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Reverberant Speech Segregation Based on Multipitch
Tracking and Classification
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Abstract—Room reverberation creates a major challenge to
speech segregation. We propose a computational auditory scene
analysis approach to monaural segregation of reverberant voiced
speech, which performs multipitch tracking of reverberant mix-
tures and supervised classification. Speech and nonspeech models
are separately trained, and each learns to map from a set of
pitch-based features to a grouping cue which encodes the poste-
rior probability of a time–frequency (T-F) unit being dominated
by the source with the given pitch estimate. Because interference
may be either speech or nonspeech, a likelihood ratio test selects
the correct model for labeling corresponding T-F units. Experi-
mental results show that the proposed system performs robustly in
different types of interference and various reverberant conditions,
and has a significant advantage over existing systems.

Index Terms—Computational auditory scene analysis (CASA),
monaural segregation, room reverberation, speech separation, su-
pervised learning.

I. INTRODUCTION

S PEECH segregation in reverberant environments is a very
challenging problem. A monaural (one-microphone) solu-

tion is highly desirable in many important applications, e.g., as
a frontend for automatic speech recognition and hearing aid de-
sign in noisy backgrounds. Numerous methods have been de-
veloped for monaural speech enhancement [21]. These methods
assume stationary or quasi-stationary interference and thus have
intrinsic limitations in dealing with a general acoustic back-
ground. Model-based approaches have been proposed to per-
form monaural segregation. For example, Roweis [29] trained a
factorial hidden Markov model for computing a time–frequency
(T-F) mask for segregation. Bach and Jordan [3] proposed a
spectral learning approach based on parameterized affinity ma-
trices and segmentation in a T-F plane. Radfar and Dansereau
[26] used a composite source model followed by a soft mask
filter based on minimum mean square error for separating the
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underlying sources. However, none of these methods have been
tested in reverberant conditions.

Computational auditory scene analysis (CASA) [35] aims to
segregate a mixture signal into different streams based on per-
ceptual principles of auditory scene analysis [6]. CASA sys-
tems tend to estimate the ideal binary mask (IBM) [33], where a
value of 1 in the mask indicates that the target energy is stronger
than the interference energy and 0 otherwise. IBM-segregated
speech results in dramatic improvement of intelligibility in noise
for both normal-hearing and hearing-impaired listeners [2], [7],
[20], [36].

Few studies have addressed the monaural speech segregation
problem in room reverberation. Roman and Wang [28] applied
inverse filtering to partially counteract the smearing effect of re-
verberation on harmonic structure before segregation. However,
the inverse filter is very sensitive to room configuration [17],
[27]. Our previous work [17] developed a supervised learning
approach to classify harmonic cues in order to achieve robust
segregation performance against reverberant effects. However,
this segregation system assumes the ground truth pitch of target
speech.

This paper proposes a segregation system for reverberant
speech by extending the above supervised classification ap-
proach in conjunction with detected pitch in reverberant
mixtures [18]. We find that the classification approach con-
tinues to yield good performance when pitch-based features are
extracted from estimated pitch, indicating good generalization.
We further propose a novel unit labeling strategy for the time
frames in which an interference pitch is also detected. Specifi-
cally, we train a multilayer perceptron (MLP) for target speech
and a second MLP to model a variety of periodic interference.
Because the MLP output estimates the posterior probability
of the modeled source, a labeling criterion that compares the
probabilities of the two underlying sources is expected to per-
form more reliably than one based on the posterior probability
of only the target source. Here, we devise a likelihood ratio test
to select the correct MLP model for the interference.

The paper is organized as follows. The Section II presents
an overview of the proposed system. Sections III–V describe
the segregation system stage by stage. Experimental results and
comparisons are provided in Section VI. We discuss related is-
sues and conclude the paper in Section VII.

II. SYSTEM OVERVIEW

The proposed system has four computational stages. The first
stage applies a recent multipitch tracking algorithm [18] to de-
tect pitch contours for both target and interfering sources in re-
verberation. The algorithm uses an auditory filterbank to de-
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compose the input signal into the T-F domain and selects reli-
able channels to derive pitch scores for different pitch states. A
hidden Markov model (HMM) then integrates these pitch scores
and searches for the optimal pitch state sequence. This algo-
rithm produces reliable pitch contours in noisy and reverberant
conditions, laying a foundation for our pitch-based segregation
approach.

In the second stage, we extract in each T-F unit a set of
pitch-based features with respect to each detected pitch. These
features are based on auditory filter responses and response en-
velopes to account for both resolved and unresolved harmonics.
Section III gives the detail of multipitch tracking and feature
extraction.

The next stage labels T-F units using trained MLP. As
suggested in [17], the MLP is trained as a classifier in a cost
sensitive way in order to maximize the signal-to-noise ratio
(SNR) performance for the segregation task. The output of the
MLP can be interpreted as the posterior probability of a T-F
unit dominated by the source with the corresponding pitch
period. Two MLPs are trained, one for speech and the other for
nonspeech signals. Two scenarios are considered in the labeling
procedure: 1) when the current time frame contains only one
pitch, a simple labeling criterion is utilized; 2) when two pitch
periods are detected in one frame, a comparative method is
used to decide which harmonic source more likely dominates
in the T-F unit. The second scenario further considers two
hypotheses: speech interference and nonspeech interference.
The different hypotheses call for different combinations of
MLP models which lead to different labeling results. Finally,
a likelihood ratio test is performed to choose the hypothesis
that fits the data better. The proposed labeling procedure is
described in Section IV.

The segmentation and grouping stage, described in Section V,
refines the labeling results and generates the target and back-
ground stream. To obtain reliable segments in reverberant con-
ditions, cross-channel correlation cues [34] are used in low-fre-
quency channels and onset–offset cues [13] in high-frequency
channels. These segments are subsequently grouped into the two
streams resulting in an estimated IBM, which can then be used
to resynthesize the segregated target speech.

III. MULTIPITCH TRACKING AND FEATURE EXTRACTION

The mixture signal is first passed through a fourth-order
gammatone filterbank [25] with 128 channels for time–fre-
quency analysis. The center frequencies are quasi-logarithmi-
cally spaced from 50 to 8000 Hz. The response of a
filter channel is further transduced by the Meddis hair cell
model [22] to produce firing patterns in the simulated auditory
nerve, denoted by . The output is then divided
into 20-ms time frames with 10-ms overlapping between con-
secutive frames. The resulting T-F representation is known
as a cochleagram and further implementation details can be
found in [35, Ch. 1]. In the following discussion, we use
to denote a T-F unit in the cochleagram at time frame and
frequency channel .

The normalized correlogram is then calculated for
with a time delay by the following autocorrelation func-

tion:

(1)
where is the frame size. The range for should include the
plausible pitch range in samples. For the sampling fre-
quency of 16 kHz, is equal to 320 samples and the above
pitch range translates to in Hz. The denominator in
(1) normalizes the autocorrelation value to (due to the
nonnegative output of the Meddis model). To effectively cap-
ture unresolved harmonics, we also calculate the correlogram

from the envelope of the hair cell response
using (1).

Multipitch tracking [18] is performed here to detect pitch con-
tours for both target and interfering sources in the reverberant
mixture. Based on the correlogram , pitch scores in
each time frame are derived under the three pitch state spaces,
namely zero-pitch, one-pitch, and two-pitch hypotheses. Under
zero-pitch hypothesis, we detect and assign relatively low scores
for silence, unvoiced speech or noise. Under the one-pitch hy-
pothesis, a weighted summary correlogram over the set of reli-
able channels is computed for all possible pitch periods. Under
the two-pitch hypothesis, the notion of IBM is employed to di-
vide the selected channels into two groups, each corresponding
to one of the underlying pitch periods. The pitch strength from
each group is calculated and later combined into a single score
for all pairs of plausible pitch periods. In the tracking stage,
an HMM treats those pitch scores in a probabilistic form and
searches over all the three pitch hypotheses for the optimal se-
quence of pitch states. This algorithm yields up to two dominant
pitch periods, adequate for segregating foreground and back-
ground streams. See [18] for details of multipitch tracking of
reverberant mixtures.

With results of multipitch tracking, we extract pitch-based
features for each . As discussed in [17], in order to achieve
robust performance in reverberant signals, the feature set
should be sensitive to both resolved and unresolved harmonics.
In low-frequency channels, harmonics are resolved because
a filter does not respond to more than one harmonic. When
bandwidth increases in high-frequency channels, a filter re-
sponds to multiple harmonics and therefore harmonics become
unresolved. Following [15] and [17], the first three features are
derived from the inner hair cell response to detect re-
solved harmonics. Given an estimated target pitch period at
frame , is one direct measure of how the period-
icity in is consistent with . This feature has been proven
to be effective under both anechoic and reverberant conditions
[17]. As an alternative way of measuring the harmonicity, the
average instantaneous frequency is estimated from the
zero-crossing rate of with respective to . Thus, by
multiplying with , we derive two supplementary
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features: the nearest integer to the product and the distance
between the product and its nearest integer. The former

indicates a harmonic number while the latter measures the
amount of deviation from the harmonic number. The next
three features are similarly extracted from the envelope of the
hair cell output , which better reveals the amplitude
modulation (AM) of unresolved harmonics. A bandpass filter
with the passband from 50 to 550 Hz is utilized to extract AM.
Hence, we obtain the six pitch-based features for

(2)

IV. UNIT LABELING USING MLP

As a key stage of the segregation system, unit labeling distin-
guishes target-dominant T-F units from interference-dominant
ones. An MLP classifier learns a mapping from the aforemen-
tioned feature set to a grouping cue, which encodes
the posterior probability of a T-F unit being dominated by the
source with . In this section, we first discuss the training of
the MLP classifier. Later, labeling criteria are derived from the
MLP output.

A. MLP Training

In the training stage, features are extracted using the ground
truth of the target pitch, which is obtained by running Praat [4]
on the premixed reverberant target signal followed by manual
correction. The desired value of the grouping cue is defined to
be 1 if is dominated by the source with given pitch and
0 otherwise. When the given pitch period arises from the target
speech, the above definition is consistent with the IBM. On the
contrary, the interference pitch corresponds to the complement
IBM, with 0s and 1s swapped. In the following, we focus on
the case when is the target pitch. The second case will be
considered in Section IV-C.

The model consists of 128 MLPs, one trained for each
channel. Training minimizes a cost-sensitive objective function
(i.e., error function). Specifically, the objective function is
defined as [17]

(3)

Given desired output and actual output , the ob-
jective function is expressed as a weighted mean squared error
(MSE) with unit energy as weights, which directly re-
lates to the goal of maximizing SNR in the segregation problem
[17]. In implementation, each MLP has the same network archi-
tecture with 6 input nodes, 20 hidden nodes, and 1 output node.
The size of the hidden layer is decided by tenfold cross-vali-
dation. We use a hyperbolic tangent sigmoid function as the

transfer function of the hidden and output layers. A general-
ized Levenberg–Marquardt backpropagation algorithm [11] is
adapted to learn unknown network parameters in conjunction
with as the learning goal.

B. Single-Pitch Labeling

We apply the trained MLP to label . It should be noted
that each frequency channel has a separately trained MLP, as
mentioned in Section IV-A. Because the trained MLP directly
estimates the posterior probability [24], we denote the MLP
output by , where is the event of
being dominated by the source with . Given that is the
target pitch, a T-F unit is labeled as the target source if

is greater than , where is
the complement of the event . Because these two posterior
probabilities sum to one, the above criterion is simplified to

(4)

Note that this criterion was derived in [17] with a different
meaning of . The ground truth pitch of the target speech was
previously used to concentrate on supervised learning without
the influence of pitch estimation errors. In this paper, we avoid
such prior knowledge and rely on estimated pitch. We instead
assume the “ideal” assignment of detected pitch contours.
Specifically, we assign a detected pitch contour to the target if it
is closer to the ground truth target pitch, and to the interference
otherwise.

However, inaccurate pitch estimation will lead to unit labeling
errors, and hence degrade the segregation performance. Quanti-
tative analysis will be given in Section VI-B. Section IV-C pro-
poses a novel strategy to alleviate performance degradation.

C. Double-Pitch Labeling

When the interfering signal has periodic components or is
another speech, the second pitch can be utilized to improve the
labeling accuracy. In this situation, instead of evaluating how
likely is dominated by the target speech, we ask whether
the target or the interference more likely dominates . This
criterion can be written as

(5)

where and are target and interference pitch periods, re-
spectively. Such a comparison is made under the same condi-
tions except for different pitch values, and as a result we expect
it to be more accurate than a comparison with a fixed value as
in (4) (see also [15]).

Due to the fundamental difference between speech and peri-
odic nonspeech noise, we train two MLP models, denoted by

and , for speech and nonspeech sources, respectively.
Each model learns a distinct mapping from the pitch-based fea-
tures to the grouping cues for each type of harmonic sources.
Two hypotheses are considered consequently:

Speech mixed with speech;

Speech mixed with nonspeech signal
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Since assumes that both target and interference signals are
speech, the criterion in (5) is replaced by

(6)

Similarly, the labeling criterion under is

(7)

where is the MLP output from and from .
A likelihood ratio test is then applied to select the correct

hypothesis at the sentence level. Let be the unit label under
:

if
else.

(8)
and under :

if
else.

(9)
Both are computed in two-pitched frames. We further define
to be the set of the overlapping interference-dominant units (0s)
in and

(10)
A likelihood ratio test thus can be conducted:

(11)

Essentially, the test compares the likelihoods of and and
selects the model that better fits the interference data in .

The overall labeling strategy is illustrated in Fig. 1. After
the detection of target and interference pitch contours
and , we first label units on single-pitch frames based on
the criterion in (4). For two-pitch frames, we branch the la-
beling process using the following two hypotheses: (speech
plus speech, left branch), and (speech plus nonspeech, right
branch). The speech model is applied to both of the sources
under the first hypothesis and the labeling result is obtained ac-
cording to (6). The second hypothesis calls for and , re-
spectively, and the result is obtained using (7). Given the two-
talker mixture in this example, the likelihood ratio test in (11)
chooses the labeling result from the left branch.

V. SEGMENTATION AND GROUPING

In CASA systems, it is preferable to segment the auditory
scene into contiguous T-F regions, each of which is deemed to
mainly originate from a single source. A segment contains more
global information of the underlying source that is missing from
individual units, and thus is expected to provide more robust
components for grouping and improve segregation performance
[12], [35].

However, room reverberation makes it difficult to obtain ac-
curate segments. Following [17], we perform segmentation on
reverberant mixtures using two different methods in different

frequency ranges. Due to the fact that the filter responses in low-
frequency channels (center frequency below 800 Hz) are less
corrupted by reverberation than those in high-frequency chan-
nels [30], cross-channel correlation [34] remains effective as the
segmentation cue at low frequencies. On the other hand, signal
onsets are relatively unaffected by reverberation because the di-
rect sound arrives earlier than its echoes. Hence, the high-fre-
quency regions are segmented using onset/offset cues [13]. The
complete segmentation is formed by combining the segments
generated from the above two methods.

Based on the unit labeling results, we then group each seg-
ment into the target stream if the total energy of the target-la-
beled T-F units is greater than that labeled as the non-target
units. In the final step, each target segment is expanded by iter-
atively recruiting its neighboring units that are labeled as target
and do not belong to any segments. The resulting binary mask
is thus formed and the target speech can be resynthesized from
this mask [34].

VI. EXPERIMENTAL RESULTS

A. Data Preparation

To simulate room acoustics, we use the image model [1],
[19] which produces the room impulse response (RIR) given
the input of room dimensions, reflection coefficients, and the
physical locations corresponding to sound sources and the mi-
crophone. The basic idea is to represent the RIR as an infinite
number of image sources that are created by reflecting the actual
sound source in six walls. Therefore, a source location together
with a microphone location decide RIR in a fixed room. We first
construct two acoustic rooms by specifying their room dimen-
sions and reflection coefficients. Details are given in Table I. To
simulate both convolutive and additive distortions in our mix-
ture signals, we specify in each configuration a random loca-
tion for the microphone and then choose two other locations
for two sources (target and interference) randomly but control
source-microphone distances to ensure that close-talking sce-
narios are avoided and signal-to-reverberant energy ratios are
roughly constant in each simulated room. Note that, even in the
same room, the RIRs from different source locations to the mi-
crophone may differ significantly [23], [27]. Consequently, a re-
verberant mixture is created by convolving each source with its
corresponding RIR and mixing the two reverberant sources at
0-dB SNR. It is worth emphasizing here that the goal of our
system is to segregate the reverberant target source from the
mixture signal. A more detailed description of the simulation
procedure can be found in [17].

The evaluation corpus is constructed by mixing ten randomly
selected TIMIT utterances [10] with 15 different types of in-
terference. In Table II, the interferences are classified into three
categories: 1) those with no pitch; 2) those with some pitch qual-
ities; and 3) other speech utterances, such that the segregation
performance can be evaluated differently in each category. The
interfering signals are from NOISEX-2 [32], Cooke’s corpus
[8], and TIMIT. To evaluate different reverberant conditions,
we choose within each room three random configurations and
use each of these configurations to construct a reverberant mix-
ture. Consequently, we have a total of 1050 mixtures, with the



2332 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 8, NOVEMBER 2011

Fig. 1. Illustration of the unit labeling procedure. (a) Pitch tracking results for a mixture of one male (target) and one female (interference) utterance. The solid
lines indicate the ground truth pitch contours. The crosses represent the estimated male pitch contours whereas the circles the female pitch contours. (b) The�
output corresponding to the target pitch contours. Brighter color indicates higher posterior probability. (c) The� output corresponding to the interference pitch
contour. (d) Same as (b). (e) The� output corresponding to the interference pitch contours. (f) The binary mask under the� hypothesis using (4) on single-pitch
frames and (6) on two-pitch frames. The target-dominant units are labeled as white and the interference-dominant ones black. (g) The binary mask for the �
hypothesis. (h) The binary mask chosen by a likelihood ratio test. (i) The ideal binary mask for the purpose of comparison.

TABLE I
SETTINGS OF TWO ACOUSTIC ROOMS (L: LENGTH, W: WIDTH, H: HEIGHT)

original 150 mixtures in anechoic and 2 3 150 mixtures in
reverberant conditions.

B. SNR Evaluation

Given the computational goal of estimating the IBM, we use
the SNR measure in [12] to assess the segregation performance

TABLE II
CATEGORY OF INTERFERING SIGNALS

using the resynthesized speech from the IBM as a ground truth

(12)
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Fig. 2. SNR gains with different labeling strategies. The three panels (from left to right) indicate three different categories of interference.

where and are signals resynthesized from the IBM
and an estimated mask, respectively. In the following, we eval-
uate the segregation performance in terms of the SNR gain,
which is the improvement over the SNR before segregation. The
latter is calculated by passing the mixture to the all-one mask as

in (12).
When the acoustic environment changes, the pitch-based fea-

tures are likely to vary accordingly and thus generalization could
become an issue. Different training strategies were compared
in [17], results indicate that generalization to less reverberant
conditions is better than the other way around. Therefore, we
trained the speech model under the more reverberant con-
dition (Room 2, with reverberation time s) using
150 mixtures from one of the three configurations. Because non-
speech periodic signals only exist in Category 2, the nonspeech
model is trained using 50 mixtures from that category under
the same reverberant condition.

We first assess the performance degradation brought about
by pitch estimation errors. The dotted lines in Fig. 2 show the
segregation performance in different types of interference using
the ground-truth target pitch, which is the system described
in [17]. Note that this performance is not obtainable due
to the use of prior pitch knowledge. The SNR performance
drops with increasing , reflecting the nature of the rising
difficulty of segregation due to room reverberation. The circle
lines show the SNR performance with the estimated pitch.
Different amounts of degradation are observed in each category
of interference. The first two categories experience an average
of 2.1-dB SNR loss from the anechoic to the most reverberant
conditions. In the third category, the discrepancy is less than
0.4 dB on average. These results are consistent with the
pitch estimation errors reported in [18] and indicate that the
MLP model is able to generalize when the input pitch is
not accurate.

The triangle lines in Fig. 2 demonstrate the advantage of the
proposed double-pitch labeling strategy. In Category 1, there
is no SNR improvement due to the lack of the second pitch

from interfering signals. In the second and the third categories,
the interference pitch is often available and enables the labeling
method in Section IV-C to be utilized. As can be seen, signifi-
cant SNR improvement is realized. In Category 2, the SNR gain
improves about 1 dB in all reverberant conditions, bringing the
performance curve closer to the performance with the ground
truth pitch. We note that the nonspeech model is trained on a
closed set of interferences and generalization to new noises re-
mains to be studied. We also note that, when using a single
model for both speech and nonspeech interference, the double-
pitch labeling strategy performs even slightly worse than single-
pitch labeling (not shown in the figure) due to the model’s in-
ability to capture both speech and nonspeech characteristics. In
Category 3, the double-pitch labeling strategy shows a consid-
erable advantage over single-pitch labeling. The two-pitch la-
beling strategy using estimated pitches even outperforms the
ground-truth single-pitch performance by about 2 dB in the ane-
choic condition and 1 dB when is 0.6 s. With ideal pitches,
the performance is further improved by more than 1 dB as shown
in the figure. There are three reasons contributing to this perfor-
mance. First, we can detect accurate pitch contours when the
target and the interference are both speech signals. Second, the
voiced parts of the two competing voices often overlap signif-
icantly, resulting a high percentage of two-pitch frames con-
ducive to high SNR improvement. Third, the likelihood ratio
test works perfectly in the two-talker category. To illustrate the
improved performance, Figs. 3 and 4 show the estimated IBMs
from the single- and double-pitch labeling strategies in Category
2 and 3 interferences, respectively. The IBMs are also displayed
for the purpose of comparison.

We have also evaluated the proposed system using the con-
ventional SNR measure. In all three categories of interference
and different reverberant conditions, the conventional SNR
gains are about 1.5 dB lower but show similar trends to those in
Fig. 2. This is consistent with earlier comparisons [12]. Since
it directly relates to our computational objective, we use the
IBM-based SNR measure in later experiments.
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Fig. 3. IBM estimation for the reverberant mixture of one female utterance and
rock music with � � ��� s. (a) Labeling by the target pitch. (b) Labeling by
both the target and the interference pitches. (c) Ideal binary mask.

C. Comparison

To put the performance of our approach in perspective, we
compare with the tandem algorithm [15] and spectral subtrac-
tion [5]. The tandem algorithm is a recent CASA approach
which performs pitch estimation and speech segregation jointly
and iteratively and reports very good performance. Specifically,
it starts with an initial estimate of pitch and uses this estimate
to segregate target speech based on harmonicity and temporal
continuity. The segregated speech is then used to re-estimate
pitch and the improved pitch estimate leads to better segrega-
tion, and so on. In the segregation stage, a classification based
approach is used for pitch-based grouping. There are two major
differences between the tandem algorithm and our approach: 1)

Fig. 4. IBM estimation for the reverberant mixture of one male (target) and
one female (interference) utterance with � � ��� s. (a) Labeling by the target
pitch. (b) Labeling by both the target and the interference pitches. (c) Ideal bi-
nary mask.

the classifier in the tandem algorithm is trained using a conven-
tional MSE objective function, which is suboptimal for the goal
of maximizing SNR [17]; and 2) the tandem algorithm uses the
same training to deal with both speech and nonspeech harmonic
sources. Like in our system, ideal sequential grouping is used
to obtain the segregated target. Since the tandem model is
developed and trained for anechoic signals, the performance is
expected to degrade in reverberant environments. Fig. 5 shows
in circle lines the SNR performance of the tandem algorithm.
On average, it performs closely to the proposed system in the
anechoic condition; its slight advantage reflects the fact that it
is trained in the anechoic condition unlike our model which is
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Fig. 5. Comparison of SNR gain among the proposed method, the tandem algorithm and spectral subtraction. The three panels (from left to right) indicate three
different categories of interferences.

Fig. 6. Comparison of SNR gain among the proposed method, the tandem algorithm and spectral subtraction in real rooms. The three panels (from left to right)
indicate three different categories of interferences.

trained at s. As expected, the tandem model loses ac-
curacy in both pitch estimation and pitch-based grouping when
room reverberation occurs. The performance gap, compared
to the proposed system, is about 3 dB in broadband noise and
more than 4 dB in the next two categories of interference. Apart
from the mismatched training, the pitch estimator in the tandem
algorithm also has problems dealing with reverberant signals.

To make spectral subtraction perform on all types of interfer-
ence, we provide the prior knowledge of the silent frames in the
target speech for the required noise spectrum estimation. In each
time frame, interference is attenuated by subtracting the most re-
cently updated noise estimate from the spectrum of the mixture.
Fig. 5 shows the performance of the spectral subtraction method
in square lines. As can be seen, it yields reasonable performance
in Category 1 because broadband noise largely conforms to the
assumption of stationary noise. In Category 2, our system out-

performs spectral subtraction by 4 dB. In the two-talker cate-
gory, our system performs about 6 dB better in the anechoic
condition and 4.5 dB better in reverberant conditions. We should
point out that the performance of spectral subtraction is not sen-
sitive to room reverberation because the quality of noise estima-
tion described above does not change much with respect to the
level of reverberation.

Finally, we construct another corpus using RIRs recorded
in real rooms (see the Acknowledgement). We choose two
acoustic rooms with and 0.5 s, respectively. In
each room, two RIRs corresponding to the first two omnidi-
rectional microphones are selected for generating reverberant
mixtures. The same target and interference signals as described
in Section VI-A are used for generating the new corpus. We use
the same speech and nonspeech models ( and ) trained
on the simulated reverberant conditions; in other words, no
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retraining is conducted. Fig. 6 presents and compares the SNR
gains of the proposed system, the tandem algorithm and the
spectral subtraction method in real rooms. These results are
broadly consistent with those in Fig. 5. Similar to simulated
RIRs, the proposed algorithm performs significantly better than
the other two algorithms in all reverberant conditions. These
results demonstrate that our trained classifiers generalize well
from simulated reverberant conditions to real environments.

VII. CONCLUDING REMARKS

The paper proposes a CASA system for segregating rever-
berant speech by incorporating multipitch tracking and super-
vised classification to deal with corrupted harmonic features
due to room reverberation. In [17], the trained classifier labels
T-F units reliably and generalizes well to unseen reverberant
conditions, speakers, and utterances. With the same learning
scheme, our system exhibits similarly good generalization per-
formance. Furthermore, the proposed model yields good per-
formance when the input pitch is not accurate, which shows
another aspect of generalizability. Our approach trains a sepa-
rate model for periodic nonspeech signals that may occur in the
background and use a likelihood ratio test for model selection.
Evaluation and comparison show that our approach produces
substantial SNR gains across different levels of room reverber-
ation, and performs significantly better than related segregation
methods.

Our study avoids the problem of sequential grouping by using
“ideal” assignment of pitch contours. In monaural conditions,
human listeners utilize multiple grouping principles to perform
sequential organization [6]. Previous work has attempted to
model source characteristics for sequential grouping (e.g., [9]
and [31]). However, such effort has not addressed the issue
of reverberation. How to perform sequential organization in
reverberant conditions is an important topic for future research.

The problem of unvoiced speech segregation is not dealt with
in this work. Due to its lack of harmonicity, unvoiced speech is
intrinsically different from its voiced counterpart and cannot be
captured by pitch related features in (2). Under anechoic condi-
tions, Hu and Wang [14] developed an unvoiced speech segrega-
tion algorithm by analyzing signal onsets/offsets and classifying
acoustic-phonetic features. A subsequent method [16] applies
spectral subtraction to enhance unvoiced speech with noise es-
timated from pitched intervals. To our knowledge, however, no
study has attempted to tackle the problem of unvoiced speech
segregation under reverberant conditions and further research is
required here.
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