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A Comparison of Auditory and Blind Separation
Techniques for Speech Segregation

André J. W. van der Kouwe, Member, IEEE, DeLiang Wang, Member, IEEE, and Guy J. Brown

Abstract—A fundamental problem in auditory and speech pro-
cessing is the segregation of speech from concurrent sounds. This
problem has been a focus of study in computational auditory scene
analysis (CASA), and it has also been recently investigated from the
perspective of blind source separation. Using a standard corpus of
voiced speech mixed with interfering sounds, we report a compar-
ison between CASA and blind source separation techniques, which
have been developed independently. Our comparison reveals that
they perform well under very different conditions. A number of
conclusions are drawn with respect to their relative strengths and
weaknesses in speech segregation applications as well as in mod-
eling auditory function.

Index Terms—Auditory scene analysis, blind source separation,
computational auditory scene analysis (CASA), oscillatory corre-
lation, speech segregation.

I. INTRODUCTION

H UMAN listeners exhibit a remarkable ability to segregate
the voice of a single speaker from a mixture of other in-

truding sounds. This phenomenon may be regarded as one as-
pect of a more general process of auditory organization, which is
able to untangle an acoustic mixture in order to retrieve a percep-
tual description of each constituent sound source. The term au-
ditory scene analysis (ASA) has been introduced to describe this
process [4]. Conceptually, ASA may be regarded as having two
stages. In the first stage, the acoustic mixture is decomposed into
sensory elements (“segments”). The second stage (“grouping”)
then combines segments that are likely to have originated from
the same sound source.

Recently, attempts to develop computational systems that
mimic ASA have led to the emergence of a new field, known
as computational auditory scene analysis (CASA) [5], [23].
Much of the work in this field has focused on the problem of
segregating speech from interfering sounds (“speech segre-
gation”). An effective computational solution to this problem
would have application, for example, as the front-end to an
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automatic speech recognition system or as the basis for a
hearing prosthesis.

The problem of speech segregation has also received atten-
tion from workers investigating blind source separation [16]. In
contrast to CASA, blind source separation is a statistical tech-
nique that draws no inspiration from mechanisms of auditory
function—nonetheless, it has been used to separate mixtures of
audio signals with some success [13], [2].

The purpose of this paper is to compare the CASA approach
to speech segregation with the blind source separation ap-
proach. We choose representative techniques from each domain
and apply them to a standard corpus of speech mixed with
various forms of interfering noise. Our study is motivated by
a desire to determine the conditions under which it is most
appropriate to apply each approach. Additionally, we aim to
identify the limitations of the techniques, and hence to suggest
directions for future research.

To represent CASA we have chosen the system of Wang
and Brown [25]. Blind source separation is represented by
the second order blind identification (SOBI) algorithm of
Belouchraniet al.[3] and the joint approximate diagonalization
of eigen-matrices (JADE) algorithm of Cardosoet al. [9]. The
CASA and blind source separation domains are reviewed in
Sections II and Section III respectively, and in these sections we
also give reasons for our choice of representative techniques.
Section IV describes the data set used for the evaluation.
Finally, we discuss the relative performance, benefits and
shortcomings of the techniques in Section V.

II. COMPUTATIONAL AUDITORY SCENEANALYSIS

One of the first approaches to CASA is a system for sep-
arating simultaneous talkers described by Weintraub [26]. In
his system, a frequency analysis of the acoustic mixture is per-
formed by a bank of bandpass filters, and the interpeak interval
in each filter channel is determined. This information is used to
estimate the number of sound sources present, and their pitch
periods. Each voice is characterized by the state of a Markov
model—silent, periodic, nonperiodic, onset, offset, increasing
periodicity or decreasing periodicity. A spectral estimation algo-
rithm then uses information about the state of each sound source
to determine how the energy in each frequency channel should
be allocated.

A later approach described by Brown and Cooke [5] ad-
dresses some of the problems of early CASA techniques;
in particular, it avoids making strong assumptions about the
type and number of sound sources. Additionally, their model
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Fig. 1. Schematic diagram of the Wang and Brown CASA model. The input first passes through a model of the auditory periphery (cochlear filtering and hair cells)
which simulates auditory nerve activity. Midlevel auditory representations are then formed (correlogram and cross-channel correlation map). Next, a two-layer
neural oscillator network performs grouping of acoustic components. A final resynthesis path facilitates computation of signal-to-noise ratio (adapted from [25]).

attempts to put biological realism on a firmer footing. Their ap-
proach includes a model of the auditory periphery consisting of
outer and middle ear filtering, cochlear filtering and a model of
neuromechanical transduction. Central processing is modeled
using various auditory maps, which represent periodicities, fre-
quency transitions, onsets and offsets. These maps correspond
with observed neural mappings in the auditory mid-brain and
cortex. The auditory scene is divided into symbolic elements
using the maps, and elements are grouped according to the
similarity of their various features.

Wang and Brown [25] extend the work of Brown and Cooke
by replacing the central processing portion of their model with
a two-layer oscillator network and employing computationally
simpler methods for auditory feature extraction. Segmentation
of the acoustic input arises from the dynamics of the first layer,
through a process of local excitation and global inhibition,
while grouping of segments emerges from the dynamics of
the second layer. A population of synchronized oscillators
represents an individual sound source. Different sources are
represented by desynchronized populations of oscillators. This
“oscillatory correlation” framework represents a solution to
the binding problem—how distributed sensory components
of a single source are bound together in the brain—and is
supported by recent neurobiological findings. The system is
illustrated schematically in Fig. 1. Note that the system allows a
time-domain waveform to be resynthesized for each segregated
sound source. The principal feature that is used for grouping
is fundamental frequency (F0); information about the F0 of
sound sources is derived from an autocorrelation analysis of
each auditory filter channel, forming a representation known as
the “correlogram.”

The Wang and Brown system has been chosen to represent
CASA techniques for four reasons. Firstly, it is strongly moti-
vated by auditory neurobiology; in contrast, many other CASA
approaches are inspired by mechanisms of auditory function but
do not model them closely (e.g., [14], [21]). Secondly, it per-
forms well and the results have been recently published. Thirdly,
the performance of the system has been tested using a readily-
available corpus of sound mixtures, which is described in Sec-
tion IV. Finally, since a waveform can be resynthesized for the
separated speech and noise, it is possible to express the perfor-
mance of the system using a commonly used metric—signal to
noise ratio (SNR). This allows a direct comparison with the per-
formance of the SOBI and JADE algorithms.

III. B LIND SOURCESEPARATION

Blind source separation relies on the availability of several
differing source mixtures and relatively strict requirements on
the statistical properties of the sources. As work in the area pro-
ceeds, these requirements are becoming more relaxed [8]. When
the conditions are satisfied the technique is capable of near per-
fect source separation. By definition, in blind separation there is
no availablea priori knowledge as to the statistical distributions
of the source signals; nor is there information available as to
the nature of the process by which the source signals were com-
bined. Therefore some assumptions must be made regarding the
source signal distributions and a model of the mixing process
must be adopted. It is generally assumed that the source sig-
nals are statistically independent and that the mixing process is
linear. Blind separation algorithms attempt to invert the mixing
process in such a way as to recover components which are in
some sense independent.

Statistical independence implies that the source signal joint
moments of all orders are zero. Algorithms ensuring only that
the second order joint moments are zero (i.e., that the covari-
ance matrix is unit) fall into the category of principal component
analysis (PCA). The second order blind identification (SOBI)
algorithm [3] uses only stationary second order statistics and is
based on the joint diagonalization of a set of covariance ma-
trices. Algorithms that operate explicitly on higher-than second
order statistics are classified as independent component analysis
(ICA) (we note that some nonlinear PCA algorithms implicitly
operate on higher order statistics [16]). For example, the ICA
procedure of Comon [10] minimizes the fourth order cumulants
given by (1) after whitening1 the signals.

(1)

where is the vector of approximately separated signals. The
joint approximate diagonalization of eigen-matrices (JADE) al-
gorithm [7] minimizes the cumulant given by

(2)

1“Whitening” refers to the process which transforms a signal vector so that
the covariance matrix is unit.
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TABLE I
INTRUSIVE SOURCES(FROM [11])

It has been shown that the performance of algorithms that imple-
ment (1) and (2) are equivalent, but a faster optimization process
exists for JADE [9].

The simplest model for the mixing process is [20]

(3)

where is the vector of original source signals, is the
mixing matrix and is the vector of mixed signals observed
by the sensors. This simple linear model aligns the source
signals perfectly in time in the mixtures. For real audio signals
this is very unlikely due to the different path lengths from the
sources to the various microphones [24]. Another complication
in real acoustic environments is signal distortion by filtering
and echoes. Convolutive mixing models have been proposed
to account for these effects and these may include delays
implicitly or explicitly [13]:

(4)

where is the filter impulse response. Finally, the mixing
model may be nonlinear [27]. A number of adaptive algorithms
have been described for on-line separation of linear and
nonlinear mixtures. One algorithm uses a recursive gradient
descent approach to maximize the kurtosis of the separated
signals [18]. Amariet al.describe an adaptive algorithm for
separating multichannel data that incorporates deconvolution
and therefore handles the case of convolutive distortion, delays
and echoes [1].

The existing blind source separation algorithms vary in
terms of three main properties—the complexity of the mixing
process model, the order of the statistics used by the algorithm,
and whether the algorithm processes the data iteratively or in
batches. We have chosen the SOBI and JADE algorithms based
on these three properties. Both algorithms assume a linear
mixing model. Although other algorithms incorporate delays
and nonlinearities in the mixing model, we know that our test
data set is constructed synthetically by linear mixing so that
the linear model given by (3) is appropriate. SOBI is a second

order technique and JADE is a fourth order technique. Since
the CASA algorithm with which blind separation is compared
is autocorrelation-based and therefore relies on second order
statistics, it is appropriate to compare it with a second order
blind separation technique. Several algorithms are iterative,
converging on a set of parameters for the separating model.
SOBI and JADE are not iterative, but act on the statistics of
the complete set of data directly. For separating linear mixtures
of signals, SOBI is representative of second order approaches
and JADE represents the best that any equivalent fourth order
iterative method can do.

IV. TEST DATA

We use the corpus of sound mixtures devised by Cooke [11]
for our evaluations. It consists of 100 speech and noise mix-
tures, formed by combining each of voiced utterancesto

with each of ten intrusions to in the ratio 1 : 1. The
intrusions, characterized in Table I, reflect the various types of
intruding noise which may occur in a natural listening environ-
ment. Five sentences were spoken by two male speakers to ob-
tain the ten fully voiced utterances. These are listed in Table II.
Fully voiced utterances were used because Wang and Brown’s
CASA system separates acoustic sources according to their F0s.
However, this is not a general limitation of CASA systems; for
example, Okunoet al. [22] describe an approach which uses
spatial location cues to segregate two utterances consisting of
voiced and unvoiced speech sounds.

For SOBI and JADE, one signal and noise mixture per separa-
tion is insufficient, since the required number of mixture signals
must equal or exceed the number of source signals. However this
is not a general limitation of blind source separation techniques.
It has been pointed out that with carefully placed microphones,
any single desired source signal may be obtained with fewer mi-
crophones than sources, at least in principle [6]. It has also been
demonstrated that higher-order statistics can be used to recover
more sources than mixtures [12], [19], [28].

In this experiment, 100 mixturepairs were created by com-
bining the voice and intrusion signals in the ratio 1 : 0.8 and
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TABLE II
VOICED SOURCES(FROM [11])

0.8 : 1. It is important to note that the blind separation algorithm
not only has two signals to work with in each case, but also has
the implicit a priori knowledge that the mixture consists of ex-
actly two components. The results of this experiment with SOBI
and JADE are contrasted with those of the CASA algorithm of
Wang and Brown. For each type of intruding noise, the signal
to noise ratio before and after separation is given. These signal
to noise ratios are averaged over the ten voice signals after con-
version to decibels.

Wang and Brown presented their system with only a single
mixture of signals, of which the SNR was equal to the average
of the two presented to SOBI and JADE. The SNR values for the
mixtures before separation are therefore slightly higher for the
blind separation techniques (Fig. 2) than for the CASA tech-
nique (Fig. 3), because the higher SNR of the two mixtures
available in each case (the 1.0 : 0.8 mixture) was chosen for
a fair comparison.

The SNR improvement in the case of the two blind separa-
tion algorithms can be calculated directly from the estimate of
the unmixing matrix and the true mixing matrix if the un-
mixing model

(5)

which is the reverse of (3) is adopted. The SNR is then

(6)

where the definitions for the parameters and the derivation are
given in the Appendix.

The chosen CASA technique provides a resynthesis path for
the separated signals [25], making it possible to determine the
SNR improvement. The performance of the blind separation and
CASA approaches may thus be compared directly in terms of
signal-to-noise ratios.

Fig. 2. Comparison of SNR before and after segregation by SOBI and JADE.
The left bar denotes initial SNR, the middle bar denotes SNR after segregation
by SOBI and the right bar denotes SNR after segregation by JADE. Voiced
speech is segregated from a mixture of speech and ten different intrusions (n0
= 1 kHz tone; n1= random noise; n2= noise bursts; n3= “cocktail party”
noise; n4= rock music; n5= siren; n6= trill telephone; n7= female speech;
n8= male speech; and n9= female speech).

Fig. 3. SNR before and after segregation by computational auditory scene
analysis. Voiced speech is segregated from a mixture of speech and ten different
intrusions labeled as in Fig. 2 (from [25]).

V. COMPARISONS

The average SNR values (in decibels) for SOBI and JADE are
given in Fig. 2. For comparison, the Wang and Brown results
[25] are shown in Fig. 3.

In order to compare these results meaningfully, it is necessary
to contrast the requirements of SOBI and JADE with those of the
CASA technique.

• For SOBI/JADE to be applied successfully, there are sev-
eral requirements on the properties of the signals. These
are summarized in Table III. Various blind separation al-
gorithms other than JADE allow compromises on several
of these requirements. However, all of them require that
the source signals be in some sense statistically indepen-
dent.

• CASA techniques in general require that the mixture
signal, represented in the time-frequency plane, show
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TABLE III
SOURCESIGNAL PROPERTIESRELEVANT TO SOBI AND JADE

well-defined regions corresponding to one or more of the
source signals.

The CASA approach imposes less stringent requirements on
the statistical and mixing properties of the signals than the SOBI
and JADE algorithms. The most important of these are prop-
erties 6 and 7 in Table III—SOBI and JADE require that the
number of sources be known and that the number of available
mixture signals be equal to the number of sources, whereas
CASA techniques require only a single mixture signal. In our
experiment, we have satisfied all of these requirements by de-
sign, except for the requirement of statistical independence of
the source signals. We have a constant, linear mixing process, a
mixing matrix which is far from singular, two sources and two
mixture signals, and perfect temporal alignment of the source
signals within the undistorted mixtures. It should be noted that
blind separation algorithms have been described to deal with the
situation where the number of sources is unequal to and pos-
sibly greater than the number of mixtures [12], [19], [28] and
the problem of determining the unknown number of sources has
been addressed [3], [28].

For separating sounds in a natural auditory environment, it is
important to consider whether these requirements on the statis-
tical and mixing properties of the signals are realistic.

• Echoes give rise to distortions in the representation of the
source signals in the mixtures. Differing path lengths to
the microphones result in temporally misaligned signals
[24]. Some blind separation algorithms handle distortions
and delays by modeling convolutive processes [2]. Amari
et al.describe an on-line adaptive algorithm for blind de-
convolution, generalized for the case where the number of
sensors may be more or less than the number of sources
[1]. Zhanget al. present a natural gradient approach that
also deals with over- and under-complete mixtures [28].
Signals containing echoes have not been dealt with by
CASA algorithms, but one would expect a lesser problem
because segregation in CASA algorithms is based on in-
trinsic properties of auditory signals, such as pitch, and
these properties tend to be preserved in echoes. Addition-
ally, computational models of the precedence effect [15]

could be incorporated into CASA systems in order to min-
imize the distortion caused by echoes.

• If the microphones are relatively close together, the effec-
tive mixing matrix (assuming that a linear mixing model
is indeed suitable) may be near singular.

• If the sources move in space, the value of the corre-
sponding mixing matrix varies with time. Batch mode
algorithms such as JADE require that the source signals
be stationary and that the mixing process not vary with
time. On-line adaptive algorithms that are able to handle
mixing processes that vary with time have been described.
For example, LeBlanc and De Leòn describe an adaptive
algorithm that uses kurtosis maximization to separate
voice signals [18]. The CASA algorithm has not been
tested with moving sources, but, again, they are expected
to be a lesser problem due to grouping cues that are
intrinsic to the content of the source signals. Some blind
separation algorithms, in particular the neural network
approaches [20],require that the signals be nonstationary
and may be able to handle a mixing process that varies
slowly with time.

The results of our tests, shown in Figs. 2 and 3, reveal the fol-
lowing:

• JADE performs best for the white noise , and it per-
forms worst for the 1 kHz tone ;

• SOBI performs similarly to JADE for the voice signals
and , somewhat better for the noise bursts

and rock music , and significantly better for the 1 kHz
tone and the trill telephone ;

• CASA technique performs better than blind separation
only for the 1 kHz tone and the siren , and per-
forms worst for the female utterance .

In principle, the blind separation problem is impossible to
solve if more than one of the signals is Gaussian and mixing is
linear, since the sum of Gaussian distributions is still Gaussian.
The most fundamental assumption which must be made for
blind signal separation to work is that the source signals are
independent in some statistical sense. In SOBI it is the second
order statistics that are used, and in JADE the statistics up
to the fourth order are used. These statistics are required to
be stationary. Since the other assumptions were satisfied by
design of the experiment, it is the statistical properties alone
which lead to the performance differences. Hence, the poor
performance of JADE on the 1 kHz tone intrusion may be
explained by the fact that the tone mixtures yield poor higher
order statistics. Similarly, the white noise mixtures contain rich
higher order joint statistics, which can be exploited by JADE.
SOBI is likely to perform well in situations where there is
good spectral separation between sources. This accounts for its
relatively high performance on the and mixtures, since
the tone and telephone both have their energy concentrated in
narrow spectral regions.

The greatest contributor to the variation in performance of the
CASA technique over the range of intrustions is the structure of
the intrusive sound in the time-frequency plane. This is charac-
terized in terms of bandwidth, continuity and granular structure
in Table I. Intrusions which are represented by a compact area
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in the time-frequency plan can be very effectively rejected by
the Wang and Brown system, such as the 1 kHz tone and siren
(and to a lesser extent, the trill telephone). Similarly, acoustic
mixtures which are fragmented and overlapping in the time-fre-
quency plane present the greatest challenge to the CASA tech-
nique. As a result, the CASA system performs comparatively
poorly for broadband intrusions such as the random noise and
speech. The particularly poor performance on(the female
utterance) may also reflect errors in the F0 tracking procedure.

Finally, it may be noted that there are limits on the ability
of human listeners to separate simultaneous events. This is
well demonstrated by the ‘cocktail party effect’ [4]. In such
listening situations, humans are unable to distinguish every
conversation; however, they have a remarkable ability to attend
selectively to the voice of a single speaker. Wang and Brown’s
CASA algorithm works in a similar manner; it separates a
target speech signal (the “foreground”) from interfering noise
(the “background”). In contrast, blind separation techniques
typically attempt to segregate every source signal from a
mixture.

VI. CONCLUSION

Blind separation can be remarkably successful at separating
mixtures of sounds, provided that certain requirements on the
properties of the source signals are met. These requirements
may not be equitable with a natural listening environment. As
work in blind separation progresses, the requirements are be-
coming ever less restrictive. If the conditions are met, blind sep-
aration is a powerful technique.

CASA algorithms are subject to quite different and biologi-
cally reasonable assumptions, and the performance profile for
the test data set is correspondingly quite different. In the nat-
ural environment, the methods of computational auditory scene
analysis bring the flexibility of the physiological systems which
they model to bear on a variety of signal mixtures, so that they
can achieve a reasonable level of separation in the absence of
many of the requirements of blind separation.

In most of the noise conditions used here, the blind separa-
tion techniques outperform CASA by some degree. Cooke’s set
of acoustic mixtures [11] was designed to present a challenging
test for CASA systems, and it does so by including a wide range
of possible noise intrusions. However, the corpus uses a simple
linear mixing model which satisfies all of the assumptions re-
quired by JADE and SOBI. Similarly, other corpora intended
for testing CASA, such as the multi-speaker corpus described
by Karlsenet al. [17] lack the sensor array recordings required
for blind separation algorithms. Clearly, further comparison of
CASA and blind separation approaches would be facilitated by
the use of a common corpus which was designed with both tech-
niques in mind.

Finally, the different performance profiles of the CASA and
blind separation techniques suggest that there would be merit in
combining the two approaches. More specifically, scene anal-
ysis heuristics that are employed by CASA systems (such as
continuity of F0 and spatial location), could be exploited by
blind separation algorithms in order to improve their perfor-
mance on real-world acoustic mixtures. Conversely, blind sep-

aration techniques could help CASA in decomposing mixtures
that overlap substantially in the time-frequency plane.

APPENDIX

DERIVATION OF (6)

If the components of the vectors and matrices in (3)
are defined as , and

then (3) may be expressed in scalar form as
follows:

(A1)

(A2)

If the components of the vectors and matrices in (5) are de-
fined as and then rearranging
the scalar form of (5) yields

(A3)

(A4)

Combining (A3) and (A4) gives

(A5)

Combining (A1), (A2), and (A5) gives

(A6)

If is chosen to be the original signal andthe original noise,
then is the estimate of the signal after separation. It then fol-
lows that the SNR of is

(A7)

from which follows (6).
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