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HMM-Based Multipitch Tracking for Noisy
and Reverberant Speech

Zhaozhang Jin, Student Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—Multipitch tracking in real environments is critical for
speech signal processing. Determining pitch in reverberant and
noisy speech is a particularly challenging task. In this paper, we
propose a robust algorithm for multipitch tracking in the presence
of both background noise and room reverberation. An auditory
front-end and a new channel selection method are utilized to ex-
tract periodicity features. We derive pitch scores for each pitch
state, which estimate the likelihoods of the observed periodicity fea-
tures given pitch candidates. A hidden Markov model integrates
these pitch scores and searches for the best pitch state sequence.
Our algorithm can reliably detect single and double pitch contours
in noisy and reverberant conditions. Quantitative evaluations show
that our approach outperforms existing ones, particularly in rever-
berant conditions.

Index Terms—Hidden Markov model (HMM) tracking, multi-
pitch tracking, pitch detection algorithm (PDA), room reverbera-
tion.

1. INTRODUCTION

ITCH determination is a fundamental problem that at-
P tracts much attention in speech analysis. A robust pitch
detection algorithm (PDA) is needed for many applications
including computational auditory scene analysis (CASA),
prosody analysis, speech enhancement/separation, speech
recognition, and speaker identification. Designing such an
algorithm is challenging due to harmonic distortions brought
about by acoustic interference and room reverberation.
Numerous PDAs have been developed to detect a single pitch
track under clean or modestly noisy conditions (see [6] for a
review). The presumption of a single pitch track, however, puts
limitations on the background noise in which PDAs perform.
A multipitch tracker is required when the interfering sound
also contains harmonic structure (e.g., background music or
another voice). A number of studies have investigated detecting
multiple pitches simultaneously. Tolonen and Karjalainen [27]
designed a two-channel multipitch analyzer with an enhanced
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summary autocorrelation function. Wu et al. [32] modeled pitch
period statistics on top of a channel selection mechanism and
used a hidden Markov model (HMM) for extracting continuous
pitch contours. Bach and Jordan [2] presented a model based
on direct probabilistic modeling of the spectrogram of the
signal using a factorial HMM for characterizing pitch. More
recently, the mixture power spectrum was modeled as a sum
of parametric source models that were trained from the voiced
parts of speech [23]. Klapuri [15] proposed an ‘“‘estimation
and cancellation” model that iteratively detects pitch points
for polyphonic music and speech signals. Hu and Wang [12]
suggested a tandem algorithm to estimate pitch and segregate
voiced speech jointly and iteratively.

Room reverberation smears the characteristics of pitch (i.e.,
harmonic structure) in speech and thus makes the task of pitch
determination more difficult. The performance of existing sys-
tems is expected to degrade substantially in reverberant environ-
ments [3]. Little research has attempted to design and evaluate a
multipitch tracker for reverberant speech signals, and what con-
stitutes true pitch is even unclear in these conditions.

This paper proposes a multipitch tracking algorithm for both
noisy and reverberant environments. First, we suggest a method
to extract ground truth pitch for reverberant speech and use it as
the reference for performance evaluation. After front-end pro-
cessing, reliable channels are chosen based on cross-channel
correlation and they constitute the summary correlogram for
mid-level pitch representation. A pitch salience function is de-
fined from which the pitch score of the observed correlogram
given a pitch state is derived. The notion of ideal binary mask
[30] is employed to divide selected channels into mutually ex-
clusive groups, each corresponding to an underlying harmonic
source. Finally, an HMM is utilized to form continuous pitch
contours. The proposed method will be shown to be robust to
room reverberation.

The paper is organized as follows. The next section discusses
the question of what the pitch of reverberant speech should be.
Sections III-V describe the detail of the proposed algorithm
stage by stage. Results and comparisons are given in Section V1.
We discuss related issues and conclude the paper in Section VII.

II. WHAT SHOULD BE GROUND-TRUTH PITCH IN
REVERBERANT SPEECH?

Before embarking on designing a multipitch tracker for rever-
berant speech, it is essential to establish a working definition of
pitch in reverberant speech. This would not only point to what
should be pursued, but also give a reference (or ground truth)
pitch for evaluation purposes.

1558-7916/$26.00 © 2010 IEEE
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Pitch is a percept which is closely related to fundamental fre-
quency. Following the tradition of computational literature (see,
e.g., [10]), we use the term “pitch” to refer to fundamental fre-
quency in later sections. In voiced speech, the fundamental fre-
quency is usually defined as the rate of vibration of the vocal
folds [33]. PDAs are then designed to estimate these glottal pa-
rameters directly from the speech signal which tends to be less
periodic because of movements of the vocal tract that filters the
excitation signal.

However, room reverberation causes the relationship between
the excitation signal and the received speech signal to degrade
due to the involvement of another filter which characterizes the
room acoustics. According to the image model [1], the filtering
effect can be modeled as an infinite number of image sources
that are created by reflecting the actual source in room walls.
Therefore, the reverberant speech is an aggregated signal from
all image sources and no longer consistent with the glottal pa-
rameters in the original source. Several studies have attempted
to extract the glottal information by counteracting the reverbera-
tion effects. Unoki et al. [28] utilized the concept of modulation
transfer function and the source-filter model for complex cep-
strum analysis. Prasanna and Yegnanarayana [21] predicted the
location of glottal closure events using the Hilbert envelope of
the linear prediction residual. Flego and Omologo [8] used a mi-
crophone array to remove channel variations for distant-talking
speech. One result of doing so is that it creates a mismatch be-
tween the detected pitch and the actual periodicity of the re-
ceived, reverberant speech, which may cause problems in appli-
cations. For example, a CASA system performing pitch-based
speech segregation [14] would prefer a pitch estimate that is
consistent with the harmonic structure of the reverberant speech
rather than the rate of the glottal movements.

With these considerations, we consider the pitch in rever-
berant speech as the period of the quasi-periodic reverberant
signal itself. Following this definition, we generate reference
pitch contours for reverberant speech by adopting an interactive
PDA [17]. This technique combines automatic pitch determi-
nation and human intervention. Specifically, it utilizes a simul-
taneous display (on the frame-by-frame basis) of the low-pass
filtered waveform, the autocorrelation of the low-pass filtered
waveform, and the cepstrum of the wideband signal. Each sep-
arate display has an estimate of the pitch period and the final
decision is made by a knowledgeable user. More discussion is
given in Section VI-A.

III. FRONT-END PROCESSING

In this stage, our system decomposes the input signal into
the time—frequency (T-F) domain and extracts correlogram and
cross-channel correlation features.
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A. Gammatone Filterbank

The input signal z(t) is first passed through a gammatone fil-
terbank for time—frequency decomposition. This filterbank sim-
ulates cochlear filtering and is a standard model of the audi-
tory periphery [20]. We use the fourth-order gammatone filter-
bank with 128 channels whose center frequencies are quasi-log-
arithmically spaced from 80 to 5000 Hz. The equivalent rect-
angular bandwidth (ERB) of each channel increases with the
center frequency. The response z(c,t) of a filter channel c is
further transduced by the Meddis model of auditory nerve trans-
duction [18], which simulates the nonlinear characteristics of
inner hair cells and produces firing activity in the auditory nerve,
denoted by h(c,t). Note that both z(c,t) and h(c,t) retain the
original sampling frequency. In each channel, the output is then
cut into 20-ms time frames with 10-ms frame shift. The resulting
time—frequency representation is called a cochleagram and im-
plementation details can be found in [31, Chap. 1]. We use u. m,
to denote a T-F unit for frequency channel c and time frame m
in the cochleagram.

B. Correlogram

The normalized correlogram A(c, m, 7) for T-F unit u ,, of
time frame m and channel ¢ with a time delay 7 is computed
by the normalized autocorrelation shown in (1) at the bottom of
the page, where N denotes the frame length in samples. For the
sampling frequency of 16 kHz, the frame size of 20-ms trans-
lates to N = 320 samples; note that we allow samples from the
neighboring frames to be used in calculating the correlogram.
The denominator in (1) normalizes the correlogram to [0, 1]. The
range of 7 should include the plausible pitch range.

Studies of pitch perception indicate that the pitch of complex
sounds may be derived by combining information from both
fine-structure phase-locking responses (resolved harmonics) in
low-frequency channels and envelope-locking responses (unre-
solved harmonics) in high-frequency channels [4], [19]. Use of
the neural underpinnings of pitch perception have proven to be
useful in several CASA-based pitch detection models [11], [32].
However, in the reverberant case, pitch-related temporal-enve-
lope cues are more degraded than fine-structure cues [24]. This
is because the phase relationship of the harmonic components is
randomized due to the filtering effect of reverberation, causing
the complex sound reaching our ears to have a much less-modu-
lated temporal envelope than the waveform of the sound source.
In contrast to envelope responses, adding reverberation has little
effect on temporal responses [24]. To make our system robust
to room reverberation, we choose to only use the correlogram
computed directly from the filter responses h(c, t), rather than
the temporal envelopes of A(c,t).
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Fig. 1. Percentage of energy belonging to selected channels. (a) Tgop = 0 s.
(b)Ts0 = 0.6 s. The solid lines represent “speech + speech” cases and the
dotted lines represent “speech + white noise” case.

C. Cross-Channel Correlation

To detect pitch in noisy speech, it is suggested that selecting
less corrupted channels from the correlogram improves the ro-
bustness of the system [22], [32]. In [32], for example, the max-
imum peak value at nonzero lags in A(c¢,m,T) is compared
against a predetermined threshold to decide whether a low-fre-
quency channel is noisy. A high-frequency channel is selected
when the envelope of A(c, m,7) has a similar shape to that of
another A(c,m, ) calculated using a bigger time window, but
we find that it does not work well when reverberation is present.
The main problem lies in high-frequency channels where enve-
lope responses become highly degraded by reverberation.

We suggest the use of cross-channel correlation as an alter-
native method for channel selection. Due to their overlapping
bandwidths, adjacent channels tend to have very similar pat-
terns of periodicity in the correlogram if they are activated by a
single harmonic source [25]. The cross-channel correlation be-
tween Uc p, and Ueq1,m 18

L-1
Cle,m) = 7 3 Alem (et Lmr) @
=0

where A(c,m,7) is A(c,m, ) further normalized over 7 to
have zero mean and unit variance, and L is the maximum delay
in the plausible pitch range. C'(¢, m) gives a high value when a
harmonic source has its strong presence and a low value when
no harmonic source is present or background noise is dominant.
Therefore, we select channels C,,, in time frame m according to

Cpm ={c:C(c,m) > 6.} 3)

where §. = 0.95 is a threshold. Note that a relatively low
threshold is used compared to [11] where the purpose is seg-
mentation, not channel selection.

To demonstrate the robustness of channel selection, we calcu-
late the percentage of energy belonging to selected channels in
each frame as ) .~ FE(c,m)/>_ . E(c,m), where E(c,m)
is the energy calculated as the sum of squares of the filter re-
sponse within u. . Fig. 1 displays this percentage of selected
energy as a function of time frame in different types of interfer-
ence under both anechoic and reverberant conditions. As shown
in the figure, reverberation has little consequence on selected
channels.
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IV. PITCH STATE SPACE

In this paper, we aim to track up to two pitches simultane-
ously; thus, the state space of pitch can be defined as a union
space S consisting of three subspaces with different dimension-
alities [26], [32]

S=85US US, “)
where

So = {0}
S1={{n}:m €[32,200]}
Sy = {{r1, 72} : 71,72 €[32,200], 71 # T2}

The three subspaces Sy, S1, S2 represent zero-, one-, and two-
pitch hypotheses, respectively. We use the empty set ) to indi-
cate the absence of pitch, and time lags 77 and 75 to represent
first and second pitch candidates. The range of pitch periods 7
and 79, given in samples, corresponds to [2 ms, 12.5 ms] with the
16-kHz sampling frequency. This range translates to the pitch
detection range from 80 to 500 Hz, a typical frequency range
that covers both male and female speech in daily conversations.

A. One-Pitch Hypothesis

When a pitch state s; € Sy, it is assumed that there is one
and only one pitch in the current frame. To derive the pitch score
Pm($1) in frame m given a pitch state s; = {71 }, we first define
the salience (or strength) of pitch candidate 7; within frame m
as

Ececm A(e,m,m1) log E(e,m) |
Zcecm log E(c,m) ;1O 7é ®7
0, else.

&)

The logarithmic operation acts like a pre-emphasis filter [13]
which relieves the problem of high energy concentration in the
low-frequency range for natural speech. The salience function
fm is essentially a weighted summary correlogram over the set
of selected channels C,,,. When a pitch exists, it is expected
to have a predominant peak at the corresponding time delay
and channel selection suppresses other “erroneous” peaks. Note
that, if no channel is selected (e.g., in the case of pure noise),
we set the salience function to zero for all pitch lags. In order
to overcome subharmonic errors, when a peak in f,, is above
a threshold 6, = 0.6, its related higher-order peaks are sup-
pressed if they exist (see [7]).
The pitch score is then simply the modified salience

Pm(51) = fm(T1) (6)

B. Two-Pitch Hypothesis

When the noise has some periodic components or is another
speech signal, we should capture both pitches—this is when the
two-pitch hypothesis comes into play. In the following, we de-
rive the pitch score p,,(s2) given a pitch state so = {71, 72}.
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Fig. 2. Pitch salience function g,,, in one time frame in a mixture of two speakers. Note that ¢,,, is symmetric. The zero-setting step [as in (9)] is omitted in order
to display the function smoothly. Plot (a) corresponds to the anechoic condition (I = 0 s) and plot (b) to the reverberant condition (Z50 = 0.6 s). Brighter color
indicates higher salience. The two panels show similar patterns and similar peak locations. The bright horizontal and vertical lines at multiples of 52 indicate one
harmonic source with its pitch period at 7y = 52. By searching for the global peaks, highlighted by white circles, the pitch period of the other source is found

correctly at 7 = 121.

It is not straightforward to design a pitch salience function in
this situation because we are dealing with two pitches with the
function expected to show a peak at or near the two true pitch
periods. Since detecting multiple pitches is related to sound sep-
aration [31], we employ the notion of ideal binary mask [30]
by assuming that each T-F unit is dominated by either one har-
monic source or the other. Therefore, we divide the selected
channels into two groups, each corresponding to one source:

Crma=CmNn{c: Ale,m,m1) > A(c,m,72)} @)

and

Cr2=Cnn{c: Alc,m, 1) < A(e,m,m2)}. (8
In other words, among all the selected channels, we assign a
channel to source 1 if the correlogram has a higher value at 7
than 7> and source 2 otherwise. Note that C,,, 1 N Cy, 0 = 0
and Cy, 1 U C,,, o = C,,,. Following this idea, we define a pitch
salience function for s, in each frame m, shown in (9) at the
bottom of the page. The function is set to zero when either Cy,, 1
or C, o is the empty set. We expect that this salience function
generates a high peak near the two real pitch periods, since 71
and 75 should coincide with the peak locations in the channels
from C, 1 and O, o, respectively.

An appealing property of g,, is that room reverberation
hardly affects the peak formation near the real pitch periods.
As we know, reverberation distorts the harmonic structure

and causes damped (less peaky) periodic patterns in the cor-
relogram. However, the comparison between A(c, m, 1) and
A(e, m, o) are unlikely disrupted due to similar degradation
in their values. Fig. 2 plots g, in one same frame with and
without room reverberation. The absolute value of salience g,
may be lower in reverberation, but the peak locations are robust
across the two conditions. This feature is a key of our system.

We could have defined p,, (s2) similarly to (6), but Sy would
dominate S; in this case. One way to fix this problem is to re-
place the numerator in (9) by

Z max(A(e, m, 1), A(c,m, 12)) log E(c, m)
ceChp,

(10)

It is clear from (10) that g,,(71,72) is greater than either
fm(71) or fi(72). In other words, the system would be prone
to detecting a “spurious” pitch in the single pitch scenario.
This problem, however, can be alleviated by scaling g,, and
introducing a penalty term in p,,,(s2) as explained below.
To make S; and S; comparable, we define the pitch score by
scaling g,,, to the power of . Specifically,
pm(SQ) = (gm(7-177—2) +6m)7_6m (11)
where 6,, = 1 — max,, r, gm(71,72) and it ensures the scaling
does not change the maximal peak of g,,. The scaling factor =y
is set to 6 at which the marginal distribution of the scaled g,

X ece, , Alemr)log B+ Y,

A(c,m,m2) log E(c,m)
n,2

gm<T17T2> =
0

7

ZCGCm.l log E(C’m)+ZCEC'nz 2

if Om,l ;é @ and Cm72 ;é @ (9)

) log E(c,m)
else
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Fig. 3. Score matching. (a) Before scaling. (b) After scaling. The dotted lines
represent the distribution derived from f,,, and the solid lines represent the mar-
ginal distribution of ¢,,, by summing across one 7.

closely matches the distribution of f,,, as illustrated in Fig. 3.
We find that the choice of + is robust to reverberation.

C. Zero-Pitch Hypothesis

When there is no pitch in one frame, i.e., sg € Sy, it implies
silence, unvoiced speech, noise, or a combination. Hence, we
define its pitch score as

1, ifmin(f) > 0s
Pm(s0) =3 0,, elseif var(f,,) < 6 (12)
0, else.

where min( f,,) and var( f,,,) are minimum and variance of f,,
over 7, respectively. In (12), the first case handles silence and
some unvoiced speech. As shown in Fig. 4(a) and (b), for si-
lence and high-frequency variations in unvoiced speech, their
weighted summary correlograms f;,, exhibit high values for all
pitch lags. When all f,,, values are greater than #; = 0.5, a
high score is assigned to Sy. The second case covers broadband
noise and the rest of unvoiced speech. When only this noise
is present, f,, varies randomly and should have no prominent
peaks [Fig. 4(c)]. In contrast, a harmonic source should exhibit
a peaky distribution (high variance) in f,,, [Fig. 4(d)]. Therefore,
with the previously defined 6, and by choosing 6, = 0.01, we
remove false pitch points from noise while still maintaining the
ability to detect harmonicity buried in noise. In the third case,
at least one pitch should exist, and hence the pitch score in (12)
is set to zero.

D. Parameters

In deriving pitch scores for different hypotheses, there are a
total of five parameters with their values given where they are
introduced. In general, the values of these parameters are chosen
by examining the statistics from a small set of sample mixtures
drawn in both anechoic and reverberant conditions. 6, is intro-
duced in channel selection and it is determined so that a ma-
jority of the target-dominant channels are selected while min-
imizing the chance of including noise-dominant channels. The
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Fig. 4. Weighted summary correlogram in a frame. (a) Silence. (b) Unvoiced
speech. (c) White noise. (d) Speech 4+ white noise.

threshold 6, is used to identify strong salience peaks for cor-
recting subharmonic errors and chosen to ensure that nearly all
fm values exceeding ), occur at true pitch periods. Note that
the same parameter is used in (12) to detect the existence of
pitch. The scaling factor «y is chosen to balance f,, and g,,, as
described in IV-B. By incorporating them into probability dis-
tributions, we find an optimal scaling factor when the marginal
distribution of the scaled g,,, is closest to the distribution of f,,,.
The parameters 6 and 6, in (12) differentiate silence, unvoiced
and wideband noise frames from pitched ones. Their values are
set by calculating the minimum of min(f,,,) in all silence/un-
voiced frames and the maximum of var(f,,) in all wideband
noise frames. Note that these parameter values need not be par-
ticular as indicated by their roundedness, and generalize well to
the evaluation corpus used in Section VI even though they are
selected from a small training set of 30 sample mixtures in each
Tso outside the corpus.

V. HMM TRACKING

A. Model Specification

A hidden Markov model is employed as a stochastic frame-
work to find the optimal sequence of hidden pitch states [32].
The HMM is described as follows.

1) Hidden states. Unlike many other practical applications,
there is no ambiguity in defining the state space in our
model. As discussed in the beginning of Section IV, the
state space contains three subspaces corresponding to
zero-, one-, and two-pitch hypotheses, respectively. We
note that the cardinality (number of states) of this space is
28,562 (1 + 169 + 169 x 168), which is a huge number.
Later, we give ways to improve the computational effi-
ciency. We denote the state in time frame m as ¢y, .

2) Observations. In time frame m, the observation O,,, is the
correlogram. It is a 128 x 200 matrix, with each element
taking values in [0, 1] [see (1)].
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TABLE 1
TRANSITION SCORES BETWEEN PITCH STATE SUBSPACES

-8y — & — S
So 0.90 0.10 -
S 0.01 0.97 0.02
Sa - 0.03 0.97

3) State transitions probability 4. We use a first-order HMM
in which the current state only depends on the previous
state. That is, A = {a,, , 4.} There are two aspects
in ag,, g, The first is the score of jumping between
the three pitch subspaces. To reduce search space, we as-
sume that jumping can only take place between neigh-
boring pitch subspaces. For example, if g,,,—1 is in Sp, ¢,
can be in Sy or Sy, but not So. We assign jump scores in
Table I. These numbers do not need to be exact as long as
the diagonal probabilities are sufficiently high, and they are
taken directly from [32] after rounding to the nearest hun-
dredth. The second aspect is pitch continuity. As suggested
in [32], it can be modeled by a Laplacian distribution

1 A —
pi(A) = o exp (—'JJ>

where A represents the change of pitch period from one
frame to the next. We limit |[A| < 20 to further reduce
search space. p and o are bias and spread, respectively.
Following [32], we let 4 = 0.4 and 0 = 2.4. Note that
all these coefficients may vary in different corpora and dif-
ferent reverberant environments, but they are not sensitive
for pitch tracking results.

4) Observation probability distribution 3 given a pitch state.
As formulated in (6), (11), and (12), the pitch scores con-
stitute B = {b;(O,)}, where

13)

bj(Om) = pm(s;), (14)

0<j<2
Note that p,,,(s;) is not a probability in a strict sense. Here,
we assimilate the pitch score a probability form in order to
facilitate the discussion in the HMM context.

5) Initial state distribution 7. We assume that every sentence
starts with no pitch, i.e., ¢; = () with probability one.

Given the above HMM, A = (A, B, ), the task of pitch
tracking is essentially to solve the following problem: given the
observed correlogram sequence O = 070 ---Op, and the
model A, find the most likely pitch state sequence Qu.x =
q1q2 - - - qr. That is,

Qmax = a’rgnlaxgp(QKQ? A)
= argmaxop(O, Q|A)

= argmaxop(0|Q, A)p(Q|A) (15)

where T is the total number of frames and Q is a sequence of
pitch states. p(O|Q, A) is defined by B and p(Q|A) is by A. The
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Viterbi algorithm provides a dynamic programming solution to
the above problem and its time complexity is proportional to the
size of the trellis. For efficient implementation of Viterbi search
procedure, several considerations are suggested in [32].
* Remove from the trellis the least likely transition paths.
This was discussed earlier in the section.
* Use beam search to reduce the total number of pitch state
sequences maintained for comparison in a time frame.
* Trim the size of S, by only considering pitch candidates in
the vicinity of the local peaks in (11).
These treatments are implemented and dramatically reduce the
search time with almost identical results.

B. Pitch State Tracking

The above HMM framework makes reasonably balanced de-
cisions among different pitch hypotheses. However, biases can
occur in some situations. For example, when speech is mixed
with broadband noise, the level of spectral distortion breaks the
balance, causing the HMM search process to be biased towards
Ss. To overcome this bias, we perform two independent Viterbi
searches within different state spaces, Sp US; and SpUS; US,.
Consequently, we obtain two pitch state sequences Qmax,1 and
Qmax,2, Which can be viewed as two output candidates, each ca-
pable of tracking at most one or two pitches, respectively. Their
corresponding log likelihoods are denoted by

ll = logp(Qmax,l|O7A)/|Qmax,1|

12 = 10gp(QmaX,2|O7A)/|Qmax,2| (16)
and they are normalized by the respective sequence length.
Again, note that the likelihoods are calculated from pitch
scores, thus not in the strict probabilistic sense.

Basically, /; and [ can be indicative of choosing as the final
output between Qmax,1 and Qmax 2. When broadband noise is
present, [ is expected to be relatively small due to reduced peak
heights in f,,,. On the other hand, when the interference has a
periodic nature, the difference lo — [; should be large due to
the contribution of the second harmonic source in the likelihood
score. These two aspects suggest a linear combination of /; and
l as a discriminant function which can be written as

12 :(¥0~|—C¥1[1. (17)
To find the parameters g and 1, we use linear discriminant
analysis (LDA) on the same set of sample mixtures as mentioned
in Section I'V-D. The resulting parameter values are ag = —0.07
and «; = 0.7. Fig. 5 shows the scatter plot of (I1,l2). The two
kinds of mixtures are linearly separable. Note that the two pa-
rameters are not sensitive to different speech corpus and rever-
berant conditions, because of their derivation from likelihood
scores which are defined by pitch salience functions and the in-
clusion of reverberant mixtures in the training set.

Finally, we select the output sequence Q,,.x according to

Qmax — { Qmax,17

Qmax, 2,

if ls < aqli + ag

else. (18)
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Fig. 5. Scatter plot of (I1,1>). Crosses stand for mixtures with periodic inter-

ference and circles with broadband noise. The solid line is the discriminant plane
from LDA.

TABLE II
LIST OF TEN SELECTED TIMIT SENTENCES (M: MALE, F: FEMALE)

M1  Maybe they will take us.

M2 Alimony harms a divorced man’s wealth.

M3  Norwegian sweaters are made of lamb’s wool.

M4 Brush fires are common in the dry underbrush of Nevada.

M5 I just saw Jim near the new archeological museum.

F1  Quite often, honeybees form a majority on the willow catkins.
F2  Like enough we'll all be up on top by sundown.

F3  Challenge each general’s intelligence.

F4  The water contained too much chlorine and stung his eyes.

F5  Gus saw pine trees and redwoods on his walk through Sequoia
National Forest.

VI. EXPERIMENTAL RESULTS

A. Corpus and Reference Pitch

We construct an evaluation corpus by mixing ten randomly
selected TIMIT utterances [9] with 15 different types of inter-
ference. Table II lists the selected utterances from five male and
five female speakers. In Table III, the interferences are classified
into three categories with five in each category: 1) those with no
pitch; 2) those with some pitch qualities; and 3) other speech ut-
terances, so that pitch tracking is evaluated differently in these
categories (see Section VI-B for details). The interfering sig-
nals are compiled from NOISEX-92 [29], Cooke’s corpus [5],
and TIMIT.

To generate reverberant signals, we simulate room acoustics
by using a MATLAB implementation [16] of the image model
[1]. The model produces the room impulse response (RIR)
when fed with room dimensions, wall reflection coefficients,
and physical locations corresponding to sound sources and
the microphone. To simulate both convolutive and additive
distortions, we first specify in each configuration a random
location for the microphone and then choose two locations
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TABLE III
CATEGORY OF INTERFERING SIGNALS

Category 1 ~ White noise, pink noise, car noise,
F16 cockpit noise, speech shape noise

Category 2 1 kHz tone, “cocktail party” noise,
rock music, siren, trill telephone

Category 3 3 female utterances, 2 male utterances

for two sources (target and interference) randomly but control
source-microphone distances to ensure that close-talking sce-
narios are eliminated and signal-to-reverberant energy ratios
are roughly constant in each simulated room. Randomization
is applied to length and width, with height fixed. Note that,
even in the same room, the RIRs from different sources to the
microphone differ significantly. Consequently, a reverberant
mixture is constructed by convolving each source with its
corresponding RIR and adding the two reverberant sources
together at 0-dB signal-to-noise ratio. The resulting mixture
has the sampling frequency of 16 kHz. More discussions can
be found in [14].

To evaluate different reverberant conditions, we simulate
two acoustic rooms with their reverberation time (7g) at 0.3
and 0.6 s, respectively. Within each room, we choose three
configurations randomly and construct one reverberant mixture
according to each of these configurations. More details are
provided in Appendix A. Consequently, we generate a total of
1050 mixtures, with the original 150 mixtures in anechoic and
2 x 3 x 150 mixtures in reverberant conditions.

To obtain reference pitch contours, we run an interactive PDA
[17] on reverberant speech signals before mixing, as described
in Section II. This technique is not error free. However, as stated
in Hess [10, p. 500], it is harmless to have some errors in the
reference pitch contour if the PDA under evaluation will have
a performance inferior to the reference PDA. This condition is
met in our experiments because: 1) a pitch contour extracted
from the premixed speech is expected to be more accurate than
the one from the same speech mixed with interference; and 2)
the manual labeling step in the reference PDA further reduces
the chance of errors.

B. PDA Performance Measure

To formulate a quantitative measure of PDA performance, we
follow the metric used in [32] and extend it to reverberant cases.
Generally, we use E,_,, to denote the transition error rate of
frames, where z pitch points are detected as y pitch points. The
gross error Fgg is the percent of frames where the detected pitch
differs with the true pitch by more than 20%. The fine error F,
is defined as the average deviation from the reference pitch for
those frames without gross errors.
Due to different scenarios of pitch detection in the three cat-
egories of interference, we consider each category individually:
* In Category 1, the total gross error Fy = Fo_1 + Fo—o+
E1—>2 + El—>0 + Egs~

e In Category 2, Etl = E0—>1 —|—E0_,2 —|—E1_,0 +E2_,0 +Egs-
In this category, the reference pitch of interference is not
well defined for the following reasons. First, multiple har-
monic sources recorded together may result in more than
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Fig. 6. Weighted summary correlogram normalized to value 1 at the true pitch
period 7o = 118. (a) Anechoic speech. (b) Reverberant speech.

one pitch point in a frame (e.g., cocktail party noise and
rock music). Second, interference pitch may lie outside
the range of voiced speech, forcing the algorithm to de-
tect subharmonics instead (e.g., tone, siren and trill tele-
phone). Due to these considerations, Wu et al. [32] only
count missing pitch points for transition errors. To provide
a broader indicator, we detect pitched frames in premixed
interference and use them to give a measure of other transi-
tion errors. Note that F1_,5 and F>_,; are reported but not
included in the total error because it is possible that there is
no error in detecting the pitch of speech in such transitions.
Also, F1_,¢ is measured only in the frames that contain a
speech pitch point.

» In Category 3, since it is a two-talker case, all possible tran-
sition errors together with gross errors are considered. For
the single reference pitch case, it is evaluated as described
earlier. When two reference pitches exist in one frame, a
gross error happens when the detection of either one ex-
ceeds 20% and the fine error is the sum of the two when
applicable.

The above definition of fine error may not reflect well the ac-
curacy of pitch determination in reverberant speech. Because
multiple reflections are added to the original sound in a delayed
and attenuated form, a single frame may fuse harmonic informa-
tion from several preceding frames, resulting in a broader peak
near the reference pitch in the correlogram. Fig. 6 illustrates the
case, where the weighted summary correlograms are calculated
for an anechoic speech signal and a reverberant speech signal in
the same frame. The true pitch period 7y = 118. Let the detected
pitch 71 be 115. As shown in Fig. 6, in both of the conditions,
the fine error is equal to 3 lag steps which does not manifest the
different situations in the figure. A fine error may be more tol-
erable in reverberant space than the same error in the anechoic
condition. Therefore, in addition to measuring the horizontal lag
difference, we measure the percentage of vertical decrease in the
summary correlogram. That is,

ch(TO) — ch(Tl)
ch(TO)

where Sy, is a weighted summary correlogram of all channels
[cf., (5)]. Note that even though 7 might have a comparable
or even higher value in S,,. than 79 (e.g., when 7 is a subhar-
monic of 79), it rarely happens within 79’s 20% range. In case
it happens, we treat it as correct and do not penalize it in the
measure. Also note that .Sy, is calculated from premixed speech

Py = -100%

19)
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(i.e., without noise). It is worth pointing out that a vertical mea-
sure is usually used in pitch-based labeling in CASA [31, Ch. 3].

C. Results and Comparison

We compare the proposed system with two multipitch
tracking algorithms proposed by Wu et al. [32] and Klapuri
[15]. Wu et al.’s framework is similar to ours, and it detects
multiple pitches in three stages: auditory front-end processing,
pitch statistical modeling, and HMM tracking. However, there
are significant differences. Their algorithm uses a different
channel selection strategy and pitch scores for different hy-
potheses are explicitly modeled from the statistical relationship
between true pitch and selected peak locations. Due to the
involvement of supervised training, the resulting pitch models
are expected to degrade in mismatched conditions (e.g., room
reverberation).

Klapuri’s algorithm also starts with an auditory model. To
analyze periodicity, it replaces the autocorrelation analysis
with a DFT transform which is claimed to be more robust in
multisource signals and have a wider pitch detection range.
A so-called “summary spectrum” is computed and the pitch
frequencies are iteratively detected by an estimation-and-can-
celation procedure. Since it cannot detect the number of pitches
in each frame reliably, the algorithm is provided with this
number as prior knowledge.

Table IV gives the multipitch detection results of Wu et al.’s
and our algorithm in different reverberant conditions. In Cate-
gory 1, the proposed algorithm has lower fine errors than Wu
et al.’s algorithm according to both Ey, and P; measures. By
performing a one-way ANOVA based significance test on both
measures, we have verified that the above improvement is statis-
tically significant (with p < 1x 10~1%). However, our algorithm
has higher total gross errors when Tgp = 0.0 s and 0.3 s, mainly
because the peak selection/modeling strategy in Wu et al.’s al-
gorithm is particularly effective for wideband noise. Notice that
the gross errors have a decreasing trend as the level of reverber-
ation increases, which does not happen in the other categories.
The reason for this peculiar trend is, we believe, that, although
reverberation distorts spectral shapes to make pitch determina-
tion generally more difficult, it can also strengthen some speech
portions previously masked by noise, particularly when noise is
wideband and stationary. In Category 2, the proposed algorithm
produces lower total gross errors in reverberant conditions but
not in anechoic conditions. For fine errors, our algorithm gives
lower rates (p < 2 x 10™%), particularly according to the P,
measure (p < 1x10710). In Category 3, the proposed algorithm
yields significantly lower Ey(p < 5 x 1078). Looking at indi-
vidual transition errors, the main improvement comes from the
sum of F1_,5 and F5_,1, which shows that our algorithm does a
better job in balancing between one- and two-pitch hypotheses.
At the same time, both Fy, and P; indicate that our algorithm
has smaller fine errors in all three T50’s (p < 1 x 10710).

In Fig. 7, we illustrate the pitch contours detected by Wu et
al.’s and the proposed algorithm. Gross errors and transition
errors are clearly seen in these plots. In the anechoic conditions,
both systems can track pitch contours reliably. However, when
reverberation is added, Wu et al.’s system loses its accuracy and
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TABLE 1V
ERROR RATES (IN %) FOR THREE INTERFERENCE CATEGORIES

CATEGORY 1

Tso(s)  System Eo—1 FEom2 FEi—o FEi—2 Egys Ey Ey, Py

0.0 Wu et al. 1.77 0.00 15.09 0.27 1.53 18.66 087  3.71
Proposed 4.94 0.00 14.98 0.00 1.42 2133 0.59 1.27

0.3 Wu et al. 3.91 0.14 14.90 0.75 1.29 2098 090 273
Proposed 7.74 0.60 12.18 0.93 2.20 23.65 067  0.89

0.6 Wu et al. 1.83 0.08 13.56 1.08 0.86 17.41 1.20  2.88
Proposed 5.48 0.05 10.29 0.60 1.07 17.49  0.77  0.59

CATEGORY 2

Teo(s)  System Eo—1 FEo—2 FEio Fi.2 FEz.o Fa.1 FEgs Ey  Epn Py

0.0 Wu et al. 3.02 0.15 2.78 0.29 1.64 37.42 1.38 897 099 313
Proposed 2.07 0.99 3.42 0.60 1.31 16.03 L.76  9.54 083 1.52

0.3 Wu et al. 2.29 0.13 4.44 0.56 4.01 44.00 304 1391 118 3.09
Proposed 1.19 1.52 3.61 2.07 1.72 2350 392 1196 1.05 1.57

0.6 Wu et al. 0.64 0.04 7.16 1.16 5.83 48.74 339 17.06 150 3.40
Proposed 0.92 0.88 5.73 1.90 2.71 3229 349 1373 134 185

CATEGORY 3

Too(s)  System Eo—1 FEo—2 FEi-0 FEin2 FEao FEa.1 Eg Egy  Epn Py

0.0 Wu et al. 4.86 0.26 1.27 1.60 0.32 2544 064 3439 098 338
Proposed 2.40 1.48 0.85 3.67 0.07 1513 038 2398 0.73 1.15

0.3 Wu et al. 2.53 0.18 1.91 1.98 0.81 36.52 1.31 45624 130 3.75
Proposed 1.14 2.37 0.51 8.09 0.25 20.56 390 36.83 1.06 182

0.6 Wu et al. 0.95 0.14 1.75 2.76 2.93 4473 454 5781 203 483
Proposed 0.40 0.52 0.61 7.39 0.39 2122 707 3760 148 232
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Fig. 7. Pitch tracking results for a mixture of one male and one female utterance. (a)—(c) plot detected pitch contours from Wu et al.’s algorithm, and (d)—(f) are
from the proposed algorithm. Each column from left to right corresponds to 759 = 0.0, 0.3 and 0.6 s, respectively. The solid lines indicate the reference pitch
tracks. The “Xx” tracks represent the estimated pitch contours.

starts to make many transition and gross errors. Our algorithm As mentioned earlier, Klapuri’s algorithm requires prior in-
performs well even in the presence of strong reverberation. formation of the number of pitches in each frame. In this case,
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TABLE V
ERROR RATES (IN %) WITH PRIOR PITCH NUMBER
FOR TWO INTERFERENCE CATEGORIES

CATEGORY 1

Ts0(s)  System Egs Ey, Pg
0.0 Wuetal 173 1.60  5.56
Klapuri 7.89 .26 3.18
Proposed 2.39 1.29  3.04

0.3 Wuetal  1.86 1.55  4.07
Klapuri 1330  1.32 247
Proposed 2.13 1.21 191

0.6 Wu et al. 155 1.68  3.55
Klapuri 9.86 1.37  2.10
Proposed 0.68 1.18 1.24

CATEGORY 3

Ts0(s)  System Egs Egp, P,
0.0 Wuetal 1338 143 4.55
Klapuri 6.92 1.20  3.03
Proposed 2.50 1.06  2.26

0.3 Wuetal 17.83 203 531
Klapuri 2538 154 3.34
Proposed 8.60 1.39  2.61

0.6 Wuetal 2843 286 6.05
Klapuri 28.55 1.87  3.56
Proposed  12.85 1.78  2.96

there will be no transition errors and only gross and fine errors.
For a fair comparison, we provide this prior knowledge to both
Wu et al.’s and the proposed algorithms by disabling unrelated
pitch states in the search space and ensure no transition errors
are made in the results. Table V lists the error rates from all
three systems. Note that only the first and the third categories
of noise are evaluated because the pitch numbers are hard to
determine for Category 2 interference for the reasons given in
Section VI-B. For gross errors, the proposed algorithm shows
a clear advantage over the other two algorithms in Category 3
(p < 1 x 10719), which reflects the effectiveness of the pro-
posed salience functions f,, and g,, in one- and two-pitch hy-
potheses. In Category 1, Wu et al.’s algorithm has the lowest
gross errors when 759 = 0.0 s and 0.3 s, but it is outperformed
by our algorithm when T4y = 0.6 s. Klapuri’s algorithm almost
always performs the worst and lacks robustness to handle rever-
beration, which indicates that the summary spectrum method
has limitations for wideband noise and is more susceptible to
reverberation. In terms of fine errors, the proposed algorithm
yields the best results in both categories and all reverberant con-
ditions (p < 1 x 107'%). Klapuri’s system ranks second and
Wu et al.’s almost always has the largest fine errors. It is worth
noting that the above comparison of fine errors should not be
taken independently as a lower rate of gross errors may make it
harder to avoid fine errors. Taking this into account, we have also
evaluated for each algorithm fine errors only for the same set of
frames in which fine errors occur in all three algorithms. With
this measure, all the algorithms yield lower fine errors while our
algorithm reduces fine errors the most.

We have also implemented a version using a 64-channel gam-
matone filterbank that covers the same frequency range as the
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original 128-channel filterbank. By doing so, the computation
time is reduced roughly by half. Only one parameter needs to be
adjusted to accommodate this change: . = 0.85, due to the less
overlapping between adjacent channels. The 64-channel version
of our algorithm yields comparable performance, with about one
to two percentage points more total errors in all categories. The
differences in fine error are negligible.

VII. DISCUSSION

The impact of noise and reverberation on speech signals
poses a major problem for pitch determination. The noise
aspect has been studied before, but reverberation has been little
investigated together with interference. A PDA that performs
robustly in everyday listening environments has many appli-
cations. This paper has proposed a multipitch tracking system
for reverberant conditions.

A number of novel considerations are given to the robust-
ness of our algorithm to reverberation. First, in the front-end
processing, we avoid using the temporal envelopes of filter re-
sponses to compute the correlogram in high-frequency channels
(as in [32]) because they are expected to be very sensitive to re-
verberation. A new mechanism of channel selection is utilized
to ensure the effectiveness of noise removal in reverberant con-
ditions. Second, our formulation of pitch salience functions un-
derlies robust derivation of pitch scores. This is worth elabo-
rating. The use of the summary correlogram from only selected
channels improves local signal-to-noise ratio and limits the in-
fluence from broadband noise. In addition, the pitch salience
function for two-pitch hypothesis is defined in a robust way.
The idea of assigning two disjoint groups of channels to two
corresponding pitch periods is closely related to speech sepa-
ration and offers an effective framework to predict how well
these two pitch candidates explain the observed correlogram.
As mentioned in Section IV-B, a prominent peak almost always
appears near the true pitch period in different reverberant condi-
tions. This feature affords our algorithm a considerable benefit
for two-talker mixtures.

Third, one subtle but important aspect of our HMM tracking
is that it not only smooths pitch contours but also plays a key role
in choosing between one- and two-pitch hypotheses. From (5)
and (10), we find that the maximum peak of p,,(s2) is always
greater than that of p,,, (s;) without the penalty term. Therefore,
before Viterbi tracking takes place, our algorithm detects two
pitches in all time frames. During the tracking process, the fea-
ture of pitch continuity can force the algorithm to switch to a
single-pitch hypothesis if the detected pitch periods in neigh-
boring frames are far apart. It is worth pointing out that, when
there exists only one true pitch, the second pitch period is usu-
ally detected at a random location, unlikely near the second pitch
period in the previous frame. This does not occur in the case of
two true pitches. Therefore, our formulation of pitch scores al-
lows the HMM to choose correct pitch hypotheses, which hap-
pens naturally in our formulation. This is, however, not the case
for Wu et al.’s system where the pitch hypotheses are largely
decided before HMM tracking by assigning explicit weights.
These weights are obtained through training and become sen-
sitive to different reverberant conditions.
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