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Abstract
While human listening is robust in complex auditory scenes,
current speech segregation algorithms do not perform well in
noisy and reverberant environments. This paper addresses the
robustness in binaural speech segregation by employing binary
classification based on deep neural networks (DNNs). We sys-
tematically examine DNN generalization to untrained config-
urations. Evaluations and comparisons show that DNN based
binaural classification produces superior segregation perfor-
mance in a variety of multisource and reverberant conditions.
Index Terms: Computational auditory scene analysis (CASA),
binaural speech segregation, deep neural networks (DNN), bi-
nary classification, room reverberation

1. Introduction
The performance gap between human listeners and speech seg-
regation systems remains large in noisy and reverberant envi-
ronments despite extensive research in signal processing. In-
spired by human auditory processing, computational auditory
scene analysis (CASA)[1] has shown considerable promise in
the last decade. A commonly used computational goal in CASA
is the ideal binary mask (IBM), which is a two-dimensional ma-
trix of binary label where 1 indicates the target signal dominates
the corresponding time-frequency (T-F) unit and 0 otherwise.
The estimation of the IBM thus corresponds to binary classifica-
tion of T-F units. So far, classification based speech separation
primarily uses monaural features such as pitch, amplitude mod-
ulation spectrogram (AMS), and gammatone frequency cepstral
coefficients (GFCC) [2, 3].

With two ears, human listening is robust under both noisy
and reverberant conditions. Binaural cues contribute to auditory
scene analysis[4]. Speech segregation by classifying binaural
feature was investigated before using kernel density estimation
[5]. In this study, we explore deep neural networks (DNNs)
[6]for binaural classification in order to achieve robust speech
segregation.

There are a number of binaural features, peak interaural
time difference, interaural coherence, and interaural phase d-
ifference [7, 8, 9]. We focus on two principal binaural cues,
interaural time difference (ITD) and interaural level difference
(ILD) [5, 10], which have been widely used as sound localiza-
tion and location based segregation [1, 11].

In the following section, we present an overview of our
classification-based binaural speech segregation system. Sec-
tion 3 describes how to extract binaural features and perform
DNN classification. We present the evaluation results in Sec-
tion 4, including on untrained source locations. Comparisons

with several related systems are also presented in this section.
We conclude the paper in Section 5.

2. System overview
The proposed classification-based binaural speech segregation
system is shown in Figure 1. The same two auditory filterbanks
are used to decompose the left-ear and right-ear input signals
into T-F units. A T-F unit corresponds to a certain channel in a
filterbank at a certain time frame. Binaural features are calcu-
lated for each corresponding pair of T-F units. As ITD and ILD
features vary with frequency channels [5, 8], we train a DNN
classifier for each frequency channel, and the training labels are
provided by the IBM. In grouping, the T-F units with the target
label (unity) comprise the segregated target stream.

The binaural input signals are produced by a set of binau-
ral impulse responses (BIRs). The ROOMSIM package[12],
which uses measured head related transfer functions (HRTFs)
from the KEMAR dummy head in combination with the image
method for simulating room acoustics, is used to generate the
BIRs. The training and test speech signals are chosen from the
TIMIT corpus. We use the babble noise in the NOISEX corpus
[13] The signals were originally sampled at 16 kHz. We upsam-
pled them to 44.1 kHz to match the sampling rate of the BIRs,
and then downsampled to 16 kHz for periphery and subsequent
processing.

3. Binaural feature extraction and
classification

3.1. Auditory periphery

We use the gammatone filterbank[15] as the auditory filterbanks
in Figure 1. The gammatone filterbank shows equivalent rect-
angular bandwidth (ERB), and each filter’s impulse response is
described below:

g(t, fc) = tn−1e−2πb(fc)t cos(2πfct+ ϕ) t ≥ 0 (1)

where c denotes the filter channel, and we use a total of 64 chan-
nels for each ear model. The center frequency of the filter, fc
, varies from 50Hz to 8000Hz. b(fc) indicates the bandwidth.
The filter order, n , is 4, and ϕ is the phase which is set to zero.
This peripheral analysis is commonly used in CASA[1].

The gammatone filter responses are further decomposed in-
to time frames. Here we use 20-ms frame length with 10-ms
frame shift. The resulting T-F representation is called a cochlea-
gram, with a two-dimensional matrix of T-F units.
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Figure 1: Schematic diagram of the proposed binaural DNN classification system.

3.2. Feature extraction

With the available binaural signals, we extract the two primary
binaural features of ITD and ILD. The ITD is calculated from
the normalized cross-correlation between the two ear signals
(denoted as l, r , for left and right ear respectively) in frequency
channel c and time frame m . The cross-correlation function,
indexed by time lag τ , is described in the following equation:

CCF (c,m, τ) =∑
n

(xcm,l(n)− x̄cm,l)(xcm,r(n− τ)− x̄cm,r)√∑
n

(xcm,l(n)− x̄cm,l)2
√∑

n

(xcm,r(n− τ)− x̄cm,r)2

(2)
In the above equation, n indexes the signal sample in the T-
F unit. The time lag τ varies between -1 ms and 1 ms. The
overbar indicates averaging. For the 16 kHz sampling rate, we
obtain 32-D features for each pair of T-F units.

The ILD corresponds to the energy ratio in dB between two
ears:

ILD(c,m, i) = 10 log
xl(c,m, i)2

xr(c,m, i)2
(3)

where i indexes the ILD(c,m) feature, and is set to 2 in this
study. With 20-ms frame length, each feature index corresponds
to an ILD value over a 10-ms duration. Overall, we obtain a 34-
D binaural feature vector for each unit pair.

3.3. DNN classification

Each subband DNN classifier consists of an input layer, two
hidden layers and an output layer. The 34-D binaural features
are the inputs. Each layer contains 200 hidden neurons. We fol-
low the approach in [3] where restricted Boltzmann machines
(RBMs) are used for pre-training. The learning rate of the pre-
training is set to 0.001 for the first hidden layer, and 0.1 for the
other hidden layers. The batch size is 256 and the momentum
rate is set to 0.5. Finally, the standard back-propagation op-
timization is applied for supervised fine-tuning. The learning
rate decreases linearly from 1 to 0.001 in 50 epochs. The out-
put layer labels a T-F unit as 1 if target speech dominates or 0
otherwise.

4. Evaluation and comparison
In this section, we present two sets of experiments to evalu-
ate the speech segregation performance of the proposed system.
With the ROOMSIM package and KEMAR dummy head, we
create a library of BIRs. The simulated room has the dimen-
sion of 6m×4m×3m. The position of the listener is fixed at
2.5m×2.5m×2m. Reflection and absorption coefficients of the

wall surfaces are uniform. The reflection paths of a particular
sound source are obtained using the image model for a small
rectangular room. The reverberation times (T60) are approxi-
mately set to 0.3s and 0.7s. We also use the anechoic setting
as a baseline. All sound sources are presented at the same dis-
tance of 1.5 m from the listener (in the available space of each
room configuration). We generate BIRs for azimuth angles be-
tween zero and 360◦, spaced by 5◦. All elevation angles are
set to zero. Speech utterances and babble noise are drawn ran-
domly from the database and are convolved with selected BIRs
to generate the mixtures with defined SNRs. We generate 600
mixtures(about 120000 T-F units) to train the DNN classifiers,
and use 50 sentences to evaluate the performance of the pro-
posed algorithm in each condition. We also use 2000 mixtures
to train DNN classifiers, and the HIT-FA results have about two
percent improvements.

In the experiments below, we compare the performance of
the proposed method with three representative binaural sepa-
ration methods from the literature. Roman et al.’ method[16]
performs binaural segregation in multi-source reverberant en-
vironments. The target attenuation correlates with the relative
strength of the target to the mixture. The second comparison
method is the joint localization and segregation approach pre-
sented in[9], dubbed MESSL, which uses spatial clustering for
source localization. The system requires the specification of the
number of sources and iteratively fits GMM models of interau-
ral phase difference and ILD to the observed data using an EM
procedure. Across frequency integration is handled by tying the
GMM models in individual frequency bands to a principal ITD.
DUET [17] is a popular blind source separation method capa-
ble of separating an arbitrary number of sources using only two
mixtures (microphones). For Roman et al. and MESSL, we use
the implementations provided by their respective authors. The
DUET implementation comes from its author’s book [17]. All
of the comparison systems’ parameters are adjusted to get the
optimal results.

To measure classification-based separation performance,
we use HIT-FA as our main evaluation criterion, which has been
shown to be well correlated to human intelligibility [18].The
HIT rate is the percent of correctly classified target-dominant
T-F units in the IBM. The FA (false-alarm) rate is the percent
of wrongly classified interference-dominant T-F units. In ad-
dition to this measure of classification accuracy, we adopt the
IBM-modulated SNR measure to give another indication of the
segregation performance, where the resynthesized speech from
the ideal binary mask is used as the ground truth [1].
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Figure 2: HIT-FA performance for two-source segregation at various interference training azimuths.

4.1. Two-source segregation

In this set of experiments, we fix the target source at azimuth 0◦,
i.e. just in front of the dummy head. Then we train the DNNs
classifiers at various noise locations. All training mixtures have
0 dB SNR.

As shown in Figure 2(a), the interference source used in
training systematically varies between 0◦ and 350◦, spaced by
10◦. In testing, we place the interference source at the azimuths
between 0◦ and 355◦ in 5◦ steps. In this way, in half of the test
configurations the interference azimuths are not used in training
whereas the other half of the test configurations used the trained
interference angles. As shown in Figure 2(a), the HIT-FA rates
are above 80% for most interference azimuths and are close to
90% for some azimuths. When the interference locations are
close to the target sound, at azimuths of 0◦, 5◦, 175◦, 180◦,
185◦ and 355◦, the HIT-FA rates are down to 25%. As expect-
ed, the proposed system cannot separate the target speech from
a nearby interference source on the basis of binaural cues. Note
that, even though the target azimuth is at 0◦, the binaural cues
at the azimuth of 180◦ (i.e. right in the back) are almost the
same as those at the target azimuth. The trained locations yield
the higher HIT-FA rates than the nearby untrained locations. At

the better ear, for the interference source located between 185◦

and 355◦, the performance differences between trained loca-
tions and untrained locations are small. In Figure 2(b), we train
the system at 4 interference locations, at azimuth 60◦, 120◦,
240◦ and 300◦. These trained locations produce the four peak
points of HIT-FA rates. The HIT-FA rates decrease as the test
interference locations move away the trained locations. Com-
paring the results in Figure 2(a) and Figure 2(b), it is clear that
the more the trained angles cover the azimuth space, the better
the trained system performs at untrained angles.

As another evaluation, we use the babble noise located be-
tween 0◦ and 350◦ spaced by 10◦ to train the DNNs. Then
an untrained interference angle located at 45◦ is used to test
the system. In this test condition, we now vary the input S-
NR and the classification and SNR results are shown in Table
1. As shown in the table, the proposed system produces strong
performance in terms of HIT-FA rate and SNR. With the input
SNR decreases, the HIT-FA rate decreases gradually. Even at
the input SNR of -15 dB, the HIT-FA rate of 78.91% is still
high in comparison with the monaural separation method in [2].
Our informal listening shows that we can recognize segregated
speech in this very low SNR condition.
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Table 1: Two-source segregation results with respect to input.

Input SNR HIT FA HIT-FA Output SNR
(dB) (%) (%) (%) (dB)
-15 80.96 2.06 78.91 1.79
-10 86.46 4.16 82.30 6.46
-5 89.10 4.40 84.70 10.72
0 92.68 7.23 85.45 14.34
5 94.30 9.41 84.89 17.29
10 94.64 10.89 83.75 18.45

4.2. Multi-source segregation with reverberation

In the second set of experiments, the SNRs of the training and
test mixtures are set to 0dB. The target speech is again located
right in front of the KEMAR dummy head, at 0◦. Azimuths
of the interfering sources are selected between 0◦ and 350◦,
spaced by 10◦, to train the DNN classifiers. The four interfering
sources are located at the azimuths of 45◦, −45◦, 135◦ and
−135◦. Note that test (evaluation) results are obtained from
untrained interference locations.

4.2.1. Results without reverberation

We first present test results in anechoic conditions. The SNR
results from our system and the three comparison systems are
given in Table 2. The proposed system produces the best re-
sults in all test conditions. The MESSL results are better than
those of the other two comparison systems, both of which also
produce improved SNR in all test conditions.

Table 2: SNR performance in multi-source environments with
no reverberation.

Sources Proposed Roman et al. MESSL DUET
2 14.34 5.06 11.16 3.22
3 8.76 4.55 7.43 4.53
5 8.55 4.10 7.54 5.34

4.2.2. Results with reverberation

In these test conditions, we use two simulated rooms with T60

set to 0.3s and 0.7s. For comparison, we also include the con-
dition with T60 = 0s (i.e. the anechoic case). The evaluation
is performed in the 5-source conditions. The SNR results from
our algorithm and the comparison methods are plotted in Figure
3.

As shown in the Figure 3, the proposed system gives the
best results in all reverberant conditions. As reverberation
increases, the performance of the proposed system decreases
rather gradually. The performance gap between our system and
MESSL becomes larger in reverberant conditions.

5. Concluding remarks
In this study, we have proposed a DNN-based classification al-
gorithm for binaural speech segregation. To our knowledge,
this is the first study that introduces deep neural networks to
location-based separation. The evaluation results show that the
proposed system achieves better segregation than representative

Figure 3: SNR results in 5-source, reverberant conditions.

binaural separation algorithms. Even at very low input SNRs,
the proposed system still yields good segregation performance.
In addition, the performance decreases only gradually with in-
creased room reverberation. The results from this initial evalu-
ation also indicate encouraging generalization to untrained spa-
tial configurations.

We believe that the classification framework is a very
promising direction for future development[19]. In this frame-
work, for example, it is straightforward to include monaural fea-
tures to complement binaural features to further improve segre-
gation performance, especially when the target signal and inter-
fering sources are either co-located or close to one another. We
are currently developing this framework and expanding evalua-
tion scenarios.
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