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Monaural Speech Segregation Based on Pitch
Tracking and Amplitude Modulation

Guoning Hu and DeLiang Wang, Fellow, IEEE

Abstract—Segregating speech from one monaural recording has
proven to be very challenging. Monaural segregation of voiced
speech has been studied in previous systems that incorporate
auditory scene analysis principles. A major problem for these
systems is their inability to deal with the high-frequency part of
speech. Psychoacoustic evidence suggests that different perceptual
mechanisms are involved in handling resolved and unresolved har-
monics. We propose a novel system for voiced speech segregation
that segregates resolved and unresolved harmonics differently.
For resolved harmonics, the system generates segments based on
temporal continuity and cross-channel correlation, and groups
them according to their periodicities. For unresolved harmonics,
it generates segments based on common amplitude modulation
(AM) in addition to temporal continuity and groups them ac-
cording to AM rates. Underlying the segregation process is a pitch
contour that is first estimated from speech segregated according
to dominant pitch and then adjusted according to psychoacoustic
constraints. Our system is systematically evaluated and compared
with pervious systems, and it yields substantially better perfor-
mance, especially for the high-frequency part of speech.

Index Terms—Amplitude modulation (AM), computational
auditory scene analysis, grouping, monaural speech segregation,
pitch tracking, segmentation.

1. INTRODUCTION

N a natural environment, speech often occurs simultane-

ously with acoustic interference. An effective system for at-
tenuating acoustic interference would greatly facilitate many ap-
plications, including automatic speech recognition (ASR) and
speaker identification. General methods for signal separation or
enhancement, such as blind source separation using indepen-
dent component analysis [1] or sensor arrays for spatial filtering
[21], require multiple sensors. However, many applications such
as telecommunication and audio retrieval need a monaural solu-
tion. For a monaural (one microphone) signal, intrinsic proper-
ties of speech or interference must be considered. Various algo-
rithms have been proposed for monaural speech enhancement,
and they are generally based on some analysis of speech or in-
terference and subsequent speech amplification or noise reduc-
tion. For example, methods have been proposed to estimate the
short-time spectra of interference [23] or to extract speech based
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on speech modeling [20]. Another way to deal with interference
is to perform eigen-decomposition on an acoustic mixture and
then apply subspace analysis to remove part of the interference
[13]. Hidden Markov models have also been used to model the
spectral characteristics of speech and interference and then sep-
arate them [30]. These methods usually assume certain proper-
ties of interference and have difficulty in dealing with general
acoustic interference, because the variety of both interference
and natural speech make them very difficult to model.

While monaural speech enhancement remains a challenge,
the human auditory system shows a remarkable capacity for
monaural speech segregation. According to Bregman [4], the
auditory system segregates the acoustic signal into streams,
corresponding to different sources, according to auditory scene
analysis (ASA) principles. Research in ASA has inspired con-
siderable work to build computational auditory scene analysis
(CASA) systems for sound segregation [5], [8], [12], [29],
[33], [34]. Such systems generally approach speech segregation
without making strong assumptions about the acoustic proper-
ties of interference, and follow two main stages: segmentation
(analysis) and grouping (synthesis) [4]. In segmentation, the
acoustic input is decomposed into sensory segments, each of
which should originate from a single source. In grouping, those
segments that likely come from the same source are grouped
together.

Recently, Wang and Brown proposed a CASA model to seg-
regate voiced speech based on oscillatory correlation, where a
stream is represented by an assembly of synchronized oscilla-
tors and different streams are represented by desynchronized
oscillator assemblies [33]. The Wang—Brown model uses har-
monicity and temporal continuity as major grouping cues and
consists of three stages: auditory periphery, mid-level represen-
tation, and segmentation and grouping. The auditory periphery
performs spectral analysis through an auditory filterbank. Seg-
ments are formed on the basis of similarity between adjacent
filter responses (cross-channel correlation) and temporal conti-
nuity, while grouping among segments is performed according
to the dominant pitch extracted within each time frame. Their
system has been tested on a common corpus of acoustic mix-
tures of voiced utterances and different types of interference,
including white noise, “cocktail party” noise, and competing
speech [8]. They have reported good results in comparison with
previous CASA systems. In most situations, the model is able to
remove intrusions and recover the low-frequency (below 1 kHz)
energy of target speech, i.e., voiced utterances. However, this
model cannot handle the high-frequency (above 1 kHz) part of
target speech well, and it loses much of it. In fact, the inability
to deal with the high-frequency part of speech is a common
problem for CASA systems.
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Fig. 1. Schematic diagram of the proposed multistage system.

The design of an effective segregation algorithm depends
on an initial analysis of input signal. Most CASA systems,
including the Wang—Brown model, perform initial signal de-
composition in the frequency domain with a bank of auditory
filters, whose bandwidths increase quasi-logarithmically with
center frequencies. These filters are usually derived from psy-
chophysical observations of the auditory periphery. The main
motivation for using an auditory filterbank is to mimic cochlear
filtering. There are also studies reporting that auditory-based
front-ends are more robust than traditional Fourier-based
analysis in the presence of background interference [14], [19].
For harmonic signal, in the low-frequency range, an auditory
filter has a narrow passband, which generally contains only one
harmonic. In the high-frequency range, an auditory filter has
a wide passband, which usually contain multiple harmonics.
This structure of cochlea filtering limits the abilities of human
listeners to resolve harmonics; they can resolve only the first
few harmonics, whereas higher harmonics are unresolved un-
less these harmonics are much more intense than adjacent ones
[7], [28]. Consequently, with a model of auditory filterbank,
a harmonic series is divided into resolved and unresolved
harmonics. A harmonic is called resolved if there exists an
auditory filter channel that responds primarily to it; otherwise,
it is called unresolved. For voiced speech, harmonics less than
1 kHz are generally resolved while others may be unresolved.
An important fact is that the filter responses to unresolved
harmonics are strongly amplitude-modulated and the response
envelopes fluctuate at the fundamental frequency (FO) of
target speech [15]. Hence, it may be computationally more
appropriate to segregate resolved and unresolved harmonics
using different methods. In addition, psychophysical evidence
suggests that the human auditory system uses different mecha-
nisms to deal with resolved and unresolved harmonics [7], and
resolved and unresolved harmonics contribute differently to
speech segregation for human listeners [2]. However, previous
CASA systems use the same method to segregate resolved and
unresolved harmonics [5], [8], [33], [34], and we think this is a
main reason why these systems cannot segregate voiced speech
well in the high-frequency range.

Based on the above observations, we propose a new model
for monaural segregation of voiced speech. Similar to previous
CASA systems, our model performs initial spectral analysis
using an auditory filterbank, and forms segments on the basis
of similarity between adjacent filter responses (cross-channel
correlation) and temporal continuity. Different from previous
systems, our model employs different methods to segregate re-
solved and unresolved harmonics of target speech. More specif-
ically, we generate segments for resolved harmonics based on

temporal continuity and cross-channel correlation, and these
segments are grouped according to common periodicity. Since
the amplitude modulation (AM) of filter responses reveals the
periodicities of unresolved harmonics, we generate segments for
unresolved harmonics based on common AM in addition to tem-
poral continuity. These segments are further grouped based on
AM rates, which are obtained from the temporal fluctuations of
the corresponding response envelopes. In addition, by building
on an initial segregation stage and observing pitch characteris-
tics in natural speech, we propose a method to obtain an accurate
pitch contour for target speech.

With signal decomposition using a filterbank and over suc-
cessive time frames, the computational goal of our model is to
retain time—frequency regions where target speech is more in-
tense than interference and cancel those regions where interfer-
ence is more intense. In other words, the goal is to identify a
binary mask where 1 indicates that target is stronger than in-
terference and O otherwise. In a sense, this objective amounts
to maximizing the signal-to-noise ratio (SNR) of the output
where binary decisions are made for local time—frequency re-
gions. To maximize the SNR, we want to minimize the denomi-
nator—the sum of missing target energy that is discarded by the
mask and interference energy that gets through the mask along
with the target—by treating the numerator, the clean target, as a
constant. This would imply to include local time—frequency re-
gions where target is stronger than interference and exclude the
other regions. Further justifications of our computational goal
are given in Section VIL.

Section II gives an overview of our model and further mo-
tivation, and Sections III-VI explain model components in de-
tail. In Section VII, our system is systematically evaluated and
compared with other systems for speech segregation or enhance-
ment. Further discussion is given in Section VIII. The Appendix
lists all the symbols used in this paper and their definitions.

II. MODEL OVERVIEW

The main idea of our model is to employ different segregation
methods for resolved and unresolved harmonics. The overall
model is a multistage system, as shown in Fig. 1.

In the first stage, an input mixture is analyzed by an audi-
tory filterbank in consecutive time frames. The sampling fre-
quency is 16 kHz. This processing results in a decomposition
of the input into a two-dimensional time—frequency map. Each
unit of the map is called a T-F unit, corresponding to a certain
filter at a certain time frame. Then the following features are ex-
tracted: autocorrelation of a filter response, autocorrelation of
the envelope of a filter response, cross-channel correlation, and



HU AND WANG: MONAURAL SPEECH SEGREGATION BASED ON PITCH TRACKING

dominant pitch within each time frame. These features are used
in the following stages.

In the initial segregation stage, T-F units are merged into
segments. Segmentation has been performed in previous CASA
systems [5], [8], [33]. A segment is a larger component of an
auditory scene than a T-F unit, and it is meant to capture a per-
ceptually-relevant acoustic component of a single source. An
auditory segment is composed of a spatially contiguous region
of T-F units. This segment structure encodes the basic prox-
imity principle in human ASA that applies to both frequency
and time dimensions [4]. Conceptually, segments provide
an intermediate level representation between T-F units and
streams (or sound sources). Computationally, performing seg-
mentation before segregation exploits local correlation between
adjacent filter responses and, hence, it is reasonable to expect
that segments are less sensitive to interference than T-F units.
This robustness is confirmed by the evaluation in Section VIIL.
Segments are then grouped into an initial foreground stream
and a background stream based on dominant pitch extracted
in the previous stage; the two streams roughly correspond to
target speech and intrusion, respectively. Due to the intrusion,
the dominant pitch may not be an accurate description of the
target pitch. For example, if the intrusion has a strong pitch at
a certain frame, the obtained dominant pitch at this frame may
be close to the intrusion pitch instead of the target pitch. As
a result, the foreground stream will usually miss some target
speech and include some intrusion.

In the third stage, the pitch of target speech is estimated
from the initial foreground stream, and it is used to label units
as speech dominant or interference dominant. In the final
segregation stage, according to unit labels, segments formed in
the initial segregation stage are regrouped into foreground and
background stream. This stage corrects some errors of initial
grouping due to the inaccuracy of the dominant pitch. In addi-
tion, some T-F units are merged into segments that correspond
to unresolved harmonics of target speech, and these segments
are added to the foreground stream. Then the foreground stream
expands to include neighboring T-F units labeled as speech
dominant. Finally, a speech waveform is resynthesized from
the resulting foreground stream using a method described by
Weintraub [34]. Here, the foreground stream works as a binary
mask, where 1 indicates T-F units within which target speech
dominates and 0, otherwise. The mask is used to retain the
acoustic energy from the mixture that corresponds to 1’s in
the mask and reject the mixture energy corresponding to 0O;
for more details of this stage, see [5], [33], [34]. The first four
stages in Fig. 1 are explained in detail in the following sections.

For ease of comparison, let us reiterate the terms that have
been introduced so far. A T-F unit is a very local time—fre-
quency region corresponding to a certain filter at a certain time
frame. We use u..,,, to refer to the T-F unit corresponding to filter
channel c at time frame m. A segment is a contiguous time—fre-
quency region that corresponds to a component of a single sound
source, and it is a set of connected T-F units. A stream is a
group of segments that corresponds to an entire sound source.
The target speech, or the target stream, is an utterance we aim
to segregate from an acoustic mixture. What constitutes target
speech is obviously task-dependent. In this study, target speech
refers to an entirely voiced utterance in a sound mixture.
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III. DECOMPOSITION AND FEATURE EXTRACTION

In this stage, our system decomposes the input signal
and extracts the following features: the autocorrelation of
filter responses, the autocorrelation of response envelopes,
cross-channel correlation, and dominant pitch within each time
frame.

A. Signal Decomposition

First, the input signal passes through an auditory filterbank.
Here we use a 128-channel “gammatone” filterbank [27] whose
center frequencies are quasi-logarithmically spaced from 80
to 5000 Hz. The gammatone filterbank is a standard model of
cochlear filtering [3]. The impulse response of a gammatone
filter is

_ J "= Yexp(—2nbt) cos(2n ft), t>0
9(t) = {0, else M

where | = 4 is the order of the filter, b is the equivalent rectan-
gular bandwidth, and f is the center frequency of the filter.

The response of each gammatone filter is further transduced
by the Meddis model of inner hair cells [24]. This model sim-
ulates well known properties of hair cells, such as rectification,
saturation, and phase locking. Its output represents the firing rate
of an auditory nerve fiber. The envelope of the hair cell output is
obtained through low-pass filtering, which contains AM infor-
mation to be utilized later to segregate unresolved harmonics.
The cutoff frequency of the low-pass filter needs to be below
the frequency range where harmonics are unresolved but above
the plausible FO range of target speech. Here we use an FIR filter
with passband [0, 1 kHz] and a Kaiser window of 18.25 ms, but
results do not change significantly for cutoff frequencies ranging
from 800 Hz to 1.2 kHz.

In each filter channel, the output is divided into 20-ms time
frames with 10-ms overlapping between consecutive frames.
This frame size is commonly used for speech analysis and is
sufficiently long for pitch estimation within each frame since
pitch periods of speech are shorter than 20 ms. As a result of
bandpass filtering and short-time windowing, the input is de-
composed into a two-dimensional time—frequency representa-
tion, or a collection of T-F units. Two units are neighbors when
they are in the same channel but at consecutive frames, or when
they are in adjacent channels but at the same frame.

B. Auditory Feature Extraction

1) Correlogram: A well established mechanism for pitch
extraction employs a correlogram—a running autocorrelation
of each filter response across an auditory filterbank [18], [31].
Previous models have shown that correlograms provide an ef-
fective mid-level auditory representation between auditory pe-
riphery and segregation [5], [33]. For T-F unit u..,,, its autocor-
relation function of the hair cell response is given by

N.—1
1
Ag(e,m,T) = N Z h(c,mT —n)h(c,mT —n—7). (2)
¢ n=0

Here, delay 7 € [0, 12.5 ms]. The maximum delay corresponds
to 80 Hz, and it is an appropriate choice since the FO of target
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speech in our test corpus does not fall below this frequency.
h(c,n) indicates the hair cell output of channel c at time step n.
T = 160 corresponds to 10 ms, the time shift from one frame
to the next. Let f be the center frequency of channel c¢. The
window size of autocorrelation is chosen to be the longer of 4/ f
and 20 ms, the latter being the width of a frame, and V.. is the
corresponding number of samples.

2) Dominant Pitch: When a periodic sound is presented, the
autocorrelations of the activated filters in a correlogram all ex-
hibit a peak at the delay corresponding to the period. Using this
property, the correlogram method for pitch extraction simply
pools autocorrelations across all the channels and then identi-
fies a global peak in the summary correlogram. Let s(m, 7) be
the summary correlogram at frame m

s(m,T) = ZAH(c,m,T). 3

We define the dominant pitch period at frame m, 7p(m), to be
the lag corresponding to the maximum of s(m, 7) in the plau-
sible pitch range of target speech [2 ms, 12.5 ms], or from 80 Hz
to 500 Hz. For those channels where target speech dominates,
their autocorrelations have peaks consistent with the pitch of
target speech and the summation of these autocorrelations gen-
erally shows a dominant peak corresponding to the pitch pe-
riod. With acoustic interference, a dominant pitch is a good de-
scription of a target pitch at those frames where target speech is
stronger, but not for other frames.

3) Envelope Correlogram: We introduce an envelope cor-
relogram by computing the autocorrelation of a response enve-
lope

N.—1
1 N
Ag(c,m,7) = N Z hg(c,mT —n)hg(c,mT —n —1).
¢ n=0

“)
Here, hp(c, n) is the envelope of the hair cell output in channel
c at time step n. The autocorrelation functions reveal response
periodicities as well as AM rates.

4) Cross-Channel Correlation: As demonstrated by Wang
and Brown [33], cross correlation between adjacent filter chan-
nels indicates whether the filters mainly respond to the same
source or not, thus, providing a useful feature for subsequent
segmentation. For the same T-F unit, the cross-channel correla-
tion is calculated as

L-1
CH(C7 m) = ZAH(Cv’rnﬂT)AH(cJ’_ lvmvT) (5)

7=0

where A (c,m,7) denotes Ag(c,m,) normalized to zero
mean and unity variance, and L = 201 corresponds to 12.5
ms, the maximum delay for Ag. Similarly, the cross-channel
correlation of envelopes is calculated as follows:

L—-1

CE(C7 m) = Z AE(Qm?’r)AE(C—i— 17m77-) (6)

T7=0

where Ag(c, m,7) denotes normalized Ag(c, m, 7). Cy mea-
sures the response similarity between adjacent channels, and Cg
the corresponding similarity between AM patterns.
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In the low-frequency range, Cy gives a good indication of
whether two adjacent frequency channels respond primarily to
the same source. In the high-frequency range, a channel re-
sponds to multiple unresolved harmonics, leading to AM in the
channel response (see related discussion in Section I). Now con-
sider two adjacent channels in the high-frequency range. Be-
cause individual harmonics contribute differently to each of the
two responses, the corresponding Cy is in general lower than
those in the low-frequency range. Since C'r, measures the sim-
ilarity of the corresponding AM patterns, we find that it yields
a range of values that is comparable with that of C'y in the
low-frequency range. In other words, Cg is a better indicator
of whether two channels respond to the same periodic source in
the high-frequency range.

Fig. 2(a) and (b) illustrates the correlogram and the envelope
correlogram at a specific frame, in response to a voiced utter-
ance,“Why were you all weary,” mixed with a “cocktail party”
noise, which is a recording in a bar. The mixture has an SNR
of about 6.5 dB. Their respective cross-channel correlations are
given in the right panels. The bottom panel in Fig. 2(a) shows the
corresponding summary correlogram, where the dominant peak
at 7.2 ms gives the dominant pitch period at this frame. Fig. 2(c)
and (d) shows the corresponding correlogram, cross-channel
correlation, and summary correlogram for the voiced utterance
alone. As shown in the figure, the autocorrelation of a hair cell
response generally reflects the periodicity of a single harmonic
for a channel in a low-frequency range, where harmonics are
resolved. The autocorrelation is strongly amplitude-modulated
in some high-frequency channels, where harmonics are unre-
solved. These autocorrelations are not highly correlated for fre-
quency channels whose center frequencies are above 1 kHz. On
the other hand, the autocorrelations of the response envelopes
are highly correlated when they have similar fluctuation pat-
terns.

IV. INITIAL SEGREGATION

In this stage, units are merged into segments based on tem-
poral continuity and cross-channel correlation. Using dominant
pitch, these segments are grouped into an initial foreground
stream and an initial background stream, roughly corresponding
to target speech and intrusion, respectively. This stage is sim-
ilar to the segmentation and grouping stage of the Wang—Brown
system [33].

A. Initial Segmentation

A voiced section usually lasts for more than 50 ms. In
addition, because the passbands of adjacent channels have
significant overlap, a resolved harmonic usually activates adja-
cent channels, which leads to high-cross-channel correlations.
Therefore, we form segments by merging T-F units based on
temporal continuity and cross-channel correlation.

First, only units with some response energy and sufficiently
high-cross-channel correlations are considered. More specifi-
cally, e, is selected for consideration if Ay(c,m,0) > 6%
and Cg(c,m) > fc. Note that the autocorrelation at zero-lag
measures the response energy. g = 50, which is close to the
spontaneous firing rate of the auditory nerve from the Meddis
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Auditory features. (a) Correlogram at frame 40 (i.e., 0.4 s after the onset) for a mixture of speech and cocktail-party noise. For clarity, every other channel

is shown. The corresponding cross-channel correlation is given in the right panel, and the summary correlogram in the bottom panel. (b) Corresponding envelope
correlogram for the mixture. The corresponding cross-channel envelope correlation is shown in the right panel. (c) Correlogram at frame 40 for the clean speech.
The corresponding cross-channel correlation is given in the right panel, and the summary correlogram in the bottom panel. (d) Corresponding envelope correlogram
for the clean speech. The corresponding cross-channel envelope correlation is shown in the right panel.

model [24], and ¢ = 0.985, chosen to be the same as in [33].
Selected neighboring units are iteratively merged into segments.
Finally, segments shorter than 30 ms are removed since they
unlikely arise from target speech. For units that respond to un-
resolved components, their cross-channel correlations are rel-
atively small, and these units are, hence, not selected. There-
fore, segments formed this way generally reflect resolved com-
ponents of either target speech or intrusion.

B. Initial Grouping

Initial grouping is done through comparing the periodicities
of unit responses with dominant pitch. The response period of
a T-F unit is obtained by finding the maximum of the corre-
sponding autocorrelation within the plausible pitch range. If this
period is compatible with the corresponding dominant pitch pe-
riod, the unit is said to agree with the dominant pitch. That
is, Uem, agrees with 7p(m) if Ag (e, m,7p(m)) is close to the
maximum of Ag (¢, m, ) within the plausible pitch range

Ag (¢,m,7p(m)) > p

Ag (¢, m,Tp(c,m)) )
Here, §p = 0.95, chosen to be the same as in [33], and 7p(c, m)
is the delay corresponding to the maximum of Ag(c, m,T)
within the plausible pitch range [2 ms, 12.5 ms].

For any segment, if more than half of its units at a certain
frame agree with the dominant pitch, this segment is said to
agree with the dominant pitch at this frame. For the segments
of target speech, if the dominant pitch at a certain frame is very
close to the true pitch of target speech, all of these segments
tend to agree with the dominant pitch at this frame. Hence, seg-

ments are grouped into two streams as follows. First, the longest
segment is selected as a seed stream. Since target speech in this
study is all voiced, the longest segment extends through most of
the frames of the entire utterance duration [see Fig. 3(b)]. At a
certain frame, a segment is said to agree with the longest seg-
ment if both segments agree or both disagree with the dominant
pitch. If a segment agrees with the longest segment for more
than half of their overlapping frames, its T-F units within the
duration of the longest segment is grouped into the seed stream.
Otherwise, this segment is grouped into the competing stream.
The longest segment is also used to determine which stream cor-
responds to target speech. If it agrees with the dominant pitch
for more than half of its frames, it is likely to contain dominant
target speech. In this case, we refer to the stream containing the
longest segment as the foreground stream, S%, and the com-
peting stream as the background stream, S%. Otherwise, the
names of the two streams are swapped.

For the speech and cocktail-party mixture, Fig. 3(a) shows
the hair cell response energy (zero-lag autocorrelation) of each
T-F unit. Fig. 3(b) and (c) shows the segments and the fore-
ground stream. Because the intrusion is not strongly harmonic,
most segments correspond to target speech. In addition, most
segments are in the low-frequency range where harmonics are
resolved, and the high-frequency part contains only small seg-
ments. The initial foreground stream successfully groups most
of the major segments in the low-frequency range.

V. PITCH TRACKING AND UNIT LABELING

Although the dominant pitch is generally close to the true
pitch of target speech, they do not match well in many frames.
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speech, marked by “x.” The solid line indicates the pitch contour obtained from clean speech before mixing.

As illustrated in Fig. 4(a), for the speech and cocktail-party mix-
ture, the dominant pitch periods in a number of frames signifi-
cantly deviate from the pitch contour of target speech obtained
from clean speech. To obtain a more accurate pitch contour, we
verify the pitch contour obtained from S% with two psychoa-
coustically-motivated constraints and subsequently re-estimate
the obtained pitch contour. With the new pitch contour of target
speech, units are labeled according to whether target speech
dominates. Here, different criteria are used to deal with resolved
and unresolved harmonics.

A. Pitch Tracking

Our pitch tracking starts from the pitch contour obtained from
the summation of the autocorrelation functions of the T-F units

in S%.. More specifically, let

sp(m,7) = ZAH(C,’ITL,T), for Uey, € Sp. )

Then the pitch period of the target speech at frame m, 75(m), is
the lag corresponding to the maximum of sg(m, 7) in the plau-
sible pitch range [2 ms, 12.5 ms]. Differing from the dominant
pitch period, 7p (), 75 (m) is obtained only from signals likely
from target speech. Therefore, it is much less affected by the in-
trusion and describes the target pitch more accurately. However,
because S% contains some intrusion, occasionally 75(m) may
not be accurate. Here we employ the following two constraints
to check its reliability:

Constraint I: An accurate pitch period is consistent with
the periodicities of individual constituent units. Similar to
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(7), we check whether unit u.,, agrees with 75(m) by the
following inequality:

Ag (¢,m,1s(m))

AH (C,m77'p(0, m)) ~ HP. (9)

If an estimated pitch period is reliable, at least half of
the units in the foreground stream at the corresponding
frame must agree with it. Since the units in the foreground
stream mainly correspond to target speech, 7s(m) reflects
the pitch of target speech better than dominant pitch. Note
that the threshold in (9) is the same as that for the initial
grouping [see (7)].

Constraint 2: The pitch contour of speech changes slowly
[22]. We stipulate that the difference between the reliable
pitch periods at frame m and m + 1 be less than 20% of
themselves. Constraint 2 applies to only consecutive pitch
periods satisfying Constraint 1.

With these two constraints, our model re-estimates the pitch
contour of target speech as follows. First, 75(m)s are checked
according to Constraint 1. Then the two streams are adjusted
using only the pitch periods satisfying the constraint: any seg-
ment that agrees with these pitch periods for more than half of
its length is grouped into a new foreground stream, S, and the
others are grouped into a new background stream, S . The pitch
periods, 75(m), are estimated from S},, and are further checked
with both constraints. If pitch periods in consecutive frames
satisfy both constraints, they are combined into a pitch streak.
Therefore, for every interval where all the estimated pitch pe-
riods satisfy the constraints, we obtain a pitch streak. Among
them, the longest streak is selected. We found that the pitch pe-
riods within this streak provide the most reliable estimate of the
pitch periods of target speech. The pitch periods at the frames
before this streak are re-estimated by the following algorithm,
which operates only on the first 40 channels whose center fre-
quencies range from 80 Hz to about 500 Hz, the plausible FO
range, where harmonics of speech are generally resolved.

1) let m = my, be the first frame of the longest streak. Mark
those channels in which T-F units of S at frame m agree
with 75(m);

2) iterate until m = 1
am=m-—1;

b. check 75(m) with the two constraints;

c. if 7g(m) satisfies both constraints, mark it as reliable
and go to step 2-d Otherwise, pool the autocorre-
lations of the units at frame m and in the channels
most recently marked. Replace 75(m) with the lag
corresponding to the maximum of the summation in
the plausible pitch range [2 ms, 12.5 ms]. Check new
75(m) with the two constraints. If 75(m) is reliable,
g0 to step 2-d; otherwise, let 7s(m) = 75(m + 1) and
go to step 2;

d. Mark those channels in which T-F units of S. at frame
m agree with 7g(m).

Step 2-c in the above algorithm propagates, through a marking
process, a reliable pitch estimate using the temporal continuity
principle. The pitch periods after the longest streak are re-es-
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timated in a similar way, starting from the frame immediately
following the streak.

This algorithm sometimes results in interleaving intervals of
reliable and unreliable pitch estimates. Finally, for any interval
with unreliable pitch estimates between two reliable estimates,
the pitch periods within this interval are obtained by a simple
linear interpolation from the last frame of the preceding reliable
interval and the first frame of the succeeding one. The remaining
unreliable pitch periods are set to 0, indicating no pitch at these
frames. Because target speech in this research is a voiced utter-
ance, this procedure always produces a continuous pitch con-
tour.

Fig. 4(b) shows the re-estimated target pitch contour from the
speech and cocktail-party mixture, together with the pitch con-
tour obtained from the clean target. Except for a few frames,
the resulting pitch contour matches that of the clean speech very
well, significantly better than the dominant pitch contour, shown
in Fig. 4(a). This improvement demonstrates the benefit of ap-
plying iterative steps for pitch and target stream estimation.

B. Unit Labeling

The pitch contour computed above is used to label T-F units
according to whether target speech dominates the unit responses
or not. We label a unit by comparing its response periodicity
with the estimated pitch period. Similar to (9), u.,, is labeled as
target speech if Ag(c, m,7s(m)) is close to the maximum of
Ag (¢, m, ) within the plausible pitch range

Ag (e,m,75(m))

> Or. (10)

Ag (Cv m, TP(cv m))

We find that 7 = 0.85 is an appropriate choice. The above
criterion, referred to as the periodicity criterion, works well for
resolved harmonics, and is used to label the units belonging
to the segments generated in the initial segmentation (see
Section IV-A). Foreground and background streams are sub-
sequently adjusted. A segment is grouped into the foreground
stream, now denoted as SZ, if it agrees with the new pitch
contour of target speech, according to (10), for more than half
of its length; otherwise, it is put into the background stream,
2.

For units responding to multiple harmonics, their responses
are amplitude-modulated. As a result, the pitch of target speech
does not necessarily correspond to the global maximum of the
autocorrelation of such a unit in the plausible pitch range. The
periodicity criterion is, thus, not suitable for these units. This
problem is illustrated in Fig. 5. Fig. 5(a) shows over two consec-
utive frames the response of a gammatone filter with the center
frequency of 2.6 kHz, and the corresponding autocorrelation
function for the second frame is given in Fig. 5(b). The filter
response is strongly amplitude-modulated, and in this case, due
to the intensity changes of individual harmonics and the interac-
tion between multiple harmonics, the pitch of target speech cor-
responds to a local maximum in the autocorrelation, indicated
by a vertical line in Fig. 5(b), instead of the global maximum
within the plausible pitch range.

To deal with this problem we propose a new criterion for la-
beling units corresponding to unresolved harmonics. Our new
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Fig. 5. AM effects for the speech and cocktail-party mixture. (a) Response of

a gammatone filter in the high-frequency range, with center frequency 2.6 kHz.
(b) Corresponding autocorrelation of the hair cell response. The vertical line
marks the position corresponding to the pitch period of target speech.

criterion is based on the following fact: for a filter responding
to multiple harmonics of a single harmonic sound source, the
response envelope fluctuates at the rate of FO of the source [15].
The criterion is referred to as the AM criterion. For each unit,
the AM criterion compares AM rate with estimated pitch as fol-
lows.

First, the response of a gammatone filter over the entire utter-
ance duration is half-wave rectified and then band-passed to re-
move the DC component and all possible harmonics except for
the FO component. For every five frames, we use a filter with
passband [0.9 f, 1.2 f] and stopbands [0, 0.5 fland [1.6 f,
+00). Here, f is the average of the estimated FO over the five
frames, which is the inverse of the average estimated pitch pe-
riod in these frames. This filter uses a Kaiser window, and the
ripples of the passband and the stopbands are all 0.01. The rec-
tified and filtered signal is then normalized by its envelope to
remove the intensity fluctuations of the original mixture. That
is

r(e,n)

TE(Cv n)

7(e,n) = (11)
where r(c, n) is the rectified and filtered output in channel c at
time step n, and 7g(c, n) is the envelope of (¢, n), obtained via
the Hilbert transform. Observe that generally the pitch of natural
speech does not change noticeably within a single frame. We,
thus, model the corresponding normalized signal within a T-F
unit u.,,, by a single sinusoid with the specified period of 75(m),
in order to compare the AM rate with the estimated pitch period.

Specifically
)

12)

2T —1 2
2mn

¢em =arg min Z 7(e,mT —n)—exp [j <4
¢ n=0

7s(m)fs
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where a square error measure is used. j is the imaginary unit,
and fs = 16 kHz is the sampling frequency. Setting to O the
derivative of the square error with respect to ¢, we have

271 . ,
> #(e,mT —n)sin (W)

n=0
2mtn
Ts(m)fs

Note that within [0, 27), there are two solutions for (13). ¢, is
the one minimizing the square error, while the other maximizes
the square error. Unit u.,, is labeled as target speech if the corre-
sponding signal can be well described by the obtained sinusoidal
function, i.e., if the following square error is below a certain per-
centage of the total energy of the corresponding signal

tan em = 13)

_ZTZ_If(c, mT — n) cos (

n=0

2T—1 ) 2
nzz:() [r(c, mT —n) — cos (ﬁ + qﬁcm)]
2T—1 < Oawm-
> 72(e,mT —n)
e (14)

0 s is chosen to be 0.2, but values of # 4y between 0.1 and 0.4
give very similar results. The AM criterion is used to label T-F
units that do not belong to any segments generated in the initial
segregation; such segments, as discussed earlier, generally cor-
respond to resolved components.

For the speech and cocktail-party mixture, Fig. 6(a) gives
the units labeled as target speech according to either criterion.
Fig. 6(b) shows all the units where target speech is stronger
than intrusion. With the AM criterion, most units where target
speech is stronger are correctly labeled. However, some units
with stronger intrusion are also labeled as target speech, es-
pecially in the high-frequency range. Therefore, using unit la-
bels alone tends to group some intrusion-dominant units into
the foreground stream. An evaluation using unit labels alone is
given in Section VII. To address this issue, those units labeled as
target speech according to the AM criterion will be first merged
into segments. Then these segments are grouped into streams.
This is the task of the next stage.

VI. FINAL SEGREGATION

In this stage, segments corresponding to unresolved har-
monics are generated based on temporal continuity and
cross-channel envelope correlation. These segments are further
grouped into the foreground stream. Then, both the foreground
stream and the background stream are adjusted according to
unit labels.

A. Further Segmentation

As explained before, the responses of adjacent channels to un-
resolved harmonics exhibit very similar AM patterns and their
envelopes are highly correlated [see Fig. 2(b) and (d)]. There-
fore, further segmentation is based on cross-channel envelope
correlation in addition to temporal continuity. First, T-F units
are selected if they are labeled as target speech (Section V-B)
but do not belong to any segment generated in initial segmenta-
tion and their C'g’s are greater than 0.985, the same threshold
used in initial segmentation. Afterwards, selected neighboring
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Fig. 6. Results of unit labeling for the speech and cocktail-party mixture. (a) Units labeled as target speech. Gray regions: units labeled by the periodicity criterion;
black regions: units labeled by the AM criterion. (b) Units where target speech is stronger than intrusion. Note that the target pitch contour (i.e., target speech) does
not extend to the beginning or ending time frames, hence, no processing in those periods.
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Fig. 7. Results of final segregation for the speech and cocktail-party mixture. (a) New segments formed in the final segregation. (b) Final foreground stream.

units are iteratively merged into segments. Finally, to reduce the
influence of noise intrusion, segments shorter than 50 ms are re-
moved. All the generated segments are added to SZ.

Fig. 7(a) shows the new segments generated in this process for
the speech and cocktail-party mixture. Although many units in
the high-frequency range are incorrectly labeled as target speech
[see Fig. 6(a)], the segments in Fig. 7(a) contain mainly units
where target speech is stronger.

B. Final Grouping

The spectra of target speech and intrusion often overlap and,
as a result, some segments generated in initial segmentation
(Section IV-A) contain units where target dominates as well as
those where intrusion dominates. Given unit labels generated in
Section V-B, we further divide a segment in 5']‘,27 into smaller
ones so that all the units in a segment have the same label. Then
the segments in S% are adjusted as follows:

1) segments with the target label are retained in S% if they
are no shorter than 50 ms;
segments with the intrusion label are added to S% if they
are no shorter than 50 ms;
remaining segments are removed from S%, and they be-
come undecided.

Then S% expands iteratively to include undecided segments in
its neighborhood. All the remaining undecided segments are
added back to S%.

The above adjustment applies to only the foreground stream.

Segments in the background stream could be processed in a sim-

2)

3)

ilar way, which may help to recover some target units. However,
this procedure can also lead to over-grouping of the foreground
since unit labeling is not error free as discussed in Section V-B.
Therefore, the segments in the background stream are not ad-
justed.

Finally, individual units that do not belong to either stream
are grouped into the foreground stream iteratively if they are
labeled as target speech and in the neighborhood of the fore-
ground stream. The result of this is the final segregated stream
of target speech, denoted as S3.. The remaining units are added
to the background stream, yielding S3,.

Fig. 7(b) illustrates S3. segregated from the speech and cock-
tail-party mixture. Comparing with Fig. 6(b), this stream con-
tains most of the units where target speech is stronger. In addi-
tion, only a small number of units where intrusion is stronger
are incorrectly grouped into S3.. Fig. 8 illustrates the segrega-
tion result in waveform format for the speech and cocktail party
mixture. The clean speech is shown in Fig. 8(a), the mixture in
Fig. 8(b), and the segregated speech in Fig. 8(c). To facilitate
comparison between these waveforms, an all-one mask is used
to synthesize the waveforms in Fig. 8(a) and (b). One can easily
see that the segregated speech waveform is much more similar
to the clean speech than the mixture waveform.

VII. EVALUATION AND COMPARISON

Our model is evaluated with a corpus of 100 mixtures com-
posed of 10 voiced utterances mixed with 10 intrusions collected
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TABLE 1
SNR RESULTS
Intrusion No N1 N2 N3 N4 NS N6 N7 N8 N9 |Average
Mixture -3.26 -4.07 10.19 434 399 -582 190 6.62 1037 0.73 | 2.50
Proposed model 1634 7.83 16.71 832 10.88 1441 16.89 11.97 14.44 527 | 12.30
Pitch-labeled mask 494 514 16.68 827 9.60 7.50 7.87 10.56 14.67 3.15| 8.83
Ag-based mask 16.06 038 1690 8.07 9.06 14.65 16.10 11.83 14.19 534 | 11.26
True pitch 1633 835 17.71 879 11.56 15.06 17.76 12.31 1532 6.04 | 12.92
Narrow band 988 6.74 11.44 694 895 833 1131 9.15 10.60 398 | 8.73
Comb filter 3.12 3.01 1328 872 832 225 6.56 10.57 13.19 539 | 7.44
Wang-Brown system | 11.31 493 11.19 5.65 872 1044 11.15 9.22 10.84 2.66 | 8.61
Spectral subtraction | 18.35 3.05 16.00 6.14 832 -551 4.85 823 1090 246 | 7.28
Ideal binary mask 20.76 9.04 2290 9.72 13.19 18.40 21.53 15.78 18.10 10.05| 15.95

by Cooke [8], which has been used to test CASA systems [5],
[8], [10], [12], [33] and, hence, facilitates our comparison. The
sampling frequency is 16 kHz. The intrusions have a consider-
able variety. Specifically, the 10 intrusions are: NO, 1-kHz pure
tone; N1, white noise; N2, noise bursts; N3, “cocktail party”
noise; N4, rock music; N3, siren; N6, trill telephone; N7, fe-
male speech; N8, male speech; and N9, female speech.

An unsolved issue in CASA research is how to quantitatively
assess the performance of a CASA system [29]. An objective
and straightforward criterion is to measure SNR before and after
segregation, using target speech before mixing as signal. As dis-
cussed later, this conventional SNR criterion has undesirable
properties for measuring CASA performance. Since it is com-
monly used, we first report our results using this criterion. To
compensate for amplification and distortion effects introduced
in the resynthesis process, we use resynthesized target speech
with an all-one mask as signal to compute SNR for evaluation
cases that involve masks. Table I gives a variety of SNR results,
including those of our model and original mixtures. Each value

in the table represents the average SNR for one intrusion mixed
with 10 target utterances. A further average across all intrusions
is shown in the last column of the table. As can be seen in the
table, our system improves the SNR for every intrusion, pro-
ducing a gain of 9.8 dB over the original mixtures. Large SNR
improvements are obtained for intrusions whose spectra do not
significantly overlap with those of target utterances (e.g., NO and
N5), whereas improvements are modest for intrusions with sig-
nificant overlap (e.g., N3 and N8).

We choose two broadband intrusions: N1 and N3, for closer
examination of model performance with respect to varying
SNR levels. The target speech, 10 voiced utterances, remains
the same, and we vary the level of intrusion to obtain mixture
SNR levels ranging from —15 dB to 20 dB. The SNR values
of input and output are shown in Fig. 9. When the input SNR
is lower than —10 dB, intrusion is stronger than target speech
almost everywhere, and our system basically rejects almost the
entire input signal and the output SNR is around 0 dB. As the
input SNR increases, our system groups more target speech,
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Fig. 9. SNR results of segregated speech with respect to different SNR levels
of input mixtures. Two noise intrusions are N1 (white noise) and N3 (cocktail
party noise).

resulting in significant SNR improvements. When the input
SNR is very high (greater than 15 dB), target speech is stronger
than intrusion in a majority of T-F units. Although our system
retains much of target speech, it still loses some target energy
and therefore cannot improve the SNR. Note that our system
performs uniformly better for N1 than for N3 since the latter
overlaps more extensively with target speech.

To illustrate the effect of segmentation and final segregation
(see Fig. 1), we measure the SNR performance for pitch-labeled
binary masks, i.e., the masks resulting from pitch-based unit
labeling described in Section V-B. The SNR results for pitch-
labeled masks are given in the third row of Table I. It is clear that
the performance of a system using pitch information only is not
as good, especially for the intrusions of NO, N5, and N6, which
have strong components with frequencies close to harmonics
of target speech. On average, there is an SNR drop of more
than 3 dB compared to the overall model.

Our system labels T-F units in the high-frequency range
through sinusoidal modeling. A simpler alternative is to use the
autocorrelations of response envelopes, i.e., A g, much like Ay
is used in the low-frequency range. The fourth row of Table I
reports the results of this alternative labeling with the rest of the
system kept the same. The performance of Apg-based masks is
not much worse except for N1, white noise, where sinusoidal
modeling gives significantly better labeling.

When a CASA system like ours makes a segregation error,
it may be caused by errors in pitch estimation or pitch-based
grouping. To examine more closely the type of error, we em-
ploy the use of true pitch information for speech segregation.
True pitch is obtained from premixing target speech and further
verified manually to ensure high quality. The fifth row of Table I
gives the SNR results for our system using true pitch instead
of estimated pitch. With true pitch, the system performs only
slightly better. This suggests that estimated pitch of our system
is quite accurate.

A main novel aspect of our model is a careful treatment of
unresolved harmonics in the high-frequency range, caused by
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broader bandwidths of higher frequency channels in the gam-
matone filterbank. A legitimate question is, are we solving a
problem created by our choice of a filterbank in the first place?
To examine this question, we employ an alternative filterbank
with a fixed narrow bandwidth. The alternative filterbank con-
tains 128 gammatone filters equally spaced from 80 Hz to 5 kHz,
the same number of filters covering the same frequency range
as the auditory filterbank used in our model. These filters have
the same bandwidth and adjacent filters are half-overlapped.
This filterbank can resolve all the harmonics of target speech so
there is no need to address the issue of unresolved harmonics.
The segregation is then performed in the same way as that for
the low-frequency range in our model using the same estimated
pitch. The SNR results are given in Table I in the sixth row in-
dicated by “Narrow band.” The results are not as good as those
using the original gammatone filterbank. We think that the drop
in performance can be attributed to two factors. First, in the
high-frequency range, an error in estimated FO gets multiplied
in higher harmonics and, hence, treating multiple harmonics to-
gether in the same channel may enhance the robustness to pitch
estimation errors. Second, although some intrusion components
have frequencies near those of target harmonics, these compo-
nents are less likely to produce an AM pattern similar to that of
target speech.

We also compare our system with the comb filtering method,
which is another narrow-band algorithm to extract a harmonic
series using pitch information [11]. Given a target pitch, the
filter retains target speech and attenuates interference whose fre-
quency components are incompatible with the target harmonic
series. To check how well harmonic extraction works we supply
the true pitch contour of target speech to a comb filter with 3 co-
efficients at every 20-ms frame. The resulting SNR is shown in
the seventh row of Table I. The comb filter results are worse
than those of the narrow-band filterbank. Note that when the
input is target speech alone, the resulting SNR from comb fil-
tering is consistently higher than 20 dB. This suggests that poor
performance of comb filtering stems from retaining too much
interference. This should not come as a surprise since the comb
filter passes though all frequency components close to the mul-
tiples of target FO.

The above comparisons with narrow-band gammatone filter-
bank and comb filter suggest that the use of an auditory filter-
bank produces real performance gains. As far as we know, this
is the first time an auditory filterbank is compared quantitatively
with alternative filtering methods in the context of speech segre-
gation. Our results provide further credence to previous reports
that an auditory-based front-end is less sensitive to background
intrusions [14], [19].

The CASA model by Wang and Brown is representative of
recent CASA systems [33]. The processing of the Wang—Brown
model is similar to the first two stages of our model (see Fig. 1).
The SNR results of the model are shown in Table I. Our system
performs consistently better than the Wang—Brown system.

Table I also shows a comparison with the spectral subtraction
method [17], which is a standard method for speech enhance-
ment. The method is applied as follows. For each intrusion, we
find its duration and obtain its average power spectrum within
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TABLE 1I
Py AND Py i RESULTS
Proposed model ‘Wang-Brown system Mixture
Intrusion
PEL (%) PNR (%) PEL (%) PNR (%) PNR (%)
NO 2.00 0.02 6.99 0 67.76
N1 5.87 2.43 28.96 1.61 57.16
N2 1.34 1.05 5.77 0.71 5.04
N3 438 2.20 21.92 1.92 18.15
N4 3.84 1.75 10.22 1.41 27.17
NS5 2.65 0.04 7.47 0 78.84
N6 1.52 0.37 5.99 0.48 39.24
N7 3.02 1.83 8.61 423 16.68
N8 1.71 1.34 7.27 0.48 7.37
N9 10.11 17.27 15.81 33.03 43.09
Average 3.64 2.83 11.91 4.39 36.05

the duration. This average is used as the estimate of the intru-
sion. Then for the corresponding mixtures, spectral subtraction
is applied within the corresponding duration. The intrusions in
our test corpus are generally continuous except for N2, which
contains a sequence of short noise bursts. For this intrusion, sub-
traction is applied within each burst. Note that it is a difficult
task to detect the onset and offset and obtain the power spec-
trum of a nonstationary intrusion. In this comparison, such in-
formation is already made available to the spectral subtraction
method. The SNR results are shown in Table I. The spectral sub-
traction method performs significantly worse than our system.
This is because of its well known deficiency in dealing with non-
stationary interference.

Despite its common use, the conventional SNR criterion does
not take into consideration related perceptual effects such as
auditory masking and the ear’s insensitivity to phase spectrum
[15]. Furthermore, when segregated target is different from
original target, the criterion does not provide much information
about how they are different. Given our objective of identifying
T-F regions with stronger target (see Section I), we here sug-
gest to use an ideal binary mask as the ground truth of target
stream. An ideal binary mask is constructed as follows: a T-F
unit in the mask is assigned 1 if the target energy in the unit
is greater than the intrusion energy and O otherwise. With the
availability of target and intrusion before mixing, as is the case
for our evaluation corpus, ideal binary masks can be readily
constructed. We call such a mask “ideal” because it represents
our computational objective and it is an a priori mask con-
structed using premixing target and intrusion. Fig. 6(b) displays
the ideal mask for the speech and cocktail-party mixture, where
black regions correspond to 1. In addition to the SNR justifi-
cation given in Section I, the use of ideal masks is supported
by the auditory masking phenomenon: within a critical band a
weaker signal is masked by a stronger one [26]. An ideal mask
is also similar to an a priori mask used in a recent ASR study
[9], which yields excellent recognition performance. The SNR
results from ideal binary masks are shown in Table I, and they
are uniformly better than those of our model—on average 3.65
dB higher. This gives an indication on how much our model
could be further improved in terms of conventional SNR.

Let O(n) donate the resulting speech from our system. The
speech waveform resynthesized from the ideal binary mask is

denoted by I(n). Let e;(n) denote the signal present in I(n)
but missing from O(n), and ex(n) the signal present in O(n)
but missing from I(n). Then, the percentage of energy loss,
Pg, and the percentage of noise residue, Py g, are calculated
as follows:

Y ei(n)

Pgr = ip(") (15a)
5 3(n)

Pygr = 27}02(71) (15b)

Ppgr, indicates the percentage of target speech excluded from
segregated speech, and Pyp the percentage of intrusion in-
cluded. They provide complementary error measures of a
segregation system and a successful system needs to achieve
low errors in both measures. To obtain e;(n), a mask is con-
structed as follows. A T-F unit is assigned 1 if and only if it is
1 in the ideal binary mask but 0 in the segregated target stream.
e1(n) is then obtained by resynthesizing the input mixture from
the obtained mask. e5(n) is obtained in a similar way.

The results from our model are shown in Table II. As in
Table I, each value in the table represents the average result
of one intrusion with 10 voiced utterances, and a further av-
erage across all intrusions is also shown. On average, our system
retains 96.36% of target speech energy, and the percentage of
noise residue is kept at 2.83%. The percentage of noise residue
for the original mixtures is 36.05%, as shown in the table; energy
loss is obviously zero for the original mixtures. As indicated by
the table, our model achieves very good performance across the
corpus. In particular, the errors measured by Pgy, and Py are
balanced in our system.

As a comparison, Table II also shows the results from the
Wang—Brown model. Our model produces an improvement in
both Pg;, and Py measures. In particular, our system has cut
Pgy, from 11.91% with their system to 3.64% with our system;
the improvement is especially noticeable for N1 and N3. Both
models achieve a low level of Py g, except for N9, where our
result is much better. The good performance in Py g reflects the
conservative strategies employed by the models in dealing with
intrusions: both models tend to exclude uncertain units from the
foreground stream.
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TABLE III
Py AND Py g RESULTS IN THE HIGH-FREQUENCY RANGE
Proposed model ‘Wang-Brown system Mixture
Intrusion
PEL (%) PNR (%) PEL (%) PNR (%) PNR (%)
NO 21.11 0.35 64.54 0 96.82
N1 59.16 46.20 83.66 66.08 96.00
N2 13.50 16.79 50.80 32.75 44.02
N3 26.35 5.30 74.99 15.00 42.57
N4 34.84 33.88 78.22 60.45 81.31
N5 20.94 0.83 63.26 0 97.90
N6 17.07 6.92 48.21 14.50 91.26
N7 22.60 9.80 64.25 24.78 43.49
N8 13.21 5.56 49.52 2.38 31.07
N9 28.16 4.92 69.17 25.88 27.72
Average 25.70 13.05 64.65 24.17 65.22
Since our model applies different mechanisms to segregate % ' B Mixture
resolved and unresolved harmonics, it is instructive to present ; g;%%?:%?&?:clmon
the performance in the high-frequency range separately. For this 201 ;31 . Wang-Brown model ||
purpose, we calculate Pgy, and Py g for only the filter channels Eg i
with center frequencies greater than 1 kHz. Note that since the 151 Eif EEE 1
FO range of target speech is from 80 Hz to 160 Hz, target har- ,(
monics in the frequency range above 1 kHz are generally unre- 10F Eg & ]
solved. The corresponding results are shown in Table III. It is (% § ‘ff
clear from the average Py g of the original mixtures that intru- 5+ § § | .
sions are much stronger in the high-frequency range. Our model § § |
achieves large improvements in both Pgy, and Py g. K .

To compare waveforms directly we also measure SNR in
decibels using the resynthesized speech from the ideal binary
mask as ground truth

> I (n)
> ((n) = O(n))”

The SNR for each intrusion averaged across 10 target utterances
is shown in Fig. 10, together with the SNR of the original mix-
tures and the results from the Wang—Brown system and spectral
subtraction. Note that for an original mixture and an output
from spectral subtraction, an all-one mask is used against the
corresponding ideal binary mask. The corresponding SNRs
are shown in Fig. 10, which are a little higher than that in
Table 1. All three systems show improvements compared to
original mixtures. Compared with the Wang—Brown model,
our system yields at least a 3-dB SNR improvement for every
intrusion type. The average improvement for the entire corpus
is about 5.2 dB. The Wang—Brown model in turn performs 1.2
dB better on average than spectral subtraction. As expected
spectral subtraction produces uneven results for the intrusions;
for example, its performance is the best for NO (pure tone)
among all the methods.

SNR = 10log,,

(16)

VIII. DISCUSSION

Our system segregates voiced speech based on the analysis
of temporal information in the input, the temporal fine structure
of a resolved harmonic and the temporal envelope of an unre-
solved harmonic. There is evidence suggesting that the auditory
system uses the temporal patterns of neural spikes to code the
input sound [6]. Models based on temporal coding of the input,

NO N1 N2 N3 N4 N5 N6 N7 N8 N9
Intrusion Type

Fig. 10. SNR results against ideal binary masks for segregated speech and
original mixtures. White bars show the results from the proposed model, gray
bars those from the Wang—Brown system, cross bars those from the spectral
subtraction method, and black bars those of original mixtures.

such as correlogram, have been employed to model auditory per-
ception, especially pitch perception, and have successfully ex-
plained many observed perceptual phenomena [6], [25], [31].

Like previous CASA systems, our system exploits the
grouping cues of harmonicity and temporal continuity to seg-
regate voiced speech [5], [8], [33], [34]. However, our system
is substantially different from previous studies in the way such
ASA cues are utilized. First, our system applies different mech-
anisms to deal with resolved and unresolved harmonics, and
uses AM of filter responses to segregate unresolved harmonics.
Second, target pitch is estimated from a segregated speech
stream, which in turn is based on dominant pitch estimation;
estimated target pitch is used for final segregation. This, in
fact, can be viewed as an instance of iteratively performing
pitch estimation and harmonic segregation. This iterative esti-
mation-segregation process enables us to obtain accurate pitch
information. Extensive evaluation results in the previous section
demonstrate that our model performs substantially better than
other systems aiming at similar objectives. The evaluation also
compares a range of alternative methods for components of the
model.
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TABLE IV
Symbol Definition
t Time
f Center frequency of a filter
n Index of time sample
fs Sampling frequency
¢ Index of filter channel
m Index of time frame
Uem T-F unit in channel ¢ at frame m
g Impulse response of a gammatone filter
/ Order of a gammatone filter
b Bandwidth of a gammatone filter
Ay, A | Autocorrelation and normalized autocorrelation of filter response
Ap, A | Autocorrelation and normalized autocorrelation of response envelope
Cy Cross-channel correlation of QIH
Cg Cross-channel correlation of A 5
h Hair cell output
hg Envelope of hair cell output
N, Number of samples in the time window for computing 4, and 4, in channel ¢
T Number of samples in a frame shift (10 ms)
L Number of samples in the maximum delay for 4y (12.5 ms)
T Time delay
[ Dominant pitch delay
75 Estimated target pitch delay
7p Delay corresponding to the maximum of 4y within the plausible pitch range
s Summary correlogram at a certain frame
S Summary correlogram of the foreground stream at a certain frame
Oy Spontaneous firing rate of the auditory nerve (set to 50)
6 Threshold for determining segment formation using cross-channel correlation (set to 0.985)
73 Threshold for determining the agreement between a T-F unit and estimated pitch (set to 0.95)
o Threshold for labeling units using the time criterion (set to 0.85)
[ Threshold for labeling units using the AM criterion (set to 0.2)
S} R S; Obtained foreground and background stream at stage i (i =0, 1, 2, 3)
)_’ Average of estimated FO over 5 frames
r,rg, r | Rectified and filtered output of gammatone filter, its envelope, and normalized version
[ Estimated phase for the matching sinusoid of 7 in channel ¢ at frame m
I Clean target speech
(@) Output of segregated speech
el Signal present in / but missing from O
e Signal present in O but missing from /
Py Percentage of energy loss
Prr Percentage of noise residue

Amplitude modulation has been explored by Weintraub [34]
and Cooke [8]. Specifically, Weintraub used a coincidence
function, a version of autocorrelation, to capture periodicity
as well as AM. Then pitch contours of multiple utterances
are tracked from coincidence functions. Sound separation is
achieved through an iterative spectral estimation according to
pitch and temporal continuity. Cooke’s model first generates
local elements based on filter response frequencies and tem-
poral continuity. Segments are merged into groups based on
common harmonicity and AM. Then a pitch contour is obtained
from each group and groups with similar pitch contours are put
into the same stream. Both of these studies use AM primarily
for grouping, whereas we use it to deal with unresolved har-
monics in both segmentation and grouping. As a result, our
model performs significantly better.

As mentioned before, the first two stages of our system (see
Fig. 1) are similar to the Wang—Brown system [33]. Their model,
however, does not perform subsequent processing, and its per-

formance as a result is substantially worse. Nonetheless, the os-
cillatory correlation mechanism [32] employed in their model
can be similarly used to implement the stages introduced in
our model. These new processes include further segmentation
for unresolved harmonics and further grouping that adjusts the
foreground and background stream according to extracted target
pitch.

The AM criterion plays an essential role in labeling T-F units
corresponding to unresolved harmonics. Our model compares
an AM rate with estimated pitch by sinusoidal modeling and
subsequent gradient descent. In a previous study, we obtained
AM rates by extracting the instantaneous frequencies of filter re-
sponses [16]. The results there were similar to those in Table II
and Fig. 10. One advantage of the current method is that it is
much more efficient computationally. Our model decomposes
the input signal with a 128-channel gammatone filterbank. We
have also tried a 256-channel filterbank, but seen no signifi-
cant improvement in performance. In addition, our model uses
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a 4-unit neighborhood for segment formation and grouping. We
have tried an 8-unit neighborhood, but results are similar.

The performance of the proposed model depends on the ac-
curacy of an estimated target pitch contour. For most mixtures
in the evaluation corpus, estimated pitch contours match those
obtained from clean target speech well. However, our pitch
tracking method is designed for voiced targets, and its utility as
a general pitch determination algorithm is uncertain. Recently,
Wu et al. proposed a robust algorithm for multipitch tracking
for speech utterances in the presence of other interfering
sources [35]. Such general pitch determination algorithms
may be incorporated into our system to broaden its scope for
monaural speech segregation.

The proposed system considers the pitch contour of a target
source only. However, it is possible to track the pitch contour
of intrusion if it has a harmonic structure. With two pitch con-
tours, one could label a T-F unit more accurately by comparing
whether its periodicity is more consistent with one or the other.
Such a method is expected to lead to better performance for
the two-speaker situation, e.g., N7, N8, and N9. As indicated
in Table I, Table II, and Fig. 10, the performance of our system
for this kind of intrusions is relatively limited.

Our model performs grouping based only on pitch. As a re-
sult, it is limited to segregation of only voiced speech. In our
view, unvoiced speech poses the biggest challenge for monaural
speech segregation. Other grouping cues, such as onset, offset,
and timbre, have been demonstrated to be effective for human
ASA [4], and may play a role in grouping unvoiced speech.
Also, it appears that one must consider acoustic and phonetic
characteristics of individual unvoiced consonants. We plan to
investigate these issues in future study.

APPENDIX
SYMBOLS AND THEIR DEFINITIONS

Please see Table IV, shown on the previous page.
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