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TF-CrossNet: Leveraging Global, Cross-Band,
Narrow-Band, and Positional Encoding for Single-

and Multi-Channel Speaker Separation
Vahid Ahmadi Kalkhorani and DeLiang Wang , Fellow, IEEE

Abstract—We introduce TF-CrossNet, a complex spectral map-
ping approach to speaker separation and enhancement in rever-
berant and noisy conditions. The proposed architecture comprises
an encoder layer, a global multi-head self-attention module, a
cross-band module, a narrow-band module, and an output layer.
TF-CrossNet captures global, cross-band, and narrow-band cor-
relations in the time-frequency domain. To address performance
degradation in long utterances, we introduce a random chunk posi-
tional encoding. Experimental results on multiple datasets demon-
strate the effectiveness and robustness of TF-CrossNet, achieving
state-of-the-art performance in tasks including reverberant and
noisy-reverberant speaker separation. Furthermore, TF-CrossNet
exhibits faster and more stable training in comparison to recent
baselines. Additionally, TF-CrossNet’s high performance extends
to multi-microphone conditions, demonstrating its versatility in
various acoustic scenarios.

Index Terms—Complex spectral mapping, multi-channel, single-
channel, speaker separation, time-frequency domain.

I. INTRODUCTION

IN HUMAN and machine speech communication, the pres-
ence of acoustic interference, such as background noise

or competing speakers, presents a considerable challenge for
speech understanding. To address these challenges, speech sep-
aration systems have been developed to separate target speech
signals from noisy and reverberant environments. Speech sepa-
ration includes speaker separation and speech enhancement [1].
The task of speaker separation is to separate the speech signals
of multiple speakers and speech enhancement aims to separate
a single speech signal from nonspeech background noise. Both
tasks are essential for various applications, including hearing
aids, teleconferencing, and voice-controlled assistants.
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Significant strides have been made in monaural talker-
independent speaker separation with the introduction of deep
clustering [2] and permutation invariant training (PIT) [3]. By
effectively tackling the permutation ambiguity issue inherent in
talker-independent training, these approaches have substantially
elevated speaker separation performance. Subsequent develop-
ments have produced impressive performance gains.

For example, deep CASA [4] breaks down the speaker separa-
tion task into two phases: simultaneous grouping and sequential
grouping. Conv-TasNet [5] operates on short windows of signals
and performs end-to-end masking-based separation. DPRNN [6]
segments a time-domain signal into fixed-length blocks, where
intra- and inter-block recurrent neural networks (RNNs) are
applied iteratively to facilitate both local and global process-
ing. SepFormer [7] replaces RNNs with a set of multi-head
self-attentions (MHAs) and linear layers. Like Conv-TasNet,
SepFormer is a masking approach in the time domain. The avail-
ability of spatial information from multiple microphones allows
for location-based training to resolve the permutation ambiguity
issue, which further improves speaker separation results [8].

While most of the effective monaural speaker separation
algorithms operate in the time domain, recently, deep neural net-
works (DNNs) operating in the frequency domain have gained
prominence by harnessing various forms of spectral information,
including full-band/cross-band and sub-band/narrow-band for
both single- and multi-channel speech separation. The repre-
sentative model of TF-GridNet [9] employs cross-band and
narrow-band long short-term memory (LSTM) networks in
conjunction with a cross-frame self-attention module to per-
form complex spectral mapping [10], [11], [12], [13]. The
most effective TF-GridNet model comprises a two-stage DNN
with a neural beamformer positioned in the intermediate stage.
This model has strongly improved speech separation results in
a variety of single-channel and multi-channel tasks. Spatial-
Net [14] shares a foundational framework with TF-GridNet, but
employs a combination of a Conformer narrow-band block and a
convolutional-linear cross-band block. Notably, SpatialNet ex-
cludes any LSTM or RNN layers. Furthermore, SpatialNet oper-
ates as a single-stage network and exhibits a more stable training
trajectory, especially under conditions involving half-precision
(16-bit) training. SpatialNet demonstrates very competitive re-
sults in multi-channel speaker separation. But its utility is pri-
marily tailored for multi-channel scenarios, given its substantial
reliance on spatial information afforded by microphone arrays;
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as shown later, its performance in the single-channel scenario is
limited. Another notable limitation of SpatialNet, in comparison
to TF-GridNet, is its performance degradation with increasing
sequence length, as recently reported in [15].

To overcome the aforementioned shortcomings and further
enhance the performance of complex spectral mapping for
speaker separation, we examine the underlying reasons behind
the observed performance differences between TF-GridNet and
SpatialNet, particularly in scenarios involving monaural separa-
tion and long utterances. We attribute the observed performance
degradation of SpatialNet relative to TF-GridNet to two pri-
mary factors. First, the self-attention module within TF-GridNet
operates as a global attention mechanism, whereas SpatialNet
processes each frequency independently, unable to benefit from
cross-frequency and hidden features. We believe that the lack
of such global attention contributes to SpatialNet’s diminished
performance in processing long sequences. Second, RNNs as
exemplified by LSTM possess the capability to implicitly extract
positional information [16], [17], [18]. Therefore, even though
neither SpatialNet nor TF-GridNet architecture explicitly incor-
porates positional encoding, the use of RNNs captures positional
cues in TF-GridNet implicitly.

In this study, we propose a new DNN architecture, called
TF-CrossNet, for single- and multi-channel speaker separation.
Building upon complex spectral mapping and the SpatialNet
framework, we make the following contributions:
� We present a new DNN architecture for both single- and

multi-channel speaker separation tasks. This architecture
employs a global multi-head self-attention module to cap-
ture cross-frequency and cross-embedding correlations.

� We introduce a novel positional encoding method to TF-
CrossNet to address the out-of-distribution problem of
common positional encoding methods.

� TF-CrossNet advances the state-of-the-art speaker sepa-
ration performance on multiple benchmark datasets. In
addition, superior results are achieved with a reduced com-
putational overhead in terms of both inference and training
time.

The rest of the paper is organized as follows. Section II de-
scribes the single- and multi-channel speaker separation problem
in the time-frequency (T-F) domain. The detailed description of
TF-CrossNet is given in Section III. Section IV presents the
experimental setup. Evaluation and comparison results are pro-
vided in Section V. Concluding remarks are given in Section VI.

II. PROBLEM STATEMENT

For a mixture of C speakers in a noisy-reverberant environ-
ment captured by an array of M microphones, the recorded
mixture in the time domainy(n) ∈ R

M can be modeled in terms
of the direct-path signals sc(n) ∈ R

M , their reverberations
hc(n) ∈ R

M , and reverberant background noises v(n) ∈ R
M

[9], [19]

y(n) =

C∑
c=1

(sc(n) + hc(n)) + v(n), (1)

Fig. 1. Diagram of the proposed TF-CrossNet architecture, with ŝ1 and ŝ2
denoting separated speaker signals.

where n denotes discrete time and c indexes speakers. In the
short-time Fourier transform (STFT) domain, the model is ex-
pressed as:

Y(t, f) =

C∑
c=1

(Sc(t, f) +Hc(t, f)) +V(t, f), (2)

where t indexes time frames and f frequency bins. Y(t, f),
Sc(t, f),Hc(t, f), andV(t, f) ∈ C

M denote the complex spec-
trograms of the mixture, the direct-path signal and its reverber-
ation of speaker c, and background noise, respectively.

The goal of complex spectral mapping based speaker separa-
tion is to train a DNN to estimate the real and imaginary parts of
the direct-path signal of each speaker at a reference microphone
from the mixture Y(t, f). We can turn the general formulation
in (2) to more specific forms by restricting certain parameters
and terms. In the case of monaural, anechoic speaker separa-
tion, C > 1, M = 1, both Hc(t, f) and V(t, f) are absent. In
reverberant speaker separation, C > 1 and V(t, f), if present,
represents a weak noise. In the case of noisy-reverberant speaker
separation, C > 1 and V(t, f) includes significant background
noise.

III. TF-CROSSNET

The diagram of the proposed system is provided in Fig. 1.
TF-CrossNet comprises an encoder layer, a global multi-head
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self-attention (GMHSA) module, a cross-band module, a
narrow-band module, and a decoder layer. To ensure comparable
energy levels for all signals processed by TF-CrossNet, we nor-
malize the input signal by its variance before processing its sam-
ples. In the multi-channel setup, we normalize the signals from
all microphones by the variance of the reference microphone;
the same variance is applied to restore the scale of a predicted
signal. Then, we apply STFT to the normalized signal and stack
the real and imaginary (RI) parts. For the multi-channel setup,
we stack the RI parts from all microphones as done in neural
spectrospatial filtering [20]. The stacked RI parts are sent to the
encoder layer, which learns to extract acoustic features from the
input in the STFT domain. The global multi-head self-attention
module captures global correlations, while the cross-band mod-
ule captures cross-band correlations. The narrow-band module
focuses on capturing information at neighboring frequency bins.
Finally, the output layer maps the separated features to a T-F
representation, which is then converted back to the time domain
using inverse short-time Fourier transform (iSTFT).

A. Encoder Layer

The encoder is a 1D convolutional layer (Conv1D) layer with
a kernel size of k and a stride of 1. The encoder layer converts
the input T-F domain signal from M × F × T to H × F × T
where H is the number of hidden channels. F is the number of
frequency bins and T is number of frames.

B. Random Chunk Positional Encoding

To address the limitation of separation methods in deal-
ing with long utterances, we introduce a positional encoding
method, called random-chunk positional encoding (RCPE), to
tackle the out-of-distribution problem in positional encoding
approaches. RCPE is inspired by random positional encoding
recently proposed for natural language processing [21]. Trans-
formers demonstrate impressive generalization capabilities on
learning tasks with a fixed context length. However, their per-
formance degrades when tested on longer sequences than the
maximum length encountered in training. This degradation is
attributed to the fact that positional encoding becomes out-of-
distribution for longer sequences, even for relative positional
encoding [21]. RCPE selects a contiguous chunk of positional
embedding vectors from a pre-computed positional encoding
matrix during training. For RCPE, we start by defining PE as a
combination of sine and cosine functions [22] as

PE(t, 2i) = sin

(
t

100002i/(F ·H))

)
, (3a)

PE(t, 2i+ 1) = cos

(
t

100002i/(F ·H)

)
, (3b)

where i ∈ [1, F ·H] and t ∈ [1, T ] index the feature and time
dimensions, respectively.

When the model is in the training mode, we select a random
chunk from index τ to index τ + T − 1, where τ is drawn
randomly from [1, Tmax − T + 1], withTmax denoting the maxi-
mum desired sequence length during inference. When the model

is in test or validation mode, we select the first T embedding
vectors. Finally, we reshape and add the selected positional
embeddings to the input features. We obtain positional encoding
vectors as

RCPE(t, i) =

{
PE(t+ τ, i) if training,

PE(t, i) otherwise.
(4)

This technique allows the TF-CrossNet model to see all possi-
ble positional embedding vectors during the training stage while
maintaining the relative distance between embeddings, thus im-
proving generalization to longer sequences. Additionally, RCPE
has no learnable parameter and has a negligible computational
cost.

C. Global Multi-Head Self-Attention Module

Fig. 2(a) shows the diagram of the global multi-head
self-attention module. This module resembles TF-GridNet’s
cross-frame self-attention mechanism, but with modifications
to enhance efficiency. In TF-GridNet [9], the cross-frame
self-attention module employs three point-wise convolution
layers for frame-level feature extraction of queries, keys, and
values. In contrast, we utilize a single convolution layer with
L(2E +H/L) output channels to extract frame-level features
from T-F embeddings. Increasing the output dimension, rather
than performing sequential convolutions, increases parallel
computation and accelerates the operation. Subsequently,
we split the result into L queries Ql ∈ R

E×F×T , keys
Kl ∈ R

E×F×T , and values V l ∈ R
H/L×F×T . Here, E

represents the output channel dimension of the point-wise
convolution and l indexes the head number. This method avoids
the sequential operations of the three Conv1D layers, which can
be computationally expensive. Subsequently, a self-attention
layer is applied to these embeddings to capture global
correlations. The results of all heads are concatenated and passed
to another point-wise convolution with an output dimension ofD
followed by a parametric rectified linear unit (PReLU) activation
function and layer normalization (LN). We add this value to the
input of the GMHSA module to obtain the output of the module.
Note that, compared to [14] where the MHA module acts on
each frequency bin separately, we first merge all frequency
features into the channel dimension and then apply MHA. This
method allows each frame to attend to any frame of interest in
all feature channels, facilitating the exploitation of long-range
correlations in both frequency and hidden feature channels.

D. Cross-Band Module

To capture cross-band correlations within the input sig-
nal, we adopt the cross-band module proposed in [14]. This
module, illustrated in Fig. 2(b), integrates two frequency-
convolutional modules and a full-band linear module. The
frequency-convolutional module aims to capture correlations
between neighboring frequencies. This module includes an LN
layer, a grouped convolution layer along the frequency axis
(F-GConv1d), and a PReLU activation function. In the full-
band linear module, we first employ a linear layer followed
by sigmoid-weighted linear unit (SiLU) activation function to
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Fig. 2. TF-CrossNet building blocks. (a) Global multi-head self-attention module. (b) Cross-band module. (c) Narrow-band module.

reduce the number of hidden channels from H to H ′. Then,
we apply a set of linear layers along the frequency axis to
capture full-band features. Each feature channel has a dedicated
linear layer denoted as Lineari for i = 1, . . . , H ′, as shown in
Fig. 2(b). Note that the parameters of these layers are shared
among all TF-CrossNet blocks. Finally, the output of the module
is obtained by increasing the number of channels back toH using
a linear layer with SiLU activation and adding to the original
input of this module.

E. Narrow-Band Module

As illustrated in Fig. 2(c), the narrow-band module is com-
posed of a layer normalization (LN), a linear layer followed by
a SiLU activation, a time-convolutional (T-Conv) layer, and a
final linear layer. The first linear layer in this module increases
the number of features in the input from H to H ′′ and the last
linear layer converts the feature dimension back to H .

T-Conv is composed of three grouped 1 d convolution (T-
GConv1D) layers followed by a SiLU activation function. The
second T-GConv1D is followed by a grouped normalization
layer. The narrow-band module is a modified version of the
Conformer convolutional block [23]. Compared to SpatialNet’s
narrow-band block, we remove the MHA module as narrow-
band correlations are captured in the GMHSA module of TF-
CrossNet.

F. Output Layer

We use a linear output layer to map the processed features
from the final TF-CrossNet block to the predicted RI parts of
each talker. Subsequently, we obtain the time-domain separated
speech signals by performing the iSTFT. As mentioned at the
beginning of Section III, we multiply the estimated target signals
by the variance of the input mixture to ensure that their energy
levels are consistent with the mixture level.

G. Loss Functions

We use the scale-invariant signal-to-distortion ratio (SI-
SDR) [24] loss function LSI-SDR to train TF-CrossNet on the
WSJ0-2mix dataset [2]. For training on other datasets, we em-
ploy a combination of magnitude loss LMag and SI-SDR loss
LSI-SDR, similar to [9]. We find that the combined loss function
improves time-domain metrics such as SI-SDR, as well as more
magnitude-based metrics like PESQ and word error rate (WER).
We use the standard form of SI-SDR where the target signal is
scaled to match the scale of the estimated signal. Also, we scale
the magnitude loss by theL1 norm of the magnitude of the target
signal in the STFT domain similar to [25]. These loss functions
are defined below

L = LMag + LSI-SDR, (5a)

LMag =
‖|STFT(ŝc)| − |STFT(sc)|‖1

‖|STFT(sc)|‖1
, (5b)

LSI-SDR = −
C∑

c=1

10 log10
‖sc‖22

‖ŝc − αcsc‖22
, (5c)

αc =
sTc ŝc
sTc sc

. (5d)

In the above equations, ‖ · ‖1 is the L1 norm, | · | is the
magnitude operator, αc is the scaling factor, and (·)T denotes
the transpose operation. We employ utterance-level PIT [3] to
resolve the permutation ambiguity problem during training.

IV. EXPERIMENTAL SETUP

A. Datasets

We assess the efficacy of the proposed TF-CrossNet model
for speaker separation under anechoic, reverberant, and noisy-
reverberant environments. We use publicly available datasets,
and compare with previously published results to document the
relative performance.
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For single-channel speaker separation in anechoic conditions,
we employ the WSJ0-2mix dataset [2], which is widely used for
benchmarking monaural talker-independent speaker separation
algorithms. The WSJ0-2mix dataset consists of 20,000 (∼30.4
hours), 5,000 (∼7.7 hours), and 3,000 (∼ 4.8 hours) two-speaker
mixtures for training, validation, and test sets, respectively.
In WSJ0-2mix, the two utterances in each mixture are fully
overlapped, and their relative energy level is sampled from the
range of [−5, 5] dB. Speech is sampled at a rate of 8 kHz. To
make a fair comparison, similar to TF-GridNet, we do not utilize
any data augmentation techniques such as dynamic-mixing [26]
or speed-perturbation [7].

For joint speaker separation, denoising, and dereverberation,
we employ the WHAMR! dataset [27] and the single-channel
SMS-WSJ dataset [28]. WHAMR! utilizes the two-speaker
mixtures from WSJ0-2mix, but introduces reverberation to each
clean anechoic signal and non-stationary background noises.
The dataset includes 20,000 (∼30.4 hours), 5,000 (∼7.7 hours),
and 3,000 (∼ 4.8 hours) mixtures for training, validation, and
testing, respectively.

Furthermore, for both monaural and multi-channel separa-
tion in noisy and reverberant environments, we employ the
SMS-WSJ dataset [28]. This simulated two-speaker mixture
dataset incorporates clean speech signals from the WSJ0 corpus
and simulates a six-microphone circular array with a radius of
10 cm. room impulse responsess (RIRs) are generated using
the image method [29], with T60 uniformly sampled between
0.2 s and 0.5 s. Additionally, white sensor noise is added to
speech mixtures with signal-to-noise ratios (SNRs) uniformly
sampled in the range of 20 dB to 30 dB. The source positions
are randomly sampled within 1 m to 2 m away from the array
center. The signals are sampled at a rate of 8 kHz, and the dataset
includes a baseline automatic speech recognition (ASR) model
built from Kaldi [30].

We also assess TF-CrossNet on the REVERB challenge
dataset [31], which includes both simulated and recorded signals
of a speaker sampled at 16 kHz. We employ the REVERB
evaluation set including simulated (SimData) and real (Real-
Data) recordings for single- and multi-channel speech derever-
bration and enhancement assessment. SimData consists of 2176
utterances from the WSJCAM0 corpus [32], convolved with
measured RIRs from three rooms of different sizes and two
near and far microphone distances. The background noise in the
recordings is primarily stationary diffuse noise generated by the
air-conditioning systems in the rooms. RealData consists of 372
utterances from the MC-WSJ-AV corpus [33], recorded in a dif-
ferent room from those is SimData, with speaker-to-microphone
distances of 1.0 cm and 2.5 m. For the training set, similar to [13],
[14], we increase the number of RIRs by simulating rectangular
rooms using the image method [29], [34], with room length and
width randomly chosen between 5 and 10 m, respectively, and
height between 3 and 4 m. An 8-channel circular microphone
array is positioned within this space, with its height randomly
chosen between 1 and 2 m. The array’s center is displaced from
the room center by values randomly sampled between −1.0 and
1.0 m. The array radius is randomly chosen between 3 and 10 cm.
The target speech source is placed at a distance from the array

center between 0.5 and 3.0 m. The reverberation time (T60)
is randomly sampled between 0.2 and 1.5 seconds. Using this
configuration, we generate 40,000 RIRs and convolve them with
source signals to obtain the reverberated signals. Similar to [13],
we utilize the direct-path signal for both training and metric
computation. Specifically, we use the samples within a 5-ms
window around the peak from the measured RIRs to estimate
the direct-path signal for metric calculations.

B. Network Configuration

For our proposed TF-CrossNet architecture, we make use of
the hyperparameters in [9] and [14]. We set the kernel size of en-
coder layer k, time-dimension group convolution (T-GConv1d),
and frequency-dimension group convolution (F-GConv1d) to 5,
5, and 3, respectively. The number of groups for T-GConv1d,
F-GConv1d, and group normalization is all set to 8. The pro-
posed model architecture comprisesB = 12 blocks, with hidden
channel sizes set to H = 192, H ′ = 16, and H ′′ = 384. We
employ N = 4 self-attention heads in the GMHSA module with
an embedding dimension of D = 64 and E = �512/F �, where
�·� denotes ceiling operation.

To process the input data, we apply STFT using a Hanning
window with frame length of 256 samples (32 ms) and frame
shift of 128 samples (16 ms). The length of training utterances is
fixed at 3 seconds for the WSJ0-2mix and REVERB datasets and
4 seconds for the WHAMR! and SMS-WSJ datasets [14]. We
assume a maximum utterance length of 30 seconds to calculate
Tmax, introduced in Section III-B.

We utilize the Adam optimizer with a maximum learning rate
of 0.001. We start with a cosine warm-up scheduler that increases
the learning rate from 10−6 to 10−3 over the first 10 epochs.
Following this, we switch to the PyTorch ReduceLROnPlateau
scheduler, setting the patience to 3 epochs and the reduction
factor to 0.9. We found that this learning rate scheduler is more
stable and results in faster convergence than the exponential
decay or ReduceLROnPlateau schedulers used in [14] and [9],
respectively. In our experiments, we employ the half-precision
(mixed-16) training strategy to reduce the memory footprint and
accelerate training. We train the model until the validation loss
does not improve for 10 epochs consecutively. In each case,
we use the maximum number of batches that fit into the GPU
memory (NVIDIA A100 GPU with 40 GB).

C. Evaluation Metrics

We employ a set of widely used objective metrics to assess the
performance of TF-CrossNet. These metrics include, SI-SDR
and its improvement (SI-SDRi) [24], SDR and its improvement
(SDRi) [35], narrow-band perceptual evaluation of speech qual-
ity (PESQ) [36], and extended short-time objective intelligibility
(eSTOI) [37]. To compute these metrics, we utilize the Torch-
Metrics[audio] package [38], which offers a comprehensive set
of evaluation tools specifically designed for audio tasks.
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TABLE I
ABLATION STUDY ON THE WHAMR! DATASET

For assessment on the REVERB challenge dataset, we em-
ploy the official objective measures.1 These include three in-
trusive speech metrics: cepstrum distance (CD), log likelihood
ratio (LLR), frequency-weighted segmental signal-to-noise ra-
tio (FWSegSNR), and one non-intrusive metric, speech-to-
reverberation modulation energy ratio (SRMR). As done in [14],
we use the best pre-trained model2 from ESPnet [39] to evaluate
the ASR performance on the Reverb challenge dataset.

V. EVALUATION RESULTS

A. Ablation Study on WHAMR!

Table I presents an ablation study conducted on the single-
channel WHAMR! dataset. Each row represents a different con-
figuration of the model. The columns in this table provide infor-
mation about the presence of RCPE, GMHSA, and narrow-band
multi-head self-attention (NB-MHSA), along with the number
of trainable parameters in millions or Params (M), and the
number of Giga floating point operations (GFLOPs) per second
of input audio, as well as the separation performance metrics
of SI-SDR, SDR, and PESQ. For the computation of GFLOPs,
we use the official tool provided by PyTorch3. The absence of
RCPE and GMHSA (Row 1) results in lower SI-SDR and PESQ
scores compared to the configurations where these components
are present. Note that Row 1 corresponds to the architecture of
SpatialNet [14]. Adding the GMHSA module in Row 2 improves
SI-SDR by 1.3dB and PESQ by 0.31, highlighting the important
role of GMHSA. In the third row, we include an LSTM encoder
before TF-CrossNet blocks, which performs positional encoding
implicitly. The LSTM encoder comprises two bidirectional long
short-term memory (BLSTM) layers similar to TF-GridNet’s
intra-frame full-band and sub-band temporal modules. Although
this configuration exhibits the highest SI-SDR and PESQ values
among the tested configurations, it has the largest number of
parameters and the lowest computational efficiency. In the fourth
row, we exclude the GMHSA module. This decreases both
SI-SDR and PESQ scores, demonstrating the contribution of
GMHSA even with the LSTM encoder. Including RCPE in
the fifth row improves SI-SDR by 0.3 dB and PESQ by 0.07
compared to the second row, demonstrating the utility of the
proposed positional encoding. Finally, in Row 6, we remove

1[Online]. Available: https://reverb2014.audiolabs-erlangen.de/tools/
REVERB-SPEENHA.Release04Oct.zip

2Transformer ASR + Transformer LM + SpeedPerturbation + SpecAug +
applying RIR and noise data on the fly

3torch.utils.flop_counter.FlopCounterMode

TABLE II
ABLATION STUDY COMPARING DIFFERENT POSITIONAL ENCODING METHODS

NB-MHSA and obtain speaker separation results with only a
0.01 PESQ reduction compared to Row 5. But the configuration
with no NB-MHSA has about 20% fewer trainable parameters
and 33% fewer GFLOPs. This shows that the narrow-band
correlations are already captured in the GMHSA module and
there is little need to include both modules in the network.

Table II presents an ablation study comparing different posi-
tional encoding methods, evaluating their impact on SI-SDR and
PESQ metrics. The baseline model without positional encoding
achieves 11.4dB SI-SDR and 2.84 PESQ, similar to the perfor-
mance using standard positional encoding (SPE) with no random
selection. Both RCPE and LSTM outperform the baseline and
SPE. Specifically, LSTM improves SI-SDR to 11.9dB and PESQ
to 2.92, while RCPE yields 11.8dB SI-SDR and 2.91 PESQ.
Note that RCPE achieves comparable performance to LSTM,
with far fewer parameters, which require no training.

B. WSJ0-2mix Results

We first evaluate the performance of TF-CrossNet for monau-
ral anechoic speaker separation. The mixture SI-SDR is 0dB, and
the mixture SDR is 0.2dB. The results are provided in Table III
along with 16 other baselines. The table includes two versions
of TF-GridNet, one with 8.2M parameters and another with
14.5M parameters. The original study [9] reports the 14.5M
parameter version on the WSJ0-2mix dataset. To compare mod-
els of comparable sizes, we include the 8.2M variant as well.
The performance of this smaller TF-GridNet model is based
on a model checkpoint trained by its original first author [40].
CrossNet surpasses the performance of state-of-the-art methods,
including TF-GridNet (8.2M) [9] by 0.5dB SI-SDR and 0.6dB
SDR. Moreover, our proposed model has around 20% fewer
trainable parameters compared to TF-GridNet and faster training
and inference as presented in Section V-G later. Furthermore,
our proposed model underwent half-precision floating-point
training rather than full-precision training done in TF-GridNet,
effectively reducing memory requirements and expediting the
training process.
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TABLE III
SPEAKER SEPARATION RESULTS OF TF-CROSSNET AND COMPARISON

METHODS ON THE WSJ0-2MIX DATASET

TABLE IV
SPEAKER SEPARATION RESULTS OF TF-CROSSNET AND COMPARISON

METHODS ON THE WHAMR! DATASET

TABLE V
SPEAKER SEPARATION AND ASR RESULTS ON SINGLE-CHANNEL SMS-WSJ

DATASET

C. Results on WHAMR! and Single-Channel SMS-WSJ
Datasets

The single-channel WHAMR! results are summarized in
Table IV. TF-CrossNet achieves an SI-SDR of 11.8dB, an SDR
of 12.9dB, and a PESQ of 2.91, outperforming the previous

best of TF-GridNet (1-stage) [9] and TF-GridNet (2-stage) [9]
by 0.16 and 0.12 PESQ, respectively. The 2-stage TF-GridNet
consists of the first DNN followed by a single-channel multi-
frame Wiener filter (SCMFWF) and then the second DNN.
This comparison is significant as TF-CrossNet is a single-stage
model, and a 2-stage model not only has more parameters but
also takes more effort to train and deploy. Our advantage can be
attributed to the use of more convolutional layers, which enables
TF-CrossNet to learn filtering operations. Note that SpatialNet
is not designed for single-channel separation tasks even though
it can be applied to monaural separation. We include its results in
Table IV for reference purposes only. Without spatial cues, the
performance of SpatialNet is reduced significantly. TF-CrossNet
leverages the strengths of both SpatialNet and TF-GridNet while
avoiding LSTM layers in TF-GridNet. RCPE in our model serves
to capture the positional information encoded in the recurrent
layers of TF-GridNet. Consequently, TF-CrossNet remains ef-
fective for single-channel separation without computationally
expensive recurrent connections. Compared to the results in
Table III, these results underscore the advantage of TF-CrossNet
over TF-GridNet for single-channel speaker separation in noisy-
reverberant conditions.

To examine the impact of SCMFWF on model performance,
we train TF-CrossNet with a similar setup to the two-stage
TF-GridNet, and 2-stage TF-CrossNet results are included in
Table IV. We observe a very small improvement. Thus, we
conclude that two stages are not necessary and will not be
further assessed for TF-CrossNet. This observation shows that,
compared to TF-GridNet where SCMFWF improves the perfor-
mance, Wiener filtering is not essential for TF-CrossNet.

Table V presents evaluation and comparison results on the
single-channel SMS-WSJ dataset, including ASR results in
terms of WER in percentage (%) evaluated on the official
ASR model [28], [30]. TF-CrossNet outperforms TF-GridNet
(1-stage) [9] by the substantial margin of 3.0 dB in SI-SDR and
0.29 in PESQ. Notably, TF-CrossNet outperforms the two-stage
TF-GridNet aside from the WER score. The better WER score
of the two-stage TF-GridNet is likely due to its use of neural
beamformers which can significantly reduce WERs in both
single- and multi-talker scenarios [14].

D. Results on Multi-Channel SMS-WSJ

Table VI reports the performance of the six-channel speaker
separation and ASR on the SMS-WSJ corpus, along with the
oracle WER results. The table reveals large improvements in
speech quality and ASR performance thanks to speaker sepa-
ration. The time-domain end-to-end models FaSNet+TAC [51]
and MC-ConvTasNet [52] show inferior performance compared
to other methods, especially on the ASR task. Time-frequency
methods such as MISO1-BF-MISO3 [19] and TFGridNet [9] in-
corporate neural beamforming and post-processing, and demon-
strate significantly better separation and ASR performances.
Among the comparison methods, SpatialNet is the top per-
former, and it leverages an advanced full-band and sub-band
combination network and extensively employs convolutional
and linear layers that can act as a large filter. TF-CrossNet
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TABLE VI
SPEAKER SEPARATION AND ASR RESULTS ON THE 6-CHANNEL SMS-WSJ

DATASET

surpasses SpatialNet and TFGridNet in speaker separation per-
formance, e.g. by larger than 0.1 PESQ improvement. Since the
original SpatialNet is trained using a different setup, to make
a fair comparison, we also train the SpatialNet with the same
setup as TF-CrossNet, including the loss function and learning
rate scheduler, and report the results in Table VI. Even though the
use of the same training setup improves SpatialNet performance
in terms of PESQ, WER, and eSTOI, it still underperformers
TF-CrossNet, e.g. by 1 dB in SI-SDR and 5.7% relative WER.
TF-CrossNet’s WER of 6.30% is remarkably close to the oracle
score of 6.16%. As TF-CrossNet has a similar architecture to
SpatialNet, the superior performance of TF-CrossNet can be
attributed to the proposed positional encoding and the GMHSA
module.

E. Results on REVERB Challenge

Table VII reports the performance of speech dereverberation,
enhancement, and recognition on the single- and 8-channel
REVERB dataset. On the single-channel SimData, TF-CrossNet
shows notable gains, achieving a PESQ score of 3.80 and sub-
stantially outperforming Wang and Wang [13] (3.29) and WPE
(2.51). Additionally, it obtains the best scores in FWSegSNR
(17.26) and SRMR (6.85), surpassing comparison methods. On
the 8-channel SimData, TF-CrossNet exhibits strong perfor-
mance, outperforming all the other methods in terms of CD
(1.39) and LLR (0.16). Its PESQ score (4.04) is very close to that
of SpatialNet (4.05), and its FWSegSNR score (19.95) is a little
lower than that of SpatialNet (21.80). TF-CrossNet demonstrates
superior dereverberation performance on the RealData, achiev-
ing the highest SRMR scores in both single- and 8-channel cases,
representing large improvements over the unprocessed signals
from 3.18 to 6.85 and 7.05 in single- and 8-channel respectively.

In terms of ASR results on SimData, TF-CrossNet produces
strong performance on both single- and 8-channel datasets. On
the single-channel SimData, it achieves a WER of 3.6/3.6 for
far/near subsets, outperforming WPE (4.6/3.7). On the 8-channel
dataset, TF-CrossNet further improves WER to 3.4/3.4, sur-
passing all other methods including SpatialNet (3.6/3.6) and

Fig. 3. Effects of sequence length on the performance of TF-CrossNet and
SpatialNet. Speaker separation performance is plotted for different intervals of
mixture lengths (in seconds).

WPE+BeamformIt (3.7/3.5). Our WER scores of 3.4/3.4 are
close to those on the clean dataset [14]. On RealData, TF-
CrossNet also achieves the best WER scores of 3.1/3.0 on the
far/near 8-channel subsets, outperforming all other methods
including SpatialNet (3.1/3.2), as well as the best WERs of
3.7/3.8 for the far/near single-channel datasets.

The strong performance on both SimData and RealData
indicates TF-CrossNet’s generalizability and effectiveness in
real-world conditions.

F. Performance Over Different Utterance Lengths

To assess the impact of utterance length on TF-CrossNet’s
performance, we plot the SI-SDR and PESQ scores across
various sequence lengths on the 6-channel SMS-WSJ dataset.
The results are depicted in Fig. 3. Note that, as described in
Section IV-B, the length of training utterances is fixed at 3 sec-
onds for this dataset. So the evaluated lengths are untrained. TF-
CrossNet yields better performance than SpatialNet [14] across
all sequence lengths. Both models have relatively consistent
PESQ scores across different utterance lengths. TF-CrossNet
also shows stable, even increasing, SI-SDR performance as
sequence lengths increase, whereas SpatialNet exhibits slight
degradation for sequences longer than 10 seconds, in line with
the findings reported in [15].

To further assess the impact of positional encoding on TF-
CrossNet’s performance, we plot the SI-SDR and PESQ scores
across different utterance lengths on the WHAMR! dataset in
Fig. 4. Like in Fig. 3, the evaluated lengths are not included dur-
ing training except for the shortest range of 1-4 seconds. The fig-
ure shows that TF-CrossNet with RCPE (black bars) consistently
outperforms the model without positional encoding (white bars)
across all utterance length ranges. Notably, the performance gap
between the two models becomes more pronounced for longer
utterances, with RCPE providing more benefit, particularly in
SI-SDR. With LSTM (hatched bars), the model shows slightly
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TABLE VII
SPEECH DEREVERBERATION, ENHANCEMENT AND RECOGNITION RESULTS ON THE SINGLE- AND 8-CHANNEL REVERB DATASETS

Fig. 4. Effects of positional encoding with respect to utterance lengths on the
performance of TF-CrossNet on WHAMR! dataset.

better results. Both RCPE and LSTM exhibit relatively stable
performance across various utterance lengths. This performance
profile highlights the contribution of the proposed positional
encoding, and is important for real-world applications where
the length of mixture utterances may vary significantly.

G. Computational Complexity

Finally, we document computational load in terms of GFLOPs
and the number of trainable parameters in millions (Params)
of TF-CrossNet and several other methods. The complexities
are tabulated in Table VIII for two sampling rates of 8 and
16 kHz. The computation of GFLOPs is as outlined in [14],
where GFLOPs are quantified based on a four-second audio
signal captured by a 6-channel microphone array speaker. The
complexities of the comparison methods are obtained from [14].

TABLE VIII
COMPUTATIONAL COMPLEXITY AND MODEL SIZE OF THE PROPOSED MODEL

AND COMPARISON METHODS

As clear from the table, TF-CrossNet exhibits much lower com-
plexity than TF-GridNet. Compared to SpatialNet, TF-CrossNet
has smaller GFLOPs and comparable numbers of trainable
parameters.

In terms of actual time, training TF-GridNet on the SMS-WSJ
dataset takes approximately 14 days on a single NVIDIA A100
GPU, whereas TF-CrossNet takes around 6 days. In terms of
inference time, we measure the real-time factor (RTF), defined
as the ratio of processing time to input signal duration, for a
6-channel, 4-second utterance on an NVIDIA V100 GPU. The
resulting RTF values are 0.192 for SpatialNet, 0.657 for TF-
GridNet, and 0.155 for TF-CrossNet.

VI. CONCLUDING REMARKS

We have introduced TF-CrossNet, a novel DNN architec-
ture for single- and multi-channel speaker separation in noisy-
reverberant environments. TF-CrossNet includes an encoder
layer, a global multi-head self-attention module, cross-band and
narrow-band modules, and an output layer, to leverage both
global and local information in an audio signal to enhance
speaker separation and speech enhancement performance. The
global multi-head self-attention module allows the model to
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attend to any frame of interest in all feature and frequency
channels, facilitating the exploitation of long-range dependen-
cies. We introduce a novel random chunk positional encoding
technique to improve generalization to longer sequences. The
cross-band module captures cross-band correlations within the
input signal, while the narrow-band module focuses on capturing
correlations at neighboring frequency bins. The evaluation ex-
periments conducted on multiple open datasets demonstrate that
TF-CrossNet achieves state-of-the-art performance for single-
and multi-channel speaker separation tasks. Moreover, TF-
CrossNet exhibits stable performance in separating multi-talker
mixtures of variable lengths, and is computationally efficient
compared to recently-established strong baselines.
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