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Abstract
Speech super-resolution (SR) is a task to increase speech sam-
pling rate by generating high-frequency components. Existing
speech SR methods are trained in constrained experimental set-
tings, such as a fixed upsampling ratio. These strong constraints
can potentially lead to poor generalization ability in mismatched
real-world cases. In this paper, we propose a neural vocoder
based speech super-resolution method (NVSR) that can handle a
variety of input resolution and upsampling ratios. NVSR consists
of a mel-bandwidth extension module, a neural vocoder module,
and a post-processing module. Our proposed system achieves
state-of-the-art results on the VCTK multi-speaker benchmark.
On 44.1 kHz target resolution, NVSR outperforms WSRGlow
and Nu-wave by 8% and 37% respectively on log spectral dis-
tance and achieves a significantly better perceptual quality. We
also demonstrate that prior knowledge in the pre-trained vocoder
is crucial for speech SR by performing mel-bandwidth extension
with a simple replication-padding method. Samples can be found
at https://haoheliu.github.io/nvsr.
Index Terms: neural vocoder, speech super resolution, band-
width extension, deep learning, flexible resolution

1. Introduction
Speech super-resolution (SR) aims to improve speech fidelity
by predicting the high-resolution (HR) speech given the low-
resolution (LR) speech. Low-resolution speech is common for
reasons such as compression and low sampling rate. From a
spectrogram point of view, speech SR is also equally referred to
as bandwidth extension (BWE) [1]. SR is an important technique
for real-world applications, including speech quality enhance-
ment [2] and text-to-speech synthesis [3].

A lot of early studies [4, 5] break SR into spectral envelop
estimation and excitation generation from LR. At that time, the
direct mapping from LR to HR is not widely explored since
the dimension of HR is relatively high. Later, SR methods
based on deep neural network [6, 7, 8, 9] show better subjective
quality than traditional methods. Most neural network based
methods study the 8 kHz to 16 kHz or 4 kHz to 16 kHz sampling
rate upsample problems, such as AECNN [10] and TFNet [11].
Recently, Nu-wave [12] and WSRGlow [13] have explored the
higher 48 kHz target resolution, where the input sampling rate is
usually 12 kHz, 16 kHz, or 24 kHz.

Existing speech SR studies are usually performed under
controlled experimental settings. For example, the input reso-
lution and bandwidth in data simulations is always fixed value
during training and evaluation. However, in real-world scenar-
ios, the speech SR applications generally require the capability
of handling diverse settings such as different input resolutions
and bandwidths. These mismatches potentially lead to degraded

speech SR performance. Also, the demand for high upsampling-
ratio (UPR) SR is common on low-quality historical recordings,
where UPR stands for target bandwidth divided by input band-
width. Nevertheless, less attention has been given to the high
UPR cases. High UPR speech SR is challenging because it need
the model to predict more low-frequency harmonic structures.
To our knowledge, most speech SR methods only experiment on
the UPR around 3, 4, and 6 [12, 13, 14].

To alleviate the difficulties in addressing flexible input res-
olution and high UPR mentioned above, we propose a neural-
vocoder-based approach (NVSR) for speech SR. We train NVSR
in two separate stages: (1) an HR mel spectrogram prediction
stage; (2) a vocoder waveform synthesis and post-processing
stage. Different from predicting HR in the linear frequency
scale as in previous studies [11, 15], HR prediction on a low-
dimensional mel frequency scale is more tractable, especially
in high UPR cases. Neural Vocoder [16, 17] is the model that
upsample a low dimensional feature (e.g., mel spectrogram) to
high-resolution waveforms. This coarse to fine generation pro-
cess is similar to speech SR. Thus the prior knowledge on speech
provided by the neural vocoder, such as phoneme structures,
would be useful for speech SR.

To our knowledge, we are the first attempt that tackles the
flexible input resolution and high UPR problems for speech SR.
Our proposed NVSR can achieve a UPR up to 22.05 (from 2
kHz to 44.1 kHz). NVSR achieves state-of-the-art result on the
VCTK Multi-speaker benchmark under multiple experimental
settings, outperforming previous methods by a large margin. We
observe that even replacing neural network methods with a sim-
ple replication-padding method without learning, NVSR can still
outperform existing speech SR methods. This demonstrates the
superior performance offered by the neural vocoder for speech
SR. Unlike most previous studies, we mainly focus on the multi-
speaker setup, which is more challenging than the single-speaker
setting studied in other literatures [7]. Our code and pre-trained
models are open-sourced 1 to facilitate reproducibility.

The paper is organized as follows. Section 2 introduces
the problem formulation of speech SR. Section 3 introduces the
pipeline of NVSR. Section 4 discusses the experimental settings
and analyses the results. Section 5 draw a final conclusion.

2. Problem Formulation
Given a discrete signal xl = [xi]i=1,2,...T ·l sampled at sampling
rate l, speech SR system estimates signal yh = [yi]i=1,2,...T ·h,
where T is the length in seconds and h > l. According to the
Nyquist theory, the highest bandwidth of xl and yh are l/2 (Hz)
and h/2 (Hz), respectively. So, xl does not contain the frequency

1https://github.com/haoheliu/ssr_eval

Interspeech 2022
18-22 September 2022, Incheon, Korea

Copyright © 2022 ISCA 4227 10.21437/Interspeech.2022-11017



information between h/2− l/2 (Hz), which can be considered
as the generation target of the SR task.

Most frequency domain methods [7, 11] perform SR by pre-
dicting HR spectorgram from LR spectrogram, and transformed
to waveform using the HR spectrogram prediction. This process
can be formulated as

yh = F−1(G(F (xh))), (1)

where F and F−1 are the time to frequency spectrogram trans-
formation and it’s reverse transformation respectively. xh is the
upsampled version of xl, and function G(·) takes band-limited
spectrogram as input and output full band spectrogram. Here
xl is upsampled to ensure the system input and output have
the same shape and the model design is not restricted by the
ratio h/l. In most studies, F and F−1 are short-time-fourier-
transform (STFT) and inverse STFT (iSTFT), respectively.

3. Methodology
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Figure 1: Overview of the NVSR pipline.

Figure 1 shows the overall pipline of NVSR including mel
transform Fmel, high resolution mel spectrogram prediction with
G, and inverse mel transform F−1

mel . Similar to Equation 1, this
process can be written as

ŷh = F−1
mel (G(Fmel(xh))) ≈ Vϕ(G(Fmel(xh))). (2)

Here G aims to predict the HR mel spectrogram with the LR
input, as shown in Equation 3.

G : Xmel → Ymel, (3)

where Xmel and Ymel stand for the mel spectrogram of x and
y. Xmel is calculated by Fmel(x) = |X|W , in which X is the
STFT of x and W is a set of mel filter banks.

Note that the inverse mel transform is not mathematically
solvable. Thus, NVSR models the F−1

mel with a neural vocoder Vϕ.
We show that Vϕ achieves almost the same perceptual quality
as the ideal inverse transform. For mel spectrogram prediction,
we first introduce a ResUNet based method. Then we introduce
a non-parametric replication-padding method, which mainly
exploits the prior knowledge learned by the vocoder.

3.1. Mel Spectrogram Prediction

3.1.1. ResUNet-based Method

We use ResUNet [18, 19] to model the G(·) in Equation 3 and
estimate Ymel. This process can be written as

Ŷmel = ResUNet(Xmel)⊙ (Xmel + ϵ), (4)

where ⊙ means element-wise multiplication, and ϵ is a small
constant to avoid the zero values in Xmel. As shown in Figure 2,
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Figure 2: Predicting the higher frequnecies of mel spectrogram
with ResUNet. The numbers in each block means input and
output channels.

ResUNet consists of six encoder and six decoder blocks. There
are skip connections between encoder and decoder blocks at the
same level. Both encoder and decoder blocks share the same
structure, which is four convolutional blocks (ConvBlock). Each
ConvBlock consists of two convolution operations with batch
normalization [20], and leakyReLU [21] activation. The encoder
blocks apply average pooling for downsampling. The decoder
blocks apply transpose convolution for upsampling. After the
last decoder block, we apply one more ConvBlock to estimate
the output residual, which is added with the input to form the
final estimation. Note that we use addition in Figure 2 instead
of multiply in Equation 4 because we use log scale during our
implementation. ResUNet is optimized using the mean absolute
error (MAE) loss between the estimated mel spectrogram Ŷmel

and the target mel spectrogram Ymel.

loss =
1

TF

T∑ F∑
|Ymel − Ŷmel| (5)

3.1.2. Replication padding-based Method

Replication padding-based methods do not use any training data
for mel spectrogram prediction. Instead, it directly copies the
energy of the cutoff frequency to the higher frequency bands.
We use this method to demonstrate the importance of the neural
vocoder. Specifically, we first search the cutoff frequency c based
on the energy of Xmel. Then we construct the frequency cutoff
mask MT×F with binary values, where the frequency indexs
greater than c are all zeros and others are all ones. MT×F is used
later to select the higher/lower frequencies bands. Finally, we
repeat the energy of the cutoff frequency in the high-freuqency
bands and add it with the LR mel spectrogram. The output is
the HR mel spectrogram estimation Ŷmel. This process can be
written as Equation 6

Ŷmel = M⊙Xmel + |1−M| ⊙ (Xmel[:, c] · 11×F ) , (6)

where 11×F is the all-one matrix, and Xmel[:, c] is the energy
distribution across time at the cutoff frequency c.

3.2. Neural Vocoder

We choose TFGAN [17] as the neural vocoder Vϕ. TFGAN
can directly upsample mel spectrogram into waveform with
transpose convolution and one-dimensional convolutional neural
networks. By incorporating multi-resolution losses and discrim-
inators in both the time and frequency domains, TFGAN can
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achieve state-of-the-art performance on vocoding. In order to
achieve speaker-independent, TFGAN is trained with a large
corpus of more than one thousand speakers. As reported in [22],
the mean opinion score (MOS) of the open-sourced TFGAN2 is
3.74, with the ground truth MOS score at 3.95.

3.3. Post Processing
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Figure 3: Visualization of the difference between the vocoder
output and target waveforms.

Even though the output of TFGAN can achieve good percep-
tual quality, its output still has some trivial differences from the
target, which will result in a poor results in the objective eval-
uation. For example, as shown in Figure 3, the vocoder output
looks the same as the target in the waveform, but their absolute
difference is still substantial. This is a common evaluation prob-
lem in generative model [23, 24, 25]. To alleviate the problem in
evaluation, we propose to perform a lower-frequencies replace-
ment (LFR) operation on the vocoder output as post-processing.
Since the original lower-frequencies information in the input
usually does not need to change, we replace the low-frequency
bands in the vocoder output with the original input. Experimental
result shows this can improve the metrics score.

4. Experiment
4.1. Dataset

We build the train and test sets using VCTK (version 0.92) [26],
a multi-speaker English corpus that contains 110 speakers with
different accents. We split it into a part for train (VCTK-Train)
and a part for test (VCTK-Test). Following the data preparation
strategy of [12], only the mic1 microphone data is used for exper-
iments, and p280 and p315 are omitted for the technical issues.
For the remaining 108 speakers, the last eight speakers3 consti-
tute the VCTK-Test. The remaining 100 speakers are defined as
VCTK-Train. For the training of NVSR, all the utterances are
resampled at the 44.1 kHz sample rate.

We follow the LR simulation process in [7, 10]. Given a
target speech yh in VCTK-Train, to obtain the low-resolution
xl, we first convolve yh with an order eight Chebyshev type I
lowpass filter with cutoff frequency l/2. Then we subsample the
signal to l sample rate using polyphase filtering. We evaluate the
performance of each system on different low sampling rates l.

4.2. Evaluation Metrics

We use Log-spectral distance (LSD) as the evaluation metrics
following [10, 12, 23]. For target signal yh and output estimation
ŷh, LSD can be computed as Equation 7, where Y and Ŷ stand

2https://github.com/haoheliu/voicefixer
3p360, p361, p362, p363, p364, p374, p376, s5

Table 1: LSD on VCTK-Test with 44.1 kHz target sampling rate.
Model with ∗ means it is trained with a fixed input resolution.

Input sampling rate (kHz) 4 8 12 24
∗Nu-wave [12] (3.0M×4) 1.42 1.42 1.40 1.22
∗WSRGlow [13] (229.9M×4) 1.12 0.98 0.87 0.79
NVSR-Pad (33.9M) 1.54 1.46 1.18 0.91
NVSR (99.0M) 0.98 0.91 0.85 0.70

Table 2: LSD on VCTK-Test with 16 kHz target sampling rate.

Input sampling rate (kHz) 2 4 8
∗AudioUNet [7] (70.9M×3) N/A 1.40 1.32
∗TFNet [11] (58.8M×3) N/A N/A 1.36
∗AECNN [10] (10.2M×3) N/A 0.95 0.88

NVSR-Pad (33.9M) 2.51 2.24 1.89
NVSR (99.0M) 1.07 0.95 0.78

for the magnitude spectrogram of yh and ŷh. A lower LSD
value indicates better SR performance. We report the mean LSD
of the VCTK-Test as the final score of a system.

LSD(Y, Ŷ) =
1

T
ΣT

t=1

√
1

F
ΣF

f=1 log10(
Y(f, t)2

Ŷ(f, t)2
)2 (7)

4.3. Baselines

We include several state-of-the-art methods as baselines. Since
NVSR uses a target sampling rate at 44.1 kHz, the baseline with
48 kHz output is downsampled to 44.1 kHz for a fair comparison.
Similarly, the output of NVSR can also be downsampled to
compare with other baselines with a smaller target sampling
rate (e.g., 16 kHz). For the 48 kHz SR model, we reproduced
Nu-wave 4 and WSRGlow 5 with their open-sourced code and
default settings. We train each Nu-wave for 200 epochs and each
WSRGlow for 100k iterations following [13]. For 16 kHz target
sampling rate, we compared NVSR with the result reported in
AECNN [10], TFNet [11], and AudioUNet [7].

4.4. Training Details

The training high-resolution and low-resolution data pairs are
built on the fly. we uniformly randomize the cutoff frequency
l/2 of the training data in [1, 16] kHz. We use an Adam opti-
mizer [27] with β1 = 0.5, β2 = 0.999 and a 3× 10−4 learning
rate to optimize the ResUNet. We apply the first 1000 steps
as the warmup phase, during which the learning rate grows lin-
early from 0 to 3 × 10−4. Then the learning rate is decayed
by 0.85 every epoch. We stop the training after 60 epochs. For
all the STFT and iSTFT, we use the Hanning window with a
window length of 2048 and a hop length of 441. We use 128
mel filterbanks to calculate the mel spectrogram. We use eight
Nvidia-V100-32GB GPUs to train the ResUNet, which takes
about 3.9 hours.

4.5. Result and Discussion

Table 1 and Table 2 compare NVSR with other state-of-the-art
models on both 44.1 kHz and 16 kHz target sampling rates. We
use ∗ to denote a model is trained with a fixed input resolution.

4https://github.com/mindslab-ai/nuwave
5https://github.com/zkx06111/WSRGlow
6https://www.youtube.com/watch?v=A7Q7fmIuKdM
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(a) Original (b) Nu-wave (8kHz→48kHz) (c) WSRGlow (8kHz→48kHz) (d) WSRGlow (24kHz→48kHz) (e) Proposed NVSR

Figure 4: Robustness test with a low-resolution audio (a) from an old movie6. No ground truth is available.

Table 3: Evaluation results on VCTK-Test with different input sampling rate settings.
Note that NVSR can also work on other input sampling-rates between 2 kHz to 32 kHz.

Input sampling rate (kHz) 2 4 8 12 16 24 32 AVG

Unprocessed 5.69 5.50 5.15 4.85 4.54 3.84 2.95 4.65
Groundtruth-mel 0.87 0.85 0.81 0.78 0.74 0.66 0.59 0.76

NVSR-Pad 1.55 1.54 1.46 1.18 1.11 0.91 0.76 1.21
NVSR 1.04 0.98 0.91 0.85 0.79 0.70 0.60 0.84
w/o post proc. 1.06 1.02 0.98 0.96 0.93 0.91 0.89 0.96
w/o mel pred. 2.37 2.37 2.16 1.95 1.77 1.48 1.13 1.89 Figure 5: Visualization of Table. 3

For example, we report four different sampling rate settings
in Table 1 after training four different WSRGlows. Meanwhile,
a single NVSR here can handle four different settings.

In Table 1, NVSR achieves an average LSD of 0.86, out-
performing WSRGlow’s 0.94 and Nu-wave’s 1.37 by 0.08 and
0.51. The total parameter number of NVSR is 99.0 million (M),
of which 33.9M comes from the vocoder. While WSRGlow
is the largest model with 229.9M parameters on each setting.
This demonstrates the state-of-the-art performance and the effi-
ciency of NVSR. NVSR-Pad is the replication padding-based
NVSR. NVSR-Pad can already achieve an average LSD of 1.27,
outperforming Nu-wave on 12 kHz and 24 kHz. This proves
the prior knowledge in vocoder can map the constant energy
in the padded higher-frequency bands into meaningful energy
distribution on the spectrogram. In Table 2, NVSR achieves the
best performance on the 8 kHz input sampling rate. At 4 kHz,
NVSR has a similar LSD score as AECNN. NVSR is the first to
try 2 kHz to 16 kHz SR and achieve an LSD of 1.07. Note that
the NVSR in Table 2 and Table 1 is the same model.

In Figure 4, we visualize the outputs of different methods on
an old movie recording. The original speech is in low resolution,
with the highest frequency around 4 kHz. As shown in the yellow
boxes, the output of NVSR (Figure 4e) contains properly shaped
harmonic components, while other methods (Figure 4b, and c)
mainly fill in the high frequencies with stochastic components.
WSRGlow trained with 24 kHz input resolution (Figure 4d) fails
to predict because of the mismatch between the input resolu-
tion (8 kHz) and the resolution of its training data (24 kHz).
Meanwhile, we found NVSR is the only model that can repair
the distribution in lower-frequency bands (green boxes). Note
that here we do not use post-processing in NVSR because the
original input is of low quality.

In Table 3, Groundtruth-mel stands for the system using
ground truth mel spectrogram directly as the input to the vocoder.
This equals the model performance when the mel spectrogram
prediction module works flawlessly. This experiment marks the
ideally best performance of the NVSR system, with an average

LSD of 0.76. We also tried to remove the post-processing LFR
operation in NVSR, which degrade the average performance
from 0.84 to 0.96. If we do not perform mel spectrogram predic-
tion on NVSR, the average LSD is 1.89, which is still better than
the unprocessed audio with a 4.65 LSD. This result means even
without the mel prediction stage, the vocoder can still improve
the metrics performance on the evaluation set.

To better understand the result, we visualize Table 3 in Fig-
ure 5. The red line is the theoretical best performance of our
proposed system using pre-trained TFGAN. The result of NVSR
is close to red line, meaning our mel spectrogram prediction
module works well. Figure 5 also shows the performance of
NVSR will degrade without post-processing, especially in high
input sampling rate cases. On 24 kHz input sampling rate, the
performance of the NVSR-Pad is even on par with the NVSR
without post-processing. Note that the proposed post-processing
operation can also be applied to other methods like Nu-wave and
is very likely to increase the model performance on the test set.

There are certain limitations of our proposed method. The
performance of NVSR largely relies on the neural vocoder,
which may become the bottleneck of NVSR. A possible future
solution can be fine-tuning two stages in an end-to-end manner
or designing an additional post-processing model for refinements.
Besides, when extending NVSR to other kinds of sound, like
music, vocoder may not as easy to train as the speech vocoder.

5. Conclusion
This paper presents a novel and powerful neural vocoder-based
speech super-resolution model NVSR. It shows strong perfor-
mance across a wide range of input sampling rates between
2 kHz to 32 kHz. On the VCTK Multi-Speaker SR bench-
mark, NVSR outperforms the state-of-the-art models trained
with different input resolution settings both on 16 kHz and 44.1
kHz evaluation sets. We also demonstrate that prior knowledge
in vocoder is crucial to speech SR using a simple replication
padding-based mel spectrogram prediction method.
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