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ABSTRACT
In this paper, we propose a novel algorithm for the separa-
tion of convolutive speech mixtures using two-microphone
recordings, based on the combination of independent com-
ponent analysis (ICA) and ideal binary mask (IBM), together
with a post-filtering process in the cepstral domain. Essen-
tially, the proposed algorithm consists of three steps. First,
a constrained convolutive ICA algorithm is applied to sepa-
rate the source signals from two-microphone recordings. In
the second step, we estimate the IBM by comparing the en-
ergy of corresponding time-frequency (T-F) units from the
separated sources obtained with the convolutive ICA algo-
rithm. The last step is to reduce musical noise caused typi-
cally by T-F masking using cepstral smoothing. The perfor-
mance of the proposed approach is evaluated based on both
reverberant mixtures generated using a simulated room model
and real recordings. The proposed algorithm offers consider-
ably higher efficiency, together with improved speech quality
while producing similar separation performance as compared
with a recent approach.

Index Terms— Independent component analysis (ICA),
ideal binary mask (IBM), estimated binary mask, cepstral
smoothing, musical noise

1. INTRODUCTION

Human listeners show remarkable ability to segregate target
speech from complex auditory mixtures, such as in a cocktail
party environment. However, it remains extremely challeng-
ing for machines to replicate even part of such functionalities.
This problem has been studied for decades. A recent tech-
nique is to address this problem under the blind source separa-
tion (BSS) framework where the mixing process is described
as a linear convolutive model, and independent component
analysis (ICA) can then be applied to separate the convolu-
tive mixtures either in the time-domain [4] or in the transform
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domain [1, 3, 5]. Nevertheless, the separation performance of
many developed algorithms is still limited, and leaves a large
room for improvement. This is especially true when dealing
with reverberant and noisy mixtures.

A recent technique, called IBM, originated from com-
putational auditory scene analysis (CASA) [2], has shown
promising properties in suppressing interference and improv-
ing quality of target speech. IBM is usually obtained by
comparing the T-F representations of target speech and back-
ground interference, with 1 assigned to a T-F unit where the
target energy is stronger than the interference energy and
0 otherwise. However, without the clean target speech and
interfering sound, it is a difficult task to directly estimate an
accurate IBM from the mixtures only.

In this paper we propose to obtain the target and back-
ground sounds from the mixtures using a constrained convo-
lutive ICA algorithm [1], whose outputs are then used to esti-
mate the IBM. This method can effectively address the afore-
mentioned problems associated with the individual methods.
However, errors introduced during the estimation of the IBM
may give rise to isolated T-F units and hence result in fluctu-
ating artifacts, i.e., the so-called musical noise [6]. To over-
come this problem, the spectral smoothing in the cepstral do-
main is applied to the estimated binary mask. Different levels
of smoothing are applied to the binary mask across different
frequencies which are determined by pitch information esti-
mated directly from the segregated signals, in contrast to the
method in [6]. The following sections in this paper present
our proposed multistage approach, experimental evaluation
results, conclusions and future work.

2. A MULTISTAGE APPROACH

2.1. BSS of Convolutive Mixtures in the Frequency Do-
main

In a cocktail party environment, N speech signals are recorded
by M microphones, described mathematically by,

xj(n) =
N∑

i=1

P∑
p=1

hji(p)si(n−p+1) (j = 1, ..., M) (1)
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where si and xj are the source and mixture signals respec-
tively, hji is a P-point room impulse response [9]. Also we
consider a two input two output system (TITO) system, i.e.,
N=M=2. The BSS problem for convolutive mixtures in the
time domain is converted to multiple instantaneous problems
in the frequency domain [1, 3] with equation (2). By apply-
ing short time Fourier transform (STFT) to equation (1), and
using matrix notations we get

X(k, n) = H(k)S(k, n) (2)

where k represents the frequency index and n is the discrete
time index. The mixing matrix H(k) is assumed to be invert-
ible and time invariant.

To find the sources, we can effectively apply an unmixing
filter W(k) to the mixtures.

Y(k, n) = W(k)X(k, n) (3)

where Y(k,n) represents the estimated source signals. W(k) is
obtained when the estimated sources become mutually inde-
pendent. Many algorithms have been developed for this pur-
pose [3, 4, 5]. In this work we use a constrained convolutive
ICA approach in [1] for the separation in this stage. Similar to
many existing ICA approaches, e.g. [5], the separation perfor-
mance of [1], especially the quality of the separated speech is
still limited by the amount of interference. The performance
steadily degrades with the increment of the reverberation time
(RT ). To improve the quality of the separated speech signals,
we further apply the IBM technique from the CASA domain.

2.2. Combining Convolutive ICA and Binary Masking
for the Segregation of Speech Signals

Applying an inverse Fourier transform, Y(k, n) can be con-
verted back to the time domain denoted as

y(n) = [y1(n) y2(n)]T (4)

Scaling is applied to the y1(n) and y2(n) in order to get the
normalized outputs ỹ1(n) and ỹ2(n). After this we transform
the two normalized outputs into the T-F domain using STFT,

ỹ1(n) → Ỹ1(k, n) (5)

ỹ2(n) → Ỹ2(k, n) (6)

By comparing the energy of each T-F unit of the above two
spectrograms, the two binary masks are estimated as,

Mf
1 (k, n) =

{
1 if | Ỹ1(k, n) |> τ | Ỹ2(k, n) |,
0 otherwise ∀k, n.

(7)

Mf
2 (k, n) =

{
1 if | Ỹ2(k, n) |> τ | Ỹ1(k, n) |,
0 otherwise ∀k, n.

(8)

where τ is a threshhold for controlling the sparseness of the
mask, and τ=1 has been used in our experiment. The masks

are applied to the T-F representation of the original two-
microphone recordings in order to recover the source signals,
as follows

Yf
i (k, n) = Mf

i (k, n).Xi(k, n) i = 1, ..., N (9)

In the next step source signals are recovered in the time do-
main using inverse STFT.

Yf
i (k, n) → yt

i(n) i = 1, ..., N (10)

As observed in our experiments, the estimated IBM consider-
ably improves the separation performance by suppressing the
interference to a much lower level, leading to the separated
speech signals with considerably improved quality over the
outputs obtained in the section 2.1. However, a typical prob-
lem with the binary T-F masking is the introduction of the
errors in the estimation of the masks causing fluctuating mu-
sical noise [6]. To mitigate this problem, we employ a cepstral
smoothing technique [6] as detailed in the next section.

2.3. Cepstral Smoothing of the Binary Mask

The basic idea is to tranform the estimated IBM into the cep-
stral domain, and after the different smooothing levels have
been applied to the transformed mask, it is converted back to
the T-F domain. Essentially, the musical artifacts are reduced
according to the speech production machanism which has the
advantage of preserving the broadband structure and pitch in-
formation of the speech signal [6, 7]. Representing the binary
masks of equation (7) and (8) in the cepstral domain we have,

Mc
i (l, n) = DFT−1{ln(Mf

i (k, n)) |k=0,..,K−1} (11)

where l and k are the quefrency bin index and the frequency
bin index respectively [6]. DFT is for the discrete Fourier
transform and K represents the length of the DFT. After ap-
plying smoothing, the resultant smoothed mask is given as,

Ms
i (l, n) = γlM

s
i (l, n− 1) + (1− γl)Mc

i (l, n) i = 1, .., N
(12)

where γl is a parameter for controlling the smoothing level.
The selection of γl is important, therefore, according to the
different values of l, the selection criterion for the value of γl

is given as,

γl =

⎧⎪⎨
⎪⎩

γenv if l ∈ {0, ..., lenv},
γpitch if l = lpitch,

γpeak if l ∈ {(lenv + 1), ..., K} \ lpitch

(13)

where 0 ≤ γenv < γpitch < γpeak ≤ 1, lenv is the que-
frency bin index that represents the spectral envelop of the
mask Mf (k, n) and lpitch is the quefrency bin index showing

the structure of the pitch harmonics in Mf (k, n). The prin-
ciple employed for this range of γl is illustrated as follows.
Mc(l, n), l ∈ {0, .., lenv} basically represents the spectral

envelop of the mask Mf (k, n). In this region, the value se-
lected for γl is relatively low to avoid the distortion in the
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envelop. Similarly, low smoothing is applied if l is equal to
lpitch, so that harmonic structure of the signal is maintained.
High smoothing is applied in the last range selected for γl,
which is able to reduce the artifacts without harming the pitch
information and the structure of the spectral envelop. Differ-
ent from [6], we calculate pitch frequency by using the segre-
gated speech signal obtained in the section 2.2. Specifically,
pitch frequency is computed as,

lpitch = argmaxl{sigc(l, n) | llow ≤ l ≤ lhigh}, (14)

where sigc(l, n) is the cepstral domain representation of the
segregated speech signal yt(n). The range llow, lhigh is cho-
sen so that it can accommodate pitch frequencies of human
speech in the range of 50 to 500 Hz. The final smoothed ver-
sion of the spectral mask is given as,

Mf
i (k, n) = exp(DFT{Ms

i (l, n) |l=0,...,K−1}), (15)

This smoothed mask is then applied to the output segregated
speech signal obtained in section 2.2, as follows,

Yf
i (k, n) = Mf

i (k, n).Yf
i (k, n) i = 1, ..., N (16)

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
method using simulations. The algorithm is applied to both
artificially mixed signals and real room recordings.

3.1. Experimental setup

Speech signals from a pool of 12 different speakers includ-
ing six male and six female utterances with 11 different lan-
guages are used in the experiments [8]. All the signals have
the same loudness level. The hamming window is used with
an overlap factor set to 0.75. The duration of the speech sig-
nal is 5 seconds with a sampling rate of 10 KHz. Rest of the
parameters are set as: lenv=8, llow=16, lhigh=120, γenv=0,
γpitch=0.4, and γpeak=0.8. Performance indices used in eval-
uation include signal to noise ratio (SNR), the percentage of
energy loss (PEL) and the percentage of noise residue (PNR)
[8]. Notations mSNRi, mSNRo and �SNR are also used in
the evaluation. SNRi is the ratio between the desired signal
and the interfering signal taken from the mixture. SNRo is
the ratio between the desired signal resynthesized from the
ideal binary mask to the difference of the desired resynthe-
sized signal and the estimated signal [8]. mSNRi and mSNRo

are the average results for 50 random tests. �SNR is given
by, �SNR=mSNRo-mSNRi.

3.2. General evaluation

Firstly we mix the sources artificially using a simulated room
model [9]. A series of experiments were carried out to eval-
uate the proposed method changing with the parameters. In
the first experiment with the above parameters setup, for the
RT equal to 100 ms, experiments have been performed for

different window length of 256, 512, 1024 and 2048. The re-
sults are given in Table 1. The average behaviour is shown for
50 different convolutive mixtures, with each consisting of two
speech sources randomly picked up from a pool of 12 speech
signals [8]. It can be seen that the highest �SNR is obtained
for the window length of 512. Therefore, the window length
is fixed to 512 for all the subsequent experiments.

The performance of the proposed method for different
FFT frame lengths is given in Table 2. Results show that
by increasing the FFT frame length from 512 to 2048, per-
formance of the algorithm in terms of SNR, PEL and PNR is
improved. The best performance is obtained at 2048. Hence
FFT frame length used for the subsequent experiments is fixed
to 2048. In Table 3 average results for PEL, PNR and �SNR
are given for different values of RT . A noticeable change
with this table is that the performance degrades with increas-
ing RT .

In above experiments, we have not considered micro-
phone noise in the mixtures. Now, we conduct experiments
for noisy mixtures by adding white noise with noise level
calculated with respect to the level of the mixtures, with a
weaker noise corresponding to a smaller number [8]. The
average �SNR values for different noise levels are given in
Table 4. It can be observed that the performance of the algo-
rithm decreases as the noise level is increased, and similar to
[8], the algorithm can tolerate the noise levels up to -20 dB.

The above experiments provide a general view for the ob-
jective performance of the proposed approach. We observed
from our experiments that cepstral smoothing does not im-
prove the objective performance in terms of SNR measure-
ment. In fact, it decreases slightly (hence negligible) the SNR
gain from the output of IBM. However, the cepstral smooth-
ing does improve considerably the quality of the separated
speech. To show this, a subjective listening test has been con-
ducted for 10 listeners. Each listener awarded a score from
one (musical noise clearly audible) to five (not audible) for the
final segregated speech signals. The average results of mean
opinion score (MOS) for the ten listeners is shown for RT
equal to 30 and 100 ms respectively. The MOS is given in Ta-
ble 5. It indicates that using cepstral smoothing gives higher
MOS as compared the methods withouting using smoothing,
e.g., [8], suggesting improved quality of the separated speech.

3.3. Comparison

The performance of our method is compared with the recent
algorithm in [8]. For making this comparison, we have per-
formed experiments using the real recordings in a reverberant
room with RT=400 ms. Two omnidirectional microphones
vertically placed and closely spaced are used for the record-
ings. Different loud speaker positions are used to estimate
the room impulse responses. Clean speech signals from the
pool of 12 speakers were convolved with the room impulses
to generate the source signals [8]. The system used here
has the given specifications. The processor used is Intel(R)
Xeon(TM) 3.00GHz. Memory of the system is 31.48 GBytes.
The results are given in Table 6. The results show that our
proposed algorithm is 18 times faster than the recent method.
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Table 1. Results for Different Window Lengths

Window PEL PNR mSNRi mSNRo �SNR
Length

256 9.10 15.30 1.10 7.11 6.01

512 8.60 14.48 1.10 7.44 6.34

1024 9.30 14.70 1.10 7.11 6.01

2048 10.92 15.92 1.12 6.32 5.20

Table 2. Results for Different FFT Frame lengths

NFFT PEL PNR mSNRi mSNRo �SNR

512 9.06 14.96 1.10 7.17 6.06

1024 8.65 14.53 1.10 7.40 6.30

2048 8.60 14.48 1.10 7.44 6.34

Table 3. Results for Different RT

RT PEL PNR mSNRi mSNRo �SNR

40 2.16 2.24 1.13 13.22 12.08

60 3.79 4.12 1.15 10.94 9.79

80 5.50 8.30 1.14 9.42 8.27

100 8.60 14.48 1.10 7.44 6.34

120 10.99 19.53 1.03 6.30 5.26

140 13.36 24.14 0.94 5.48 4.53

150 13.86 25.38 0.90 5.29 4.39

Table 4. Results for Different Noise Levels

Noise PEL PNR mSNRi mSNRo �SNR

-10dB 9.46 16.49 1.09 6.91 5.81

-20dB 8.62 14.52 1.10 7.43 6.33

-30dB 8.60 14.48 1.10 7.44 6.34

-40dB 8.60 14.48 1.10 7.45 6.34

Table 5. Results for Musical Noise

RT MOS before MOS after MOS for the
smoothing smoothing Method in [8]

30 3.30 3.92 3.07

100 2.04 2.55 2.26

Table 6. Comparison Between Proposed and the Method in
[8]

Algorithm PEL PNR �SNR Total Time
time per test

Proposed 30.56 9.73 2.50 40min 0.8min

Method 17.14 49.33 2.64 700min 14min
in [8]

The method in [8] requires 700 minutes for 50 random tests
and 14 minutes per test. In contrast, our proposed method is
faster and requires 40 minutes for 50 tests and 0.8 minutes
per test. Although the results for �SNR are comparable, our
method outperforms significantly the method in [8] in terms
of computational efficiency. Listening tests also suggest that
our results have a better quality than those in [8]. Some demos
are available on the website [10] for both real and artificial
recordings.

4. CONCLUSIONS AND FUTURE WORK
A novel multistage approach has been presented for the seg-
regation of speech signals from their convolutive mixtures
using two-microphone recordings. The convolutive mixtures
are first separated using a constrained convolutive ICA algo-
rithm. The separated sources are then used to estimate the
IBM, which are further applied to the T-F representation of
original mixtures. In order to reduce the musical noise in-
duced by T-F masking, cepstral smoothing is applied to the
estimated IBM. The segregated speech signals are observed
to have considerably improved quality and reduced musical
noise. Future work involves the segregation of speech signals
in underdetermined cases with high RT .
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