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ABSTRACT

Monaural speech separation is the task of separating target speech
from interference in single-channel recordings. Although substan-
tial progress has been made recently in deep learning based speech
separation, previous studies usually focus on a single type of interfer-
ence, either background noise or competing speakers. In this study,
we address both speech and nonspeech interference, i.e., monaural
speaker separation in noise, in a talker-independent fashion. We
extend a recently proposed deep CASA system to deal with noisy
speaker mixtures. To facilitate speech enhancement, a denoising
module is added to deep CASA as a front-end processor. The pro-
posed systems achieve state-of-the-art results on a benchmark noisy
two-speaker separation dataset. The denoising module leads to sub-
stantial performance gain across various noise types, and even better
generalization in noise-free conditions.

Index Terms— Monaural speech separation, speech enhance-
ment, speaker separation, deep CASA

1. INTRODUCTION

In realistic acoustical environments, the speech sound reaches our
ears is usually contaminated by various types of interference, such
as environmental noise and competing speakers. Although human
listeners excel at attending to the target speaker while filtering out
other sound sources [2], speech separation remains a difficult prob-
lem for machines over the last few decades. This study focuses on
monaural (single-microphone) speech separation, which provides a
flexible and cost-efficient approach to the problem.

Based on the type of interference, speech separation can be cat-
egorized into speech enhancement and speaker separation. Speech
enhancement refers to the task of recovering speech from nonspeech
additive noise. The difficulty of speech enhancement stems from the
fact that unstructured noise can corrupt structured speech signals in
unpredictable ways. With the recent development of deep learning,
speech enhancement has been formulated as a supervised learning
problem. Typically, a neural network is used to project noisy fea-
tures to some representation of clean speech. Various learning ma-
chines have been explored for this task, including feedforwad neural
networks (FNNs) [23], recurrent neural networks (RNNs) [4], and
convolutional neural networks (CNNs) [18]. The models are trained
to estimate spectral masks [4, 22, 26], spectral mappings [21], or
time-domain signals [17]. With multi-condition large-scale train-
ing, deep learning based approaches can effectively reconstruct the
contaminated patterns of speech, and generalize well to untrained
conditions [1].

On the other hand, monaural speaker separation aims to separate
several concurrent speakers from a single-channel recording. Unlike
speech enhancement, both the target and interfering speakers are

highly structured in speaker separation. A talker-dependent neural
network can easily map a specific speaker to one of its output layers,
leading to significant improvements in speech quality and intelli-
gibility [3, 7, 27]. However, when it comes to talker-independent
speaker separation, we must solve the permutation problem [12]
due to the unknown correspondence between speakers and outputs.
Many algorithms have been proposed recently to address the this
problem, among which permutation invariant training (PIT) [11]
and deep clustering (DC) [6] represent two major approaches. In
PIT, all possible output-speaker permutations are scanned during
training, and the network is optimized with respect to the permuta-
tion which leads to the minimum loss. There are two types of PIT.
In frame-level PIT (tPIT), the output-speaker permutation can vary
frame-by-frame, which leads to optimized frame-level separation.
A fixed permutation throughout each training utterance corresponds
to utterance-level PIT (uPIT), which leads to good utterance-level
performance. In contrast, DC projects each time-frequency (T-F)
unit of the mixture to an embedding space. Clustering the embed-
dings results in a set of binary masks, each of which can be used
to extract one speaker. Inspired by human auditory scene analysis
(ASA) mechanisms, we proposed a two-stage deep CASA system
in [13], with a simultaneous grouping stage performing frame-level
separation using a tPIT network, followed by a sequential group-
ing stage performing speaker tracking using a clustering network.
Compared to PIT, DC and their variants [14, 16, 24], deep CASA
substantially mitigates the mistakes in speaker tracking, and leads to
better results in speaker separation.

Although monaural speech enhancement and speaker separa-
tion have been well-studied separately, little effort has been made
to study the joint problem, despite its more practical usage, as
real-world interference is not restricted to one type. One reason
is that one has to deal with the permutation problem and unstruc-
tured noise corruption at the same time in noisy speaker separation.
The two problems have adverse effects on each other, and are
compounded into a more complex problem. Some early trials of
talker-independent noisy speaker separation include [10] and [25].
In [10], a uPIT RNN is trained with various noise types and sig-
nal to noise ratios (SNRs). In [25], a noisy two-speaker dataset
(WHAM!) is created and published, where various speech separa-
tion architectures are then benchmarked. Both studies report limited
performance gain for this task.

In this study, we extend our deep CASA framework to monaural
speaker separation in noise. First, we retrain a baseline deep CASA
system [13] on the WHAM! dataset [25]. A light-weight denois-
ing module is then added to deep CASA for front-end processing,
resulting in what we call a denoising deep CASA system. Both sys-
tems achieve excellent results on WHAM!. Thanks to the additional
denoising module, denoising deep CASA performs consistently bet-
ter across various untrained noise types and SNR conditions. The
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Fig. 1: Diagrams of (a) the simultaneous grouping stage and (b) the
sequential grouping stage in deep CASA.

denoising module also leads to better generalization to noise-free
speaker mixtures.

The rest of this paper is organized as follows. The baseline deep
CASA system for noisy speaker separation is described in Section 2.
In Section 3, we present the denoising deep CASA system. Experi-
mental results and comparisons are discussed in Section 4. Section 5
concludes the paper.

2. DEEP CASA FOR MONAURAL SPEECH SEPARATION

The goal of monaural speech separation is to extractingC concurrent
speakers xc(t), c = 1, ..., C, from a single-channel recording of
mixture y(t):

y(t) =

C∑
c=1

xc(t) + n(t) (1)

where t indexes time and n(t) denotes nonspeech noise. This study
focuses on the co-channel situation where C = 2.

In [13], we have proposed a deep CASA system for talker-
independent monaural speaker separation, which corresponds to a
special case of monaural speech separation where n(t) = 0. There
are two stages in deep CASA. The simultaneous grouping stage
takes the mixture signal and separates concurrent speakers at the
frame level. The frame-level separated spectra are then fed to the se-
quential grouping stage for speaker tracking. Deep CASA optimizes
separation and speaker tracking in turn, and achieves state-of-the-art
results in both objectives.

Although deep CASA is designed for the noise-free condition, it
can be readily extended to speech separation in general, where com-
peting speakers and background noise are both present. The details
are presented in two stages in the following subsections.

2.1. Simultaneous Grouping

A diagram of the simultaneous grouping stage is illustrated in
Fig. 1a. Given the complex short-time Fourier transform (STFT) of
the mixture Y (m, f), where m and f index frame and frequency,
simultaneous grouping is performed to separate the two speakers at
the frame level.

A Dense-UNet first takes Y (m, f) as input and predicts two
complex ratio masks CRM1(m, f) and CRM2(m, f). The
masks are multiplied to Y (m, f) to generate two complex out-
puts, X̂1(m, f) and X̂2(m, f), which estimate the complex STFT
of the two speakers. The training of Dense-UNet follows the tPIT
criterion, where the frame-level output-speaker pairing is chosen as
the pairing that leads to the minimum loss. The outputs are then
organized into two streams, X̂o1(m, f) and X̂o2(m, f), using the
resulting tPIT pairings. Next, two time-domain signals, x̂o1(t) and
x̂o2(t), are generated by applying inverse STFT to the organized
outputs. A signal-to-noise ratio (SNR) objective JtPIT−SNR is
calculated for backpropogation:

JtPIT−SNR =

2∑
c=1

10 log
Σtxc(t)

2

Σt[xc(t)− x̂oc(t)]2
(2)

The Dense-UNet in simultaneous grouping comprises a series of
upsampling layers, downsampling layers, and dense convolutional
blocks. The details of the Dense-UNet, including the number of
layers, downsampling, upsampling, skip connections, dense convo-
lutional blocks, and frequency mapping, follow those in [13].

2.2. Sequential Grouping

The sequential grouping stage tracks frame-level spectral estimates
X̂1(m, f) and X̂2(m, f), and assigns them to the two speakers. A
diagram is given in Fig. 1b.

Y (m, f) , X̂1(m, f) and X̂2(m, f) are stacked to form the
input to this stage. A temporal convolutional network (TCN)
projects each frame-level input to a D-dimensional embedding
vector V(m) ∈ R1×D . The target labels for TCN training are
two-dimensional indicator vectors, denoted by A(m). A(m) gives
a one-hot representation of the tPIT pairings in simultaneous group-
ing. A(m) = [1, 0] if Speaker 1 is tied to Output 1, and Speaker 2
is tied to Output 2 in Dense-UNet training, and [0, 1] otherwise. A
weighted objective function between V and A (see [13] for details)
forces V(m) corresponding to the same tPIT pairing to get closer
during training, and otherwise to become farther apart.

At the inference time, clustering V(m) with the K-means algo-
rithm generates a binary label for each frame, which can be used to
organize the frame-level outputs from simultaneous grouping, and
form the final outputs of deep CASA.

The TCN in sequential grouping consists of a sequence of di-
lated convolutional blocks. The long temporal context of TCN
makes it suitable for speaker tracking. The details of the TCN,
including feature preprocessing, the number of layers, dilated con-
volutional blocks, and dropDilation, follow those in [13].

3. DENOISING DEEP CASA

Although deep CASA can be readily trained for speaker separation
in noise, there are several limitations to this approach. First, in the
presence of noise, the simultaneous grouping module has to per-
form frame-level speaker separation and denoising at the same time,
which is much more difficult than speaker separation alone, as un-
structured noise can severely corrupt speech patterns. Second, cer-
tain types of noise, e.g., music and babble noise, contain speech-like
harmonics, which may mislead the simultaneous grouping module to
discard weak speakers, and retain noise instead. Third, the errors in
simultaneous grouping have an adverse effect on sequential group-
ing, and thus may greatly degrade the performance of deep CASA.
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One possible solution is to treat noise as another sound source,
and employ the multi-source deep CASA system in [13] for speech
separation. To do so, one additional output layer needs to be added
for noise in the simultaneous grouping Dense-UNet. Such a solution
may partially reduce the errors in simultaneous grouping thanks to
the noise-aware training. However, since noise usually has different
patterns from speech, treating them as parallel outputs may not be
optimal.

In this study, we propose a denoising front-end module for si-
multaneous grouping, which aims to remove nonspeech noise, and
recover missing speech patterns buried in noise for both speakers.
The input to the denoising module is the complex STFT of the mix-
ture Y (m, f). A lite Dense-UNet is trained to predict a complex
ratio mask, which is then multiplied to Y (m, f) to produce an esti-
mate of the clean speaker mixture X̂1+2(m, f). Next, X̂1+2(m, f)
is converted back to the time domain, denoted by x̂1+2(t). An SNR
objective is calculated for denoising:

JDN−SNR = 10 log
Σt[x1(t) + x2(t)]2

Σt[x1(t) + x2(t)− x̂1+2(t)]2
(3)

Components in simultaneous grouping are modified in accor-
dance with the denoising module. The input to simultaneous group-
ing now becomes a stack of X̂1+2(m, f) and Y (m, f), so that
reconstructed speech and raw information are both provided. The
two estimated complex masks, CRM1(m, f) and CRM2(m, f),
are now multiple to X̂1+2(m, f) for speech separation. In this
way, CRM1(m, f) and CRM2(m, f) are trained to only perform
speaker separation. The enhancement task is left to the denoising
module. During the training of simultaneous grouping, a joint SNR
objective, which includes both denoising and speaker separation
components, is formed.

JJoint−SNR = JtPIT−SNR + JDN−SNR (4)

Other details of simultaneous grouping and sequential grouping
remain the same. We denote the deep CASA system with a denoising
module by denoising deep CASA in this study.

4. EVALUATION AND COMPARISON

4.1. Experimental Setup

We conduct experiments on the noisy two-speaker dataset WHAM!
[25], which consists of two-speaker mixtures from the WSJ0-2mix
dataset [6] combined with real ambient noise samples. The WSJ0-
2mix dataset has a 20,000-mixture training set and a 5,000-mixture
validation set generated by selecting random speaker pairs in the
Wall Street Journal (WSJ0) training set si tr s, and mixing them at
SNRs between 0 dB and 5 dB. The test set in WSJ0-2mix has 3,000
mixtures, which are similarly generated using 16 untrained speakers
from the WSJ0 development set si dt 05 and si et 05. WHAM! pairs
each two-speaker mixture in WSJ0-2mix with a nonspeech ambient
noise sample, recorded in real environments such as coffee shops,
restaurants, and bars. To generate a mixture in WHAM!, a random
noise signal and a random SNR between -3 dB and 6 dB are first
sampled. The first speaker in the WSJ0-2mix mixture is then scaled
so that the SNR between the first speaker and the noise is equal to
the randomly sampled value. The same scale is applied to the second
speaker. A min version of WHAM! is adopted, where the longer of
the two speech signals is truncated. All mixtures are sampled at 8
kHz.

Table 1: Number of parameters, average ∆SDR (dB), ∆SI-SNR
(dB), PESQ and ESTOI (%) for various systems evaluated on
WHAM! (separate-noisy, 8k-min [25]).

# of param. ∆SDR ∆SI-SNR PESQ ESTOI

Mixture - 0.0 0.0 1.68 34.4

BLSTM-TasNet [25] 23.0M - 9.8 - -

One-stage chimera [25] 29.6M - 9.9 - -

Two-stage chimera [25] 59.2M - 10.3 - -

uPIT Dense-UNet 4.8M 12.2 11.8 2.42 65.3

Deep CASA 12.8M 13.8 13.4 2.58 70.4

Denoising deep CASA 14.0M 14.7 14.4 2.63 73.0

IBM - 14.0 13.4 2.72 77.0

To facilitate comparison, we create another test set on the ba-
sis of WHAM!. The first 1,000 mixtures in WHAM!’s test set are
remixed, where the two speakers in a mixture are mixed exhaus-
tively with one of the four noises in the CHiME-4 challenge [20],
namely bus (BUS), cafe (CAF), pedestrian area (PED) and street
(STR) noise, at a speech-to-noise ratio (SNR) of -2, 5, 10 dB, result-
ing a total of 12,000 noisy two-speaker test mixtures. This test set is
denoted by WHAM!-CHiME4. To make a test mixture in WHAM!-
CHiME4, the noise needs to be scaled to reach the desired SNR,
while the speakers in WHAM! keep their original scales. Here the
SNR is calculated using loudness units full-scale (LUFS) [5] to re-
move silent regions from computation. To reveal the generalization
in noise-free conditions, evaluation is also conducted on the first
1,000 two-speaker mixtures in WHAM! test, without mixing them
with any noise. STFT with a frame length of 32 ms, a frame shift
of 8 ms, and a square root Hanning window is calculated for all sys-
tems.

We evaluate the algorithms using signal-to-distortion ratio im-
provement (∆SDR) [19], perceptual evaluation of speech quality
(PESQ) [8], and extended short-time objective intelligibility (ES-
TOI) [9]. To make a systematical comparison with other systems,
results are also reported in terms of scale-invariant signal-to-noise
ratio improvement (∆SI-SNR) [16].

4.2. Comparison Systems

All of the following comparison systems are trained on WHAM!.
The results of the first three systems are reported in [25].

• BLSTM-TasNet [15]: This system performs uPIT [11] in the
time domain using a bi-directional long short-term memory
(BLSTM) RNN.

• One-stage chimera [25]: This system uses a chimera BLSTM
network which simultaneously estimates DC embeddings and
uPIT outputs. uPIT outputs are used during inference.

• Two-stage chimera [25]: A denoising BLSTM is added as the
first stage before the chimera network [25]. The two stages
are then jointly optimized.

• uPIT Dense-UNet: The Dense-UNet structure in simultane-
ous grouping of deep CASA is trained with a uPIT SNR ob-
jective. The detailed settings follow those in [13].

• Deep CASA: This system is described in Section 2. It repre-
sents the direct extension of deep CASA to noisy conditions.
The detailed training recipes follow those in [13]. The two
stages are jointly optimized.

• Denoising deep CASA: A lite version of Dense-UNet with
a channel size of 32 is used for front-end denoising. Other
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Table 2: ∆SDR (dB), PESQ and ESTOI (%) for various systems evaluated on WHAM!-CHiME4. The results are averaged across -2, 5 and
10 dB, and reported with respect to different noise types.

BUS CAF PED STR Average

∆SDR PESQ ESTOI ∆SDR PESQ ESTOI ∆SDR PESQ ESTOI ∆SDR PESQ ESTOI ∆SDR PESQ ESTOI

Mixture 0.0 1.80 40.2 0.0 1.68 33.4 0.0 1.66 33.6 0.0 1.70 36.7 0.0 1.71 36.0

uPIT Dense-UNet 13.7 2.62 71.5 11.1 2.34 62.6 10.7 2.31 61.0 12.3 2.44 65.5 12.0 2.43 65.2

Deep CASA 15.7 2.85 77.5 12.8 2.50 68.0 12.1 2.44 65.7 13.9 2.60 70.8 13.7 2.60 70.5

Denoising deep CASA 16.7 2.91 79.7 13.6 2.54 70.4 12.9 2.48 68.3 14.7 2.64 73.2 14.5 2.64 72.9

IBM 15.4 2.98 79.1 13.2 2.68 75.6 12.7 2.58 76.5 14.1 2.73 77.2 13.8 2.74 77.1

Table 3: ∆SDR (dB), PESQ and ESTOI (%) for various systems evaluated on WHAM!-CHiME4. The results are averaged across BUS,
CAF, PED and STR noise, and reported with respect to different SNR values.

SNR = -2 dB SNR = 5 dB SNR = 10 dB Noise free

∆SDR PESQ ESTOI ∆SDR PESQ ESTOI ∆SDR PESQ ESTOI ∆SDR PESQ ESTOI

Mixture 0.0 1.56 26.1 0.0 1.73 37.4 0.0 1.84 44.4 0.0 2.03 56.2

uPIT Dense-UNet 12.4 2.10 51.5 11.7 2.50 68.6 11.8 2.68 75.4 12.6 2.88 82.4

Deep CASA 13.6 2.19 56.3 13.5 2.69 74.1 13.8 2.91 81.0 15.4 3.19 88.7

Denoising deep CASA 14.6 2.24 59.8 14.3 2.73 76.3 14.5 2.96 82.5 16.4 3.32 90.2

IBM 15.4 2.46 69.0 13.3 2.80 78.9 12.9 2.97 83.4 13.8 3.28 89.1

details follow Section 3 and [13]. The two stages are jointly
optimized.

• Ideal binary mask (IBM): The IBM is defined as:

IBMc(m, f) =

{
1, if |Xc(m, f)| > |Y (m, f)−Xc(m, f)|
0, otherwise

(5)

4.3. Results and Comparisons

Table 1 compares deep CASA with other talker-independent speech
separation methods on the noisy two-speaker dataset WHAM! [25].
For all methods, we list the best reported results, and leave unre-
ported fields blank. The numbers of parameters in BLSTM-TasNet,
one-stage and two-stage chimera are estimated according to [25].
As shown in the table, all proposed methods significantly outper-
form the benchmark results presented in [25]. The baseline deep
CASA system produces better results than uPIT Dense-UNet, thanks
to its two-stage processing scheme. The denoising module for deep
CASA introduces a substantial gain in terms of all metrics, with only
a small portion of additional parameters. Denoising deep CASA sur-
passes the IBM in terms of ∆SDR and ∆SI-SNR, and generates very
close PESQ and ESTOI.

To evaluate the generalization of deep CASA to untrained noise
types, we test the proposed systems on WHAM!-CHiME4, and
present the results in Table 2. Similar to Table 1, denoising deep
CASA substantially outperforms uPIT Dense-UNet and the baseline
deep CASA across different noise types. For CAF and PED noise,
which contain noticeable background speech, there is still a small
gap between denoising deep CASA and the IBM, due to the inter-
ference of background speakers. For BUS and STR, where noise
mostly comes from traffic, the gap has been greatly reduced. The
average results across all noise types are very similar to those in Ta-
ble 1, demonstrating the noise generalization ability of the proposed
methods.

Table 3 presents the results on WHAM!-CHiME4 with respect to
different speech-to-noise ratios (SNRs). Again, the performance of

denoising deep CASA leads consistently across all reported SNRs.
The last three columns correspond to the results on noise-free two-
speaker mixtures, where uPIT Dense-UNet and deep CASA deliver
much worse performance than their WSJ0-2mix results in [13],
mainly attributed to two factors. First, the mixtures in WHAM!
have a much larger range of energy levels than WSJ0-2mix, making
the task slightly harder for speech separation systems. Second, the
uPIT Dense-UNet and deep CASA systems here are trained on noisy
data, and tested on mismatched noise-free data. Better results are
expected if noise-free samples are also included in training. With
the help of the denoising module, denoising deep CASA makes the
tasks of speech enhancement and speaker separation relatively inde-
pendent from each other, and keeps the speaker separation module
robust to different noise levels. It also leads to much better gen-
eralization in the noise-free condition, as shown by the underlined
results.

5. CONCLUSION

We have extended the deep CASA framework [13] for general
monaural speech separation, namely, speaker separation in noise. A
denoising preprocessing module is added to deep CASA to improve
the noise robustness of the model. The proposed denoising deep
CASA system substantially outperforms all published results, and
surpasses the IBM in terms of ∆SDR. Further examination reveals
that the denoising module leads to good generalization to different
noise types and levels, as well as the noise-free condition. In the
future, we plan to extend deep CASA for more realistic acousti-
cal environments, which include conversational speech and room
reverberation.
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