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ABSTRACT
Determining multiple pitches in noisy and reverberant speech is

an important and challenging task. We propose a robust multipitch
tracking algorithm in the presence of both background noise and
room reverberation. A new channel selection method is utilized in
conjunction with an auditory front-end to extract periodicity features
in the time-frequency space. These features are combined to formu-
late frame level conditional probabilities given each pitch state. A
hidden Markov model is then applied to integrate these probabilities
and search for the most likely pitch state sequences. The proposed
approach can reliably detect up to two simultaneous pitch contours
in noisy and reverberant conditions. Quantitative evaluations show
that our system significantly outperforms existing ones, particularly
in reverberant environments.

Index Terms— Multipitch tracking, pitch detection algorithm,
room reverberation, HMM tracking.

1. INTRODUCTION

Pitch determination is a fundamental problem that attracts much
attention in speech analysis. A robust pitch detection algorithm
(PDA) is needed for many applications including computational
auditory scene analysis (CASA), prosody analysis, speech enhance-
ment/separation, speech recognition, and speaker identification. De-
signing such an algorithm is challenging due to harmonic distortions
brought about by acoustic interference and room reverberation.

Numerous PDAs have been developed to detect a single pitch
track under clean or modestly noisy conditions ([1], Ch. 2). The
presumption of a signal pitch track, however, puts limitations on the
background noise in which PDAs perform. A multipitch tracker is
required when the interfering sound also contains harmonic structure
(e.g., background music or another voice). A number of studies have
attempted to detect multiple pitches simultaneously. Wu et al. [2]
modeled pitch period statistics on top of a channel selection mecha-
nism and used a hidden Markov model (HMM) to extract continuous
pitch contours. More recently, Klapuri [3] proposed an “estimation
and cancelation” model that iteratively detects pitch points for poly-
phonic music and speech signals.

Room reverberation smears the characteristics of pitch (i.e., har-
monic structure) in speech and thus makes the task of pitch deter-
mination more difficult. The performance of existing systems is
expected to degrade substantially in reverberant environments ([1],
Ch. 7). Little research has attempted to design and evaluate a multi-
pitch tracker for reverberant speech signals, and what constitutes true
pitch is even unclear in these conditions.

This paper proposes a multipitch tracking algorithm for both
noisy and reverberant environments. First, we suggest a method to

extract ground truth pitch for reverberant speech and use it as the
reference for performance evaluation. After front-end processing,
reliable channels are chosen based on cross-channel correlation and
they constitute the summary correlogram for mid-level pitch repre-
sentation. A pitch salience function is defined from which the con-
ditional probability of the observed correlogram given a pitch state
is derived. The notion of ideal binary mask [4] is employed to divide
selected channels into mutually exclusive groups, each correspond-
ing to an underlying harmonic source. Finally, an HMM is utilized
to form continuous pitch contours. The proposed method will be
shown to be robust to room reverberation.

The paper is organized as follows. The next section discusses
the question of what the pitch of reverberant speech should be. Sec-
tion 3, 4 and 5 describe the detail of the proposed algorithm stage by
stage. Results and comparisons are given in Section 6, followed by
a conclusion section.

2. WHAT SHOULD BE GROUND-TRUTH PITCH IN
REVERBERANT SPEECH?

Pitch, which originally refers to a percept, has been widely used
in computational literature to equate fundamental frequency (or pe-
riod). For voiced speech, the fundamental frequency is usually de-
fined as the rate of vibration of the vocal folds. PDAs are then de-
signed to estimate these glottal parameters directly from the speech
signal which tends to be less periodic because of movements of the
vocal tract that filters the excitation signal. However, room rever-
beration causes the relationship between the excitation signal and
the received speech signal to degrade due to the involvement of an-
other filter which characterizes the room acoustics. According to the
image model [5], the filtering effect can be modeled as an infinite
number of image sources that are created by reflecting the actual
source in room walls. Therefore, the reverberant speech is an aggre-
gated signal from all image sources and no longer consistent with
the glottal parameters in the original source.

With these considerations, we consider the pitch in reverberant
speech as the fundamental period of the quasi-periodic reverberant
signal itself. Following this definition, we generate reference pitch
contours for reverberant speech by adopting an interactive PDA [6].
This technique combines automatic pitch determination and human
intervention. Specifically, it utilizes a simultaneous display (on the
frame-by-frame basis) of the low-pass filtered waveform, the auto-
correlation of the low-pass filtered waveform, and the cepstrum of
the wideband signal. Each separate display has an estimate of the
pitch period and the final decision is made by a knowledgeable user.
More discussion is given in Section 6.
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3. FRONT-END PROCESSING

The input signal x(t) is first passed through a gammatone fil-
terbank with 128 channels whose center frequencies are quasi-
logarithmically spaced from 80 Hz to 5000 Hz. The response of
each filter channel is further transduced by the Meddis model of au-
ditory nerve transduction. In each channel, the output is then divided
into 20-ms time frames with 10-ms frame shift. We use uc,m to de-
note a time-frequency (T-F) unit for frequency channel c and time
frame m. The normalized correlogram A(c, m, τ ) for T-F unit uc,m

with a time delay τ is then computed by the running normalized
autocorrelation. To make our system robust to room reverberation,
we choose to only use the correlogram computed directly from the
filter responses, rather than the response envelopes.

To select less corrupted channels from the correlogram for ro-
bust pitch analysis [7], we define the cross-channel correlation be-
tween uc,m and uc+1,m as C(c, m), which gives a high value when
a harmonic source has its strong presence and a low value when no
harmonic source is present or background noise is dominant. There-
fore, we select channels Cm in time frame m according to

Cm =
{
c : C(c, m) > θc

}
(1)

where θc = 0.95 is a threshold.
We also calculate the percentage of energy belonging to selected

channels in each frame as

ξm =
∑

c∈Cm

E(c, m)
/∑

c

E(c, m) (2)

where E(c, m) is the energy calculated as the sum of squares of
the filter response within uc,m. We observe that reverberation has
little consequence on ξm. It is interesting to note that different types
of interference vary ξm significantly. This effect is later utilized to
discriminate broadband noise from others when formulating pitch
conditional probabilities.

4. PITCH STATE SPACE

In this paper, we aim to track up to two pitches simultaneously, thus
the state space of pitch can be defined as a union space S consisting
of three subspaces with different dimensionalities [2]

S = S0 ∪ S1 ∪ S2 (3)

where

S0 =
{
∅
}
, S1 =

{
{τ1} : τ1 ∈ [32, 200]

}
,

S2 =
{
{τ1, τ2} : τ1, τ2 ∈ [32, 200], τ1 �= τ2

}
.

The three subspaces S0, S1, S2 represent zero-, one-, and two-pitch
hypotheses, respectively. We use the empty set ∅ to indicate the
absence of pitch, and time lags τ1 and τ2 to represent first and second
pitch candidates.

4.1. One-Pitch Hypothesis

When a pitch state s1 ∈ S1, it is assumed that there is one and only
one pitch in the current frame. To derive the conditional probability
p(Om|s1) of observing the correlogram in frame m, Om, given a
pitch state s1 = {τ1}, we first define the salience (or strength) of
pitch candidate τ1 within frame m as

fm(τ1) =

∑
c∈Cm

A(c,m, τ1) log E(c, m)∑
c∈Cm

log E(c, m)
. (4)

The logarithmic operation acts like a pre-emphasis filter which re-
lieves the problem of high energy concentration in the low-frequency
range for natural speech. The salience function fm is essentially
a weighted summary correlogram over the set of selected channels
Cm. When a pitch exists, it is expected to have a predominant peak
at the corresponding time delay and channel selection suppresses
other “erroneous” peaks. Note that, if no channel is selected (e.g.,
in the case of pure noise), we set the salience function to zero for all
pitch lags.

The conditional probability can then be defined as

p(Om|s1) = κfm(τ1) (5)

where κ is a normalization coefficient for the definition of a proba-
bility measure.

4.2. Two-Pitch Hypothesis

When the noise has some periodic components or is another speech
signal, we should capture both pitches—this is when the two-pitch
hypothesis comes into play. In the following, we derive the condi-
tional probability p(Om|s2) given a pitch state s2 = {τ1, τ2}.

Since detecting multiple pitches is related to sound separa-
tion [1], we employ the notion of ideal binary mask [4] by assuming
that each T-F unit is dominated by either one harmonic source or the
other. Therefore, we divide the selected channels into two groups,
each corresponding to one source:

Cm,1 =Cm ∩
{
c : A(c, m, τ1) ≥ A(c, m, τ2)

}
,

Cm,2 =Cm ∩
{
c : A(c, m, τ1) < A(c, m, τ2)

}
.

(6)

In other words, among all the selected channels, we assign a channel
to source 1 if the correlogram has a higher value at τ1 than τ2 and
source 2 otherwise. Note that Cm,1∩Cm,2 = ∅ and Cm,1∪Cm,2 =
Cm. Following this idea, we define a pitch salience function for s2

in each frame m in (7):

gm(τ1, τ2) =∑
c∈Cm,1

A(c, m, τ1) log E(c, m) +
∑

c∈Cm,2

A(c, m, τ2) log E(c, m)

∑
c∈Cm,1

log E(c, m) +
∑

c∈Cm,2

log E(c, m)
.

(7)

The function is set to zero when either Cm,1 or Cm,2 is the empty
set. We expect that this salience function generates a high peak near
the two real pitch periods, since τ1 and τ2 should coincide with the
peak locations in the channels from Cm,1 and Cm,2, respectively.
One appealing property of gm is that room reverberation hardly af-
fects the peak formation near the real pitch periods, which is illus-
trated by Fig. 1.

To make S2 and S1 comparable, we scale gm by a power of γ.
Specifically,

g
′

m(τ1, τ2) = (gm(τ1, τ2) + δm)γ − δm (8)

where δm = 1 − maxτ1,τ2
gm(τ1, τ2) and it ensures the scaling

does not change the maximal peak of gm. The scaling factor γ is
set to 6 at which the marginal distribution of g′

m closely matches
the distribution of fm. We find that the choice of γ is robust to
reverberation.

Finally, we define the conditional probability as

p(Om|s2) = κ(g′

m(τ1, τ2) − H(β − ξm) · λ) (9)
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Fig. 1. The pitch salience function gm in one time frame in a mixture
of two speakers. Plot (a) corresponds to the anechoic condition and
plot (b) the reverberant condition. Brighter color indicates higher
salience. The two plots show a similar pattern and similar peak lo-
cations.

where it penalizes g′

m when ξm ≤ β. H(·) is the Heaviside step
function and λ = 0.05 is the amount of penalty. As mentioned in
Section 3, ξm is a good indicator of different types of interference.
When speech is mixed with broadband noise, the process of chan-
nel selection tends to keep ξm low by excluding most of the noise
energy. We find β = 0.65 is appropriate to discriminate the above
cases. Therefore, by penalizing S2 in the presence of broadband
noise, S1 can compete with S2 in an unbiased way.

4.3. Zero-Pitch Hypothesis

When there is no pitch in one frame, i.e., s0 ∈ S0, it implies si-
lence, unvoiced speech, noise, or a combination. Hence, we define
its conditional probability as

p(Om|s0) = κ ·

⎧⎪⎪⎨
⎪⎪⎩

1 if min(fm) > θs,

η else if var(fm) < θb,

0 else.

(10)

In (10), the first case handles silence and unvoiced speech. For
silence and high-frequency variations in unvoiced speech, their
weighted summary correlograms fm exhibit high values for all pitch
lags. When all fm values are greater than θs = 0.5, a high proba-
bility is assigned to S0. The second case covers broadband noise.
When only this noise is present, fm varies randomly and should
have no prominent peaks. In contrast, a harmonic source should
exhibit a peaky distribution (high variance) in fm. Therefore, by
choosing η = 0.6 and θb = 0.01, we remove false pitch points from
noise while still maintain the ability to detect harmonicity buried in
noise. In the third case, at least one pitch should exist, and hence the
conditional probability in (10) is set to zero. Note that the choices of
all these parameters are robust to different reverberant conditions.

5. HMM TRACKING

A hidden Markov model is employed as a stochastic framework to
find the optimal sequence of hidden pitch states [2]. The hidden
states are from the state space defined earlier in Section 4. The
state transition probabilities have two aspects: jump probabilities
and pitch continuity. We use the same set of parameters as in [2]
for all reverberant cases because they do not need to be exact and
work well within a considerable range. The observation probability
distributions are already given in (5), (9) and (10).

Table 1. Error rates (in %) for three interference categories

CATEGORY 1 CATEGORY 2 CATEGORY 3

T60(s)/System Etl Efn Etl Efn Etl Efn

0.0 Wu et al. 7.24 1.21 5.79 1.27 24.75 1.01
Proposed 9.62 1.22 3.26 1.44 14.39 0.94

0.3 Wu et al. 11.55 1.32 8.23 1.54 38.34 1.29
Proposed 10.63 1.58 4.09 1.80 24.71 1.22

0.6 Wu et al. 15.32 1.69 14.96 1.89 54.11 2.18
Proposed 10.35 2.06 5.67 2.48 33.39 1.89

6. EXPERIMENTAL RESULTS

We use Cooke’s corpus [8], which contains 100 noisy utterances
constructed by mixing 10 voiced speech utterances with 10 differ-
ent types of interference signals. This corpus is commonly used for
evaluating PDA performance. Following [2], the interferences are
classified into three categories: 1) those with no pitch, 2) those with
some pitch qualities, and 3) other speech utterances, so that pitch
tracking is evaluated differently in these categories.

To generate reverberant recordings, we simulate two acoustic
rooms with their reverberation time (T60) at 0.3 and 0.6 s, respec-
tively. Within each room, we choose three configurations randomly,
each is specified by two locations for two sources (target and inter-
ference) and another location for the microphone. Consequently, we
generate a total of 700 mixtures, with the original 100 mixtures in
anechoic and 2 × 3 × 100 mixtures in reverberant conditions.

To obtain reference pitch contours, we run an interactive
PDA [6] on reverberant speech signals before mixing, as described
in Section 2. This technique is not error free. However, in our
experiment, it is harmless to have some errors in the reference pitch
contour since the PDA under evaluation will have a performance
inferior to the reference PDA [9].

We follow [2] to formulate a quantitative measure of PDA per-
formance. Only total and fine errors (Etl and Efn) are reported: the
former is the combination of transition errors and gross errors (Egs,
with a 20% criterion), and the latter is defined as the average devia-
tion from the reference pitch for those frames without gross errors.
Table 1 gives the multipitch detection results of Wu et al.’s and our
algorithm in different reverberant conditions. In Category 1 and 2,
the proposed algorithm almost always has a lower rate of total gross
error and the margin of difference grows with the increasing level of
reverberation. For fine errors, our algorithm is not superior accord-
ing to the Efn measure. This is because a lower rate of total errors
makes it harder to avoid fine errors. Also, Efn can be lower for
Wu et al.’s algorithm because it explicitly models statistics of pitch
period differences used in this measure. In Category 3, the proposed
algorithm yields a significantly lower Etl. In the anechoic condition
(T60 = 0.0 s), our algorithm outperforms Wu et al.’s by 10 percent-
age points. This advantage doubles in the most reverberant case (T60

= 0.6 s). At the same time, Efn indicates that our algorithm has
smaller fine errors in all three T60’s. Fig. 2 plots the pitch contours
detected by Wu et al.’s and the proposed algorithm. In the anechoic
conditions, both systems can track pitch contours reliably. However,
when reverberation is added, Wu et al.’s system loses its accuracy
and starts to make many transition and gross errors. Our algorithm
performs well even in the presence of strong reverberation.

To compare with Klapuri’s algorithm requires prior information
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Fig. 2. Pitch tracking results for a mixture of one male and one female utterance. (a)–(c) plot detected pitch contours from Wu et al.’s
algorithm, and (d)–(f) are from the proposed algorithm. Each column from left to right corresponds to T60 = 0.0, 0.3 and 0.6 s, respectively.
The solid lines indicate the reference pitch tracks. The “×” tracks represent the estimated pitch contours.

of the number of pitches in each frame since it lacks the ability to do
so reliably. For a fair comparison, we provide this prior knowledge to
both Wu et al.’s and the proposed algorithms by disabling unrelated
pitch states in the search space and ensure no transition errors are
made. Table 2 lists the error rates from all three systems. Note that
only the first and the third categories of noise are evaluated because
the pitch numbers are hard to determine for Category 2 interference.
The proposed algorithm yields the lowest gross error rate in both cat-
egories and all reverberant conditions. Klapuri’s algorithm performs
similarly to Wu et al.’s in the anechoic condition but degrades more
rapidly with increasing level of reverberation. For fine errors, three
algorithms have comparable results in the first category. However, in
Category 3, our algorithm yields the lowest fine errors in all condi-
tions. Klapuri’s system ranks second and Wu et al.’s almost always
has the largest fine errors.

7. CONCLUSION

This paper has proposed a multipitch tracking system for both noisy
and reverberant conditions. Several ideas contribute to achieve the
robust performance. Firstly, reliable channel selection is carried out.
Secondly, the salience functions are formulated to model the like-
lihood of the observed correlogram being explained by each given
pitch state. Finally, an HMM is responsible for choosing appropriate
pitch hypotheses as well as forming continuous pitch tracks.
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