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ABSTRACT

Speech segregation is an important task of auditory scene
analysis (ASA), in which the speech of a certain speaker is
separated from other interfering signals. Wang and Brown
proposed a multistage neural model for speech segregation, the
core of which is a two-layer oscillator network. In this paper, we
extend their model by adding further processes based on
psychoacoustic evidence to improve the performance. These
processes include pitch tracking and grouping based on
amplitude modulation (AM). Our model is systematically
evaluated and compared with the Wang-Brown model, and it
yields significantly better performance.

1. INTRODUCTION

The auditory system is able to segregate signals from different
sources or events and represent them separately. This auditory
process is described asAuditory Scene Analysis(ASA) [1]. It is
a challenging task to develop a computational system to separate
signals from acoustic mixtures. Blind sources separation [2] [3]
provides a general way for signal separation, which only works
when information of more than one acoustic mixture is available
[4]. Another approach is to develop a system utilizing
psychoacoustic cues to mimic ASA [5] [6] [7] [8], which
generally works in the monaural condition.

An important task of ASA is to segregate speech from other
interfering signals. An efficient speech segregation process is
required for robustautomatic speech recognition (ASR) in a
noisy environment. Wang and Brown proposed a multistage
neural network model for speech segregation [8]. The schematic
diagram of their model is shown in Fig. 1. The core of their
model is a two-layer neural oscillator network that performs
speech segregation in two stages: segmentation and grouping. In
the segmentation stage, the acoustic mixture is decomposed into
segments. The corresponding signals of those oscillators in the
same segment are likely to come from the same source. In the
grouping stage, segments that are likely to contain signals
mainly from the same source or event are grouped together.

The main psychoacoustic cues used in their model are global
pitch and temporal continuity. For certain acoustic mixtures, the
global pitch is meaningless (Fig. 2) and cannot provide useful
information for grouping. The temporal continuity condition

helps to generate large segments across time. However, when
target speech and intrusion overlap significantly in their spectra,
some segments may contain strong signals from both sources. As
a result, the Wang-Brown model performs poorly when intrusion
is wideband.

In this paper, we extend their model by introducing two
further processes. The first process is to estimate the pitch
contour of target speech, which is a much better grouping cue
than the global pitch contour. Generally, it is difficult to obtain a
good approximation of the pitch contour of target speech except
that target speech is dominant. The target speech segregated by
the Wang-Brown model provides a good basis for its estimation.
The second process refines the generation of a new target speech
stream. In this process, with the estimated pitch contour, those
segments that are likely to contain strong signals from both
sources are divided into smaller segments so that each segment
is more likely to arise from one source. Then these smaller
segments are grouped into a target speech stream. A new
grouping criterion is proposed to deal with AM of the responses
in high-frequency domain.

Detailed explanations of these two processes are given in
Section 2 and Section 3. Evaluations and discussions are given
in Section 4 and Section 5.

2. TARGET PITCH CONTOUR ESTIMATION

For any input signal, the Wang-Brown model is first applied to
generate a target speech stream, referred to asWBS . Let jτ
represent the estimated pitch period of target speech at time
framej. Note that signals are divided into time frames and every
time frame is 20 ms long with 10 ms overlap between
consecutive time frames. jτ is obtained by searching the peaks

in the pooled correlogram of WBS in the range ]5.12,2[ msms .

The pooled correlogram is the summation of the autocorrelation
functions (obtained in the correlogram part in the Wang-Brown
model) of the oscillators in WBS , which is similar to the local

summary autocorrelation computed by Brown and Cooke [6].

In the Wang-Brown model, signals are analyzed by an
auditory filterbank. Every channel corresponds to an auditory
filter with a certain passband. For an oscillator of channeli at
time frame j, let ),,( τjiA represent the corresponding

autocorrelation function. The oscillator agrees withjτ if
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where 95.0=dθ , mτ is the lag where ),,( τjiA is maximum

for ]5.12,2[ msms∈τ . If more than half of the oscillators in

WBS at time framej agree with jτ , this pitch period is marked

as reliable. Furthermore, because in most cases the pitch of
speech changes smoothly, we stipulate that the difference
between the pitch periods of nearby time frames is no greater
than 20% of the pitch periods themselves. Otherwise, they will
be treated as unreliable.

Let sj - ej represent a streak that for all es jjj ≤≤ , jτ is

reliable and both 1−sj
τ and 1+ej

τ are unreliable. Among all these

streaks, let msj - mej be the longest one. For msjj < , jτ is

determined as follows. Starting with 1−= msjj , let
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3 +> jjd ττ , jτ will be changed as follows: letf be

1/1 +jτ , those oscillators in WBS are selected if they correspond

to channels with center frequencies close tof or 2f. If more than
3 oscillators are selected, jτ is determined by searching the

peak in the summary autocorrelation of these oscillators in the
range ]2.1,8.0[ 11 ++ jj ττ and marked as reliable; otherwise, let

1+= jj ττ , and jτ is treated as unreliable. Subsequently,jτ is

determined for 1,,3,2 ÿ−−= msms jjj . For all mejj > , jτ
is determined similarly. Finally, every unreliable jτ is

determined by a linear interpolation from reliablejτ ’s at earlier

and later time frames.

As an example, in Fig. 2(a), the global pitch periods
obtained from the mixture are quite different from the pitch
periods obtained from clean target speech. In Fig. 2(b), the
estimated pitch periods obtained from the same acoustic mixture
match that obtained from clean target speech well except at the
several time frames in the beginning and end of target speech.

3. Stream Generation

Based on the estimated pitch contour, the target speech stream is
generated as follows. First, Eq. (1) is used to determine whether
an oscillator agrees with the estimated pitch contour with the
following modifications. Because the responses of high-
frequency channels (1> kHz) usually contain several harmonic
components, the corresponding autocorrelation functions are
likely to be amplitude modulated. As an example, Fig. 3(a)
shows the amplitude-modulated response of a high-frequency

channel. In 3(b), the corresponding autocorrelation function is
also amplitude modulated, and the pitch period corresponds to a
local maximum, but not the global maximum for

]5.12,2[ msms∈τ . Therefore, ),,( mjiA τ is determined by

searching the maximum only for ]5.12,2/[ msjττ ∈ .

Furthermore, the thresholddθ is changed to 0.85.

A segment agrees with the estimated pitch period at a
particular time frame if more than half of its oscillators at this
time frame agree with the estimated pitch period. Furthermore,
the segment agrees with the estimated pitch contour if it agrees
with the estimated pitch periods at more than half of its total
time frames [8]. Then all the oscillators in the segments disagree
with the estimated pitch contour are marked -1. For those in the
segments agree with the estimated pitch contour, if themselves
agree with the estimated pitch periods, they are marked 1;
otherwise, they are marked 2. For those that do not belong to
any segment, they are marked 3 if they agree with the estimated
pitch periods. Other oscillators are marked 0.

Figure 1. The schematic diagram of the Wang-Brown model
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Figure 3. (a) The response from the auditory filter with center
frequency2.6 kHz. The input is the male voice used in Fig.2.
(b) The corresponding autocorrelation function. The vertical
line marks the corresponding position of the pitch period.
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Figure 2. The global and the estimated pitch contour of
the speech obtained from the mixture of a male voice and
the “cocktail party” noise. In both (a) and (b), the line
contour represents the pitch contour obtained from clean
speech. In (a), symbol ‘x’ represents the global pitch
periods. In (b), symbol ‘x’ represents the estimated pitch
periods.
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New segments are formed by putting nearby oscillators
together if they are marked the same. If a new segment with
oscillators marked 2 is longer than 50ms, all the oscillators in
this segment will be marked -1. For a new segment with
oscillators marked 1 is shorter than 50ms, all the oscillators in
this segment will be marked 2. Furthermore, if a new segment
with oscillators marked 3 is longer than 50ms, all the oscillators
in this segment will be marked 1.

All the new segments containing oscillators marked 1 are
grouped together into a new target speech stream, referred as

NEWS . All the new segments containing oscillators marked –1

are grouped into a background stream. The background stream
expands in the following way: for every oscillator in the
background stream, any nearby oscillator marked 2 will be
added into it, and it keeps on expanding until no additional
oscillator can be put in. Then all the oscillators marked 2 are
added into NEWS . NEWS expands in the following way: for all

the oscillators in NEWS , any nearby oscillator marked 3 will be

added, and it keeps on expanding until no additional oscillators
can be put in. NEWS represents the target speech stream

generated by our model.
As an example, Fig. 4(a) shows the target speech stream

generated by the Wang-Brown model. Fig. 4(b) shows the target
speech stream generated by our model from the same mixture,
which is much closer to the speech stream corresponding to the
ideal mask (Fig. 4(c)), which will be explained later.

4. Results

Our model is evaluated on the same corpus of mixtures-10
voiced utterances mixed with 10 intrusions-as used to evaluate
the Wang-Brown model [8]. The speech signal are resynthesized
[6] from the target speech stream is used for evaluation. In
resynthesis, the target speech stream provides a binary mask,
which guides the formation of the segregated speech. Because
target speech and intrusion are available, before mixing it in the
corpus, we generate an “ideal mask” for every mixture by
comparing the energies of the target speech signal and the
intrusion signal corresponding toeach oscillator. The ideal mask
corresponds to a stream consisting of all the oscillators with
stronger target speech signals. Here, we use the speech
resynthesized from the ideal mask as ground truth of target
speech. This evaluation methodology is supported by the
following observations. First, it is well known that in a critical

band, a weak signal is masked by a stronger one [9]. Second, the
ideal mask is very similar to the prior mask used in a recent
study that employs a missing data technique for ASR [10], and
the study yields excellent recognition performance.

Let S(t) represent the speech resynthesized fromNEWS and

I(t) the corresponding speech resynthesized from the ideal mask.
Let e(t) be the difference betweenI(t) and S(t), which includes
two parts. The first part consist of the signal present inI(t), but
not in S(t). This part is the lost speech and let )(1 te represent

this part. The second part consists of the signal present inS(t),
but not inI(t). This part is the noise residue inS(t), and let )(2 te

represent this part. We define the energy loss ratioELR and

noise residue ratio NRR as follows:

��=
tt

EL tIteR )()( 22
1 (3)

��=
tt

NR tSteR )()( 22
2 (4)

Table 1. ELR and NRR of resynthesized speech from both the

Wang-Brown model and the proposed model. Here, N0 = 1 kHz
tone, N1 = random noise, N2 = noise bursts, N3 = “cocktail
party” noise, N4 = rock music, N5 = siren, N6 = trill telephone,
N7 = female speech, N8 = male speech, and N9 = female speech.

Wang-Brown model Proposed model
Intrusions

REL RNR REL RNR

N0 6.99% 0% 3.93% 0.0019%

N1 28.96% 1.61% 8.16% 0.75%

N2 5.77% 0.71% 3.13% 0.75%

N3 21.92% 1.92% 6.88% 1.42%

N4 10.22% 1.41% 6.19% 0.97%

N5 7.47% 0% 4.58% 0.0055%

N6 5.99% 0.48% 3.46% 0.22%

N7 8.61% 4.23% 5.88% 2.30%

N8 7.27% 0.48% 3.91% 0.83%

N9 15.81% 33.03% 11.93% 26.20%
Average 11.9% 4.39% 5.81% 2.73%
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Figure 4. (a) Black part - the speech stream obtained from the Wang-Brown model. (b) The speech stream obtained from
our model. (c) The stream corresponds to the ideal mask. These are generated from the same mixture as used in Figure2.
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Table 1 shows the ELR and NRR for the 10 noise intrusions.

Each value is the average of 10 voiced utterances mixed with a
certain intrusion. Table 1 also shows theELR and NRR for the

resynthesize speech from the Wang-Brown model.ELR

obtained from our model is significantly smaller than from the
Wang-Brown model, especially for random noise (N1) and the
cocktail party noise (N3). For most wideband intrusions (N1,
N3, N4, N7, N9), NRR is decreased in our model, especially for

N9. On the other hand, NRR is also increased for some other

intrusions (N0, N2, N5, N8), but the increase is rather small.
Overall, the pattern of results from our model is substantially
better.

To measure the waveform directly, we also calculate the
relative difference betweenI(t) andS(t) in decibels as follows:

])()([log10 22
10 ��=

tt

tetID (5)

D is an evaluation that combines bothELR and NRR . The

averageD for each intrusion is shown in Fig. 5. The results of
the Wang-Brown model are also shown in Fig. 5. For all the
intrusions, we observe an improvement, and the average increase
is around 3 dB.

5. Discussion

For all the mixtures in the evaluation corpus, most estimated
pitch contours are close to the ones obtained from clean target
speech. With the estimated pitch contour, most oscillators of
low-frequency channels ( 1< kHz) are grouped correctly for most
intrusions. One exception is the intrusion N9, which is a female
voice with fundamental frequency (F0) close to the doubles of
the F0s of target speech. Therefore, the spectra of N9 and target
speech overlap considerably. Although the performance of our
model on N9 is still relatively poor, the amount of the residue
noise is significantly reduced.

For two oscillators of nearby high-frequency channels
( 1> kHz), the corresponding responses may not be highly
correlated even when they mainly arise from the same source.
These oscillators are put to the background in the Wang-Brown
model, though many of them containing target speech signals. In
our model, segments are generated with less constraint by cross-
correlation between adjacent oscillators. These segments will be
grouped into the new target speech stream if they agree with the
estimated pitch contour and are sufficiently long. As a result, our
model is able to recover more target speech signals in the high-
frequency domain.

In summary, our model mainly includes the following
innovations:

• Estimate the pitch contour of target speech directly and
use it for grouping.

• Further divide segments into smaller ones. The target
speech stream is generated by grouping these segments.
This helps in dealing with situations where target speech
and intrusion overlap significantly in their spectra.

• Further group the oscillators whose corresponding signal
is not highly correlated with that of nearby oscillators.

• A new grouping criterion is proposed to deal with AM.
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Figure 5. Black bar-The relative difference between the
target speech resynthesized from the original model and
that resynthesized from the ideal binary mask. White bar-
The relative difference between the resynthesized speech
from the proposed model and the speech resynthesized
from the ideal mask. The different intrusion types are
shown in Table1.


