(f(J), f(I))/T}. This model has
been used for texture synthesis [33] and we generalize it to
any representation. It is easy to see that as 7' — 0, ¢(J,T)
defines a uniform distribution on S;(I) [33]. The advantage
of using a sampler is to be able to generate typical images in
S1(I) so that Sy(I) under f can be examined in a statistical
sense.

q(J7T) =

C. Intrinsic Generalization of Linear Subspaces

Linear subspace representations of images, including PCA,
ICA, and FDA, assume that f is a linear map, and S;(I)
forms a linear subspace. While these methods are successful
when applied to images belonging to a specific nature, e.g.
face images, their generalization seems poor if we consider
S7(I) under these linear subspace methods in €.

If S9(I) is available then one can analyze the overlap
between the sets SY(I) and S;(I). If not, then one has to
resort to some indirect technique such a random sampling to
compare elements of the two sets. Random sampling seems
sufficient in that the typical images S;(I) are very different
from I. To illustrate these ideas, we have used a PCA of
the ORL face dataset?, which consists of 40 subjects with
10 images each; we have obtained similar results using other
linear subspaces. We calculate the eigen faces corresponding
to the 50 largest eigenvalues. Under PCA, given an image I,
f(I) is the projections of I along eigen faces. We define the
reconstructed image of I as n(I) = Zfil <LV, >V,
where V, is the ith eigen face and < .,. > is the canonical
inner product. Fig. 1(a) shows a face image in the dataset and
Fig. 1(b) shows the reconstructed image with K = 50. We
then use a Gibbs sampler to generate samples of S;(I). Fig.
1(c)-(f) show four samples of S;(I). (For Fig. 1(f), the object
in the middle is used as boundary condition, i.e., pixels on the
object are not updated) In other words, these images have the
same 50 eigen decomposition. Note that S;(I) is defined on
and these images are far from each other in Q. As expected,
the corresponding reconstructed images are identical to Fig.
1(b).

Because S;(I) consists of images from various underlying
probability models, the linear subspace representations can

2http://www.uk.research.att.com/facedatabase.html.
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Fig. 1. (a) A face image. (b) Reconstructed image using K = 50 principal
components. (c)-(f) Four random samples from the set S (I), with =(I)
identical to the one shown in (b).

make the subsequent classification intrinsically sensitive to
noise and other deformations. To show that, Fig. 2(a) gives
three different face images which share the exactly same
eigen representation (bottom row). On the other hand, Fig.
2(b) shows three similar images whose eigen representations
correspond to three different faces.

We emphasize here that the sampling is very from recon-
struction. The sampling is to draw a typical sample from
the set of all the images with a particular low dimensional
representation while reconstruction gives one in the set whose
coefficients are zero along the dimensions complement to the
given subspace. To illustrate this, Fig. 3 shows an example of a
one-dimensional subspace in a two-dimensional space. In this
case, the reconstructed “image” of “x” is the point given by
“+” in Fig. 3(a) while the sampling can return any point with
equal probability along the solid line shown in Fig. 3(b). This
shows clearly that the reconstructed image may not provide
much information about all the other images having the same
low dimensional representation.

These results, while generated based PCA, are valid to an
arbitrary linear subspace since the sampling tries to match
the representation. The main problem of linear subspace
representations, as revealed here, is that these representations
can not take into account that most images in the image space
are white noise images.

I1l. SPECTRAL SUBSPACE ANALYSIS
A. Soectral Representation of Images

As discussed earlier, an ideal representation f for I will be
such that S;(I) = S9(I). There are two important limitations
of the linear methods that need to be addressed: (i) As
the vast majority images in 2 are white noise images, a
good approximation of S9(I) for an image of object(s) must
handle white noise images effectively; otherwise, S7(I) will
concentrate on white noise images. Experiments shows that
linear representations suffer from this problem. (ii) Another
issue is the linear superposition assumption, where each basis

(b)
Examples of different images with identical eigen decompositions
and similar images with different eigen decompositions. The top row shows
the images and the bottom reconstructed. (a) Three different images with
the same eigen representations. (b) Three similar images with different eigen
representations.

Fig. 2.

contributes independently to the image. In contrast, pixels on
objects are dependent and efficient models should exploit this
dependency.

The issue of white noise images can be dealt with effectively
through the method of types [7] as the white noise images
are grouped together under types. However, the direct use
of types does not provide enough constraints as only the
histogram of images is used. We generalize the type definition
by including marginals of filter responses (of the input image)
with respect to a set of filters, which also incorporates local
pixel dependence through filtering.

The representation of using marginals of filtered images
can be justified in many ways: (i) by assuming that small
digoint regions in the frequency domain are independent.
That is, partition the frequency domain into small disjoint
regions and model each region by its marginal distribution.
The partitioning of the frequency also leads to spatial filters.
(ii) Wavelet decompositions of images are local in both space
and frequency, and hence, provide attractive representations for
objects in the images. We convolve an image with the filters
and compute the marginals. Each image is then represented by
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Fig. 3.  An illustration example of the difference between sampling and
reconstruction. Here the dashed line represents a one-dimensional subspace in
a two-dimensional space. For a training example (marked as ’x’), the sampling
is to draw a random point along the solid line in (b) while the reconstructed
image is a single point given by ’+’ in (a).

a vector consisting of all the marginal distributions. We shall
call this representation spectral representation, each of these
vectors a spectral histogram, and the set of all valid vectors
the spectral space. Elements of a spectral histogram relate to
the image pixels in a nonlinear fashion, and hence, avoid the
linearity issue mentioned earlier.

This representation has also been suggested through psy-
chophysical studies on texture modeling [5], and has been
used in the texture modeling and synthesis [11], [34], [18]
and texture classification [19]. Both the histogram of input
images [29] and joint histograms of local fields [25] have been
used for object recognition.

B. Soectral Subspace Analysis

In this method, the strategy is to first represent each image
in the spectral space and then apply a linear subspace method,
such as PCA, ICA or FDA, in the spectral histogram space3.
Name these corresponding methods as SPCA, SICA, and
SFDA, and call them collectively as spectral subspace analysis
(SSA).

To demonstrate the effectiveness of SSA representations,
we explore their intrinsic generalization through sampling. As
in the linear subspace case, we use SPCA for experiments;
similar results have been obtained using other linear spectral
subspaces.

First, bases in the spectral space are computed based on
training images. Given an image, its spectral representation
is computed and then projected onto a spectral subspace. We
use a Gibbs sampling procedure to generate images that share
the same spectral representation. Fig. 4 shows two sets of
examples; Fig. 4(a) shows three texture images and Fig. 4(b)
shows three objects. These examples show that the spectral
subspace representation captures photometric features as well
as topological structures, which are important to characterize
and recognize images.

1V. EXPERIMENTAL RESULTS FOR RECOGNITION

To demonstrate the effectiveness of SSA representations,
we use several data sets and compare their performance with
that of linear subspace representations. In our experiments, the

3Note a reconstructed spectral histogram may be outside the spectral space
and here we ignore this complication.

(b)
Samples from SPCA intrinsic generalization. In each panel the
top row shows the input image and the bottom a typical sample from its
intrinsic generalization. (a) Three textures. (b) One object and one face image.
Boundary conditions need to be taken with care when sampling from S (I).

Fig. 4.

number of principal components is determined by thresholding
the ratio of a component’s eigenvalue and the largest eigen-
value. (If the same threshold is applied to PCA, it tends to keep
more components as the dimension of the input space here is
much larger). We have used the same number of components
for ICA, FDA, SICA, and SFDA as PCA and SPCA. Here ICA
is calculated using the FastICA algorithm [13] and FDA based
on an algorithm by Belhumeur et al. [3]. We use the nearest
neighbor classifier for recognition. To calculate the spectral
histogram, we use a fixed set of 21 filters. These filters were
chosen automatically from a larger set using a filter selection
algorithm [17] for the ORL face dataset.

A classifier’s performance in a low dimensional space
depends on intrinsic generalization of the representation to
the test data. The result for a new image of a classifier is
determined by the decision region partitions in the feature
space and thus in the image space. Given a training set B,
we define the extrinsic generalization set of I € B as:

SeM = (PeQ LB =LO} \ g
{313 € Q,L(J|B\T) = L(I)}.

Here L(I) is the label of I and L(J|B) is the label of image
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J assigned by the classifier given training set B. To separate
the effectiveness of a representation from that of the choice of
training and test data, we have also used (uniformly) randomly
generated bases, which we call random component analysis
(RCA) and spectral random component analysis (SRCA).

First we use the Columbia Object Image Library (COIL-
100)* dataset, which consists of images of 100 3-D objects
with varying pose, texture, shape and size. Pontil and Verri
[22] applied SVM (Support Vector Machines) method to
3D object recognition. Yang et al. [32] proposed a learning
algorithm, named SNoW (Sparse Network of Winnows) for
appearance based recognition and applied their learning al-
gorithm to the full COIL dataset and compared with SVM
methods. They tested their method by varying the number of
training views. For a fair comparison with the results in [32],
these color images were converted to gray level images and
downsampled to size 32 x 32, which have been used in all the
experiments here.

As in [32], we vary the number of training views per object.
Tab. | shows the recognition rates on the dataset using PCA,
ICA, FDA, SNoW [32] and Linear SVM [32] as well as SSA
methods. While the COIL-100 dataset is considered to be easy
with enough training data, Tab. | reveals clearly the general-
ization of different representations. Under all the conditions,
SSA methods outperform the other methods. Among the SSA
methods, SFDA gives the best performance. However, FDA
in the image space does not outperform other linear methods;
this is because these images are not linearly separable in the
image space and linear FDA bases are not effective. This result
is consistent with that of [20], which showed that FDA may
not outperform PCA in general. Another interesting point of
Tab. | is that RCA and SRCA give comparable results to
those of other bases, suggesting that the choice of commonly
used different bases within a space may not be that critical
for recognition as none of them is considerably better than a
random one in term of recognition performance.

TABLE |
RECOGNITION RESULTS FOR THE COIL-100 DATASET

Training / test per object
Methods 36/36 | 18/54 | 8/64 4768
PCA 98.58% | 96.67% | 87.23% | 75.82%
ICA 98.47% | 96.52% | 87.91% | 76.03%
RCA 98.61% | 96.30% | 86.95% | 75.35%
FDA 97.61% | 92.63% | 82.13% | 56.82%
SNoW [32] 95.81% | 92.31% | 85.13% | 81.46%
Linear SVM [32] | 96.03% | 91.30% | 84.80% | 78.50%
SPCA 99.39% | 97.13% | 89.25% | 82.91%
SICA 99.39% | 97.03% | 89.23% | 82.72%
SRCA 99.42% | 96.89% | 89.13% | 82.95%
SFDA 99.91% | 98.8% | 94.44% | 87.37%

We have also applied SSA methods to face and texture
datasets. To demonstrate more convincingly that the SSA
representations are able to represent different types of images
at the same time, we create a dataset by combining ORL

4Available at http://www.cs.columbia.edu/CAVE.

TABLE 1l
RECOGNITION RATE AND THE AVERAGE ENTROPY OF pg(¢|I) FOR THE
COMBINED DATASET

Total training / test images
5080 / 5080 1300 / 8860

Methods | Recog. | Average | Recog. | Average
rate entropy rate entropy

PCA 77.91% | 1.69 bits | 71.60% | 2.61 hits
ICA 77.83% | 1.72 bits | 72.31% | 2.55 hits
RCA 76.52% | 1.99 bits | 69.82% | 3.08 bits
FDA 76.36% | 2.72 bits | 72.83% | 2.83 hits
SPCA | 98.31% | 0.62 bit | 91.73% | 1.36 hits
SICA 98.41% | 0.55 bit | 91.22% | 1.28 bits
SRCA | 97.54% | 0.79 bit | 90.59% | 1.54 bits
SFDA | 99.65% | 0.60 bit | 96.55% | 1.63 hits

face dataset, a texture dataset, and the COIL-100 dataset.
The resulting dataset consists of 180 different classes with
40 textures, 100 objects, and 40 faces and a total of 10160
images. To measure the reliability of the recognition result,
for each test image I, we calculate py(i|]) as

—D(f(CD),F(D)
eXp{ min; D(f(o(j)),f(l))}

—D(f(CH),f(X))

, (6)
> exp{ min, D(f(c<-f>>,f(1>>}

po(ilI) =

where C'(® is the training set of category i, D(f(C'®), f(T))
the minimum distance between the representation of I and
all the images in C®). We calculate the entropy of po(i|T)
as a measure of reliability. Tab. Il shows the recognition
result along with the average entropy of po(¢|I) over all
test images. Again, all the SSA methods outperform linear
subspace methods. In addition, the average entropy of the
SSA methods is much lower than that of the linear subspace
methods.

V. DISCUSSION

One of the major obstacles of developing a generic vision
system is the generalization of an underlying representation.
By studying the intrinsic generalization of a representation,
we can better understand and predict its performance under
different conditions. To our knowledge, this is the first attempt
to provide a quantitative generalization measure intrinsic to a
representation; in contrast, generalization is commonly tied to
recognition performance, which depends on the choice of the
classifier and the choice of training and test data. Our study on
the intrinsic generalization of linear subspace representations
in the image space shows that they cannot generalize well
as images from different models tend to be grouped into one
equivalence class; we emphasize that this result holds for any
low dimensional linear subspace in the image space. We have
suggested a way to improve the intrinsic generalization by
implementing linear subspaces in the spectral space. We have
demonstrated substantial improvement in recognition on large
datasets.

However, our goal is not to show that SSA representation
is optimal in general. In fact, if classes consist of white noise
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like images, SSA representations would be very ineffective.
Rather our emphasis is on the importance of the underlying
representation for object images. An ideal representation of
image I is SY(I), which can be implemented only when
the true underlying object models and the physical imaging
process are available; this leads to the analysis-by-synthesis
paradigm [9]. When S?(I) is not available explicitly, one needs
to approximate it. There is a trivial solution for a good approx-
imation by forcing S;(I) = {I}. However, the generalization
is very poor and it requires literally all possible images in the
training set. A good representation should approximate S9(I)
well and |S;(I)| should be as large as possible. These two
constraints provide the axes of forming a continuous spectrum
of different representations and allow us to study and compare
them. For example, only marginal distributions are used in
the spectral representation; one can describe and synthesize
I better by incorporating joint statistics [24]; however, this
obviously decreases |S(I)|. Within linear subspace methods,
one can also decrease |Sy(I)| by imposing additional con-
straints on bases and coefficients, such as the non-negative
constraints [16]°. Due to the complexity of S%(I), a very close
approximation using some low dimensional representations
may not be feasible. An alternative is to combine the analysis-
by-synthesis paradigm [9] and a low dimensional representa-
tion based approach. The hypothesis pruning by Srivastava et
al. [28] provides such an example, where a low dimensional
representation selects plausible hypotheses for a analysis-by-
synthesis model. In this framework, the difference among low
dimensional representations is their effectiveness of selecting
good hypotheses rather than providing a final answer.
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