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A Tandem Algorithm for Pitch Estimation
and Voiced Speech Segregation
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Abstract—A lot of effort has been made in computational au-
ditory scene analysis (CASA) to segregate speech from monaural
mixtures. The performance of current CASA systems on voiced
speech segregation is limited by lacking a robust algorithm for
pitch estimation. We propose a tandem algorithm that performs
pitch estimation of a target utterance and segregation of voiced
portions of target speech jointly and iteratively. This algorithm
first obtains a rough estimate of target pitch, and then uses this
estimate to segregate target speech using harmonicity and tem-
poral continuity. It then improves both pitch estimation and voiced
speech segregation iteratively. Novel methods are proposed for per-
forming segregation with a given pitch estimate and pitch deter-
mination with given segregation. Systematic evaluation shows that
the tandem algorithm extracts a majority of target speech without
including much interference, and it performs substantially better
than previous systems for either pitch extraction or voiced speech
segregation.

Index Terms—Computational auditory scene analysis (CASA),
iterative procedure, pitch estimation, speech segregation, tandem
algorithm.

1. INTRODUCTION

PEECH segregation, or the cocktail party problem, is a
S well-known challenge with important applications. For ex-
ample, automatic speech recognition (ASR) systems perform
substantially worse in the presence of interfering sounds [27],
[36] and could greatly benefit from an effective speech segrega-
tion system. Background noise also presents a major difficulty
to hearing aid wearers, and noise reduction is considered a great
challenge for hearing aid design [12]. Many methods have been
proposed in monaural speech enhancement [28]. These methods
usually assume certain statistical properties of interference and
tend to lack the capacity to deal with a variety of interference.
While voice separation has proven to be difficult, the human
auditory system is remarkably adept in this task. The perceptual
process is considered as auditory scene analysis (ASA) [6]. Psy-
choacoustic research in ASA has inspired considerable work in
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developing computational auditory scene analysis (CASA) sys-
tems for speech segregation (see [39] for a comprehensive re-
view).

Natural speech contains both voiced and unvoiced portions,
and voiced portions account for about 75%—-80% of spoken Eng-
lish [19]. Voiced speech is characterized by periodicity (or har-
monicity), which has been used as a primary cue in many CASA
systems for segregating voiced speech (e.g., [8] and [16] ). De-
spite considerable advances in voiced speech separation, the
performance of current CASA systems is still limited by pitch
(FO) estimation errors and residual noise. Various methods for
robust pitch estimation have been proposed [11], [24], [33],
[40]; however, robust pitch estimation under low signal-to-noise
ratio (SNR) situations still poses a significant challenge. Since
the difficulty of robust pitch estimation stems from noise inter-
ference, it is desirable to remove or attenuate interference before
pitch estimation. On the other hand, noise removal depends on
accurate pitch estimation. As aresult, pitch estimation and voice
separation become a “chicken and egg” problem [11].

We believe that a key to resolve the above dilemma is the
observation that one does not need the entire target signal to
estimate pitch (a few harmonics can be adequate), and without
perfect pitch one can still segregate some target signal. Thus, we
suggest a strategy that estimates target pitch and segregates the
target in tandem. The idea is that we first obtain a rough esti-
mate of target pitch, and then use this estimate to segregate the
target speech. With the segregated target, we should generate
a better pitch estimate and can use it for better segregation, and
so on. In other words, we propose a new algorithm that achieves
pitch estimation and speech segregation jointly and iteratively.
We call this method a tandem algorithm because it alternates
between pitch estimation and speech segregation. This idea was
present in a rudimentary form in our previous system for voiced
speech segregation [16] which contains two iterations. Besides
this idea, novel methods are proposed for segregation and pitch
estimation; in particular, a classification based approach is pro-
posed for pitch-based grouping.

The separation part of our tandem system aims to identify the
ideal binary mask (IBM). With a time—frequency (T-F) repre-
sentation, the IBM is a binary matrix along time and frequency
where 1 indicates that the target is stronger than interference
in the corresponding T-F unit and O otherwise (see Fig. 5 later
for an illustration). To simplify notations, we refer to T-F units
labeled 1 and those labeled O as active and inactive units, re-
spectively. We have suggested that the IBM is a reasonable goal
for CASA [16], [37], and it has since been used as a measure
of ceiling performance for speech separation [26], [31], [32].
Recent psychoacoustic studies provide strong evidence that the
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IBM leads to large improvements of human speech intelligi-
bility in noise [9], [25].

This paper is organized as follows. Section II describes T-F
decomposition of the input and feature extraction. The tandem
algorithm has two key steps: estimating the IBM given an es-
timate of target pitch and estimating the target pitch given an
estimated IBM. We describe these two steps in Sections III and
IV. The tandem algorithm is then presented in Section V. Sys-
tematic evaluation on pitch estimation and speech segregation is
given in Section VI, followed by discussion in Section VII and
conclusion in Section VIII.

II. T-F DECOMPOSITION AND FEATURE EXTRACTION

We first decompose an input signal in the frequency domain
with a bank of 128 gammatone filters [30], with their center fre-
quencies equally distributed on the equivalent rectangular band-
width rate scale from 50 to 8000 Hz (see [39] for details). In each
filter channel, the output is divided into 20-ms time frames with
10-ms overlap between consecutive frames. The resulting T-F
representation is known as a cochleagram [39]. At each frame
of each channel, we compute a correlogram, a running autocor-
relation function (ACF) of the signal, within a certain period
of time delay. Each ACF represents the periodicity of the filter
response in the corresponding T-F unit. Let u..,,, denote a T-F
unit for channel ¢ and frame m and z(c, t) the filter response
for channel c at time £. The corresponding ACF of the filter re-
sponse is given by (1) shown at the bottom of the page. Here,
7 is the delay and n denotes discrete time. T},, = 10 ms is the
frame shift and T;, is the sampling time (e.g., T, = 0.0625 ms
for the signal sampling frequency of 16 kHz used in this study).
The above summation is over 20 ms, the length of a time frame.
The periodicity of the filter response is indicated by the peaks in
the ACF, and the corresponding delays indicate the periods. We
calculate the ACF within the following range: 77,, € [0, 15 ms],
which includes the plausible pitch frequency range from 70 to
400 Hz [29].

It has been shown that, cross-channel correlation, which
measures the similarity between the responses of two adja-
cent filters, indicates whether the filters are responding to the
same sound component [8], [38]. Hence, we calculate the
cross-channel correlation of ., with 2,41 ., by (2) shown at
the bottom of the page, where A denotes the average of A.
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When the input contains a periodic signal, high-frequency
filters respond to multiple harmonics of the signal and these
harmonics are called unresolved. Unresolved harmonics trigger
filter responses that are amplitude-modulated, and the response
envelope fluctuates at the FO of the signal [14]. Here, we ex-
tract envelope fluctuations corresponding to target pitch by half-
wave rectification and bandpass filtering, and the passband cor-
responds to the plausible FO range of target speech. Then, we
compute the envelope ACF, Ag(c,m, 7), and the cross-channel
correlation of response envelopes, Cg(c, m), similar to (1) and

2).

III. IBM ESTIMATION GIVEN TARGET PITCH

A. Unit Labeling With Information Within Individual T-F Units

We first consider a simple approach: a T-F unit is labeled 1
if and only if the corresponding response or response envelope
has a periodicity similar to that of the target. As discussed in
Section II, the periodicity of a filter response is indicated by the
peaks in the corresponding ACF. Let 75(m) be the estimated
pitch period at frame .. When a response has a period close to
Ts(m), the corresponding ACF will have a peak close to 75(m).
Previous work [16] has shown that A(c,m,7s(m)) is a good
measure of the similarity between the response period in v,
and estimated pitch.

Alternatively, one may compare the instantaneous frequency
of the filter response with the estimated pitch directly. However,
in practice, it is extremely difficult to accurately estimate the
instantaneous frequency of a signal [3], [4], and we found that
labeling T-F units based on estimated instantaneous frequency
does not perform better than using the ACF-based measures.

We propose a different approach to pitch-based labeling.
Specifically, we construct a classifier that combines these two
kinds of measure to label T-F units. Let f(c,m) denote the
estimated average instantaneous frequency of the filter response
within unit w.,,. If the filter response has a period close to
75(m), then f(c,m) - 75(m) is close to an integer greater than
or equal to 1. Similarly, let fz(c, m) be the estimated average
instantaneous frequency of the response envelope within ., .
If the response envelope fluctuates at the period of 75 (m), then
fr(c,m) - 7,(m) is close to 1. Let (3), shown at the bottom of

> a(e,mTy, — nTy)x(c,mT,, —nT, —7T),)

Ale,m, ) = \/2;172(&/ mT, —nT,) ;xz(c,me —nT, — TTn)' M
S [A(e,m, ) — A m[A(e+1,m,7) — A@F T, )
C(e,m) = = 2

T

\/Z [A(e,m,T) — A(e,m)]2 > [A(c+ 1,m,7) — A(c+ 1,m)]?
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the page, be a set of six features, the first three of which cor-
respond to the filter response and the last three to the response
envelope. In (3), the function int(z) returns the nearest integer.
This 6-dimensional vector incorporates both autocorrelation
and instantaneous-frequency features calculated from both
filter responses and response envelopes. Note that the feature
vector is a function of a given pitch period.

Let Hy be the hypothesis that a T-F unit is target dominant
and H; otherwise. u., is labeled as target if and only if

P(Hol|rem(7s(m))) > P(Hilrem(rs(m))).  (4)
Since
P(Holrem(ts(m))) =1 = P(Hilrem(s(m))).  (5)
Equation (4) becomes
P(Ho|rem(rs(m))) > 0.5. (6)

In this paper, we estimate the instantaneous frequency of the
response within a T-F unit simply as half the inverse of the in-
terval between zero-crossings of the response [4], assuming that
the response is approximately sinusoidal. Note that a sinusoidal
function crosses zero twice within a period.

For classification, we use a multilayer perceptron (MLP) with
one hidden layer [34] to compute P(Hg|r . (7)) for each filter
channel. The desired output of the MLP is 1 if the corresponding
T-F unit is target dominant and O otherwise (i.e., the IBM).
When there are sufficient training samples, the trained MLP
yields a good estimate of P(Hg|rem (7)) [7]. In this paper, the
MLP for each channel is trained with a corpus that includes
all the utterances from the training part of the TIMIT database
[13] and 100 intrusions. These intrusions include crowd noise
and environmental sounds, such as wind, bird chirp, and am-
bulance alarm.!. Utterances and intrusions are mixed at 0-dB
SNR to generate training samples; the target is a speech utter-
ance and interference is either a nonspeech intrusion or another
utterance. We use Praat [5] which is a standard pitch estimation
algorithm, to estimate the target pitch from a premixed target ut-
terance. The number of units in the hidden layer is determined
using cross-validation. Specifically, we divide the training sam-
ples equally into two sets, one for training and the other for val-
idation. The number of units in the hidden layer is chosen to be
the minimum such that adding more units in the hidden layer
will not yield any significant performance improvement on the
validation set. Since most obtained MLPs have five units in their
hidden layers, we let every MLP have five hidden units for uni-
formity.

IThe intrusions are posted at http://www.cse.ohio-state.edu/pnl/corpus/Hu-
Corpus.html
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Fig. 1. Autocorrelation function and target probability given pitch. (a) ACF
of the filter response within a T-F unit in a channel centered at 2.5 kHz. (b)
Corresponding ACF of the response envelope. (c) Probability of the unit being
target dominant given target pitch period 7.

Fig. 1(a) and (b) shows the sample ACFs of a filter response
and the response envelope in a T-F unit. The input is a fe-
male utterance, “That noise problem grows more annoying
each day,” from the TIMIT database. This unit corresponds
to the channel with the center frequency of 2.5 kHz and the
time frame from 790 to 810 ms. Fig. 1(c) shows the corre-
sponding P(Ho|rem (7)) for different 7 values. The maximum
of P(Hy|rem/(7)) is located at 5.87 ms, the pitch period of the
utterance at this frame.

The obtained MLPs are used to label individual T-F units ac-
cording to (6). Fig. 2(a) shows the resulting error rate by channel
for all the mixtures in a test corpus (see Section V-B). The
error rate is the average of false acceptance and false rejection.
As shown in the figure, with features derived from individual
T-F units, we can label about 70%—-90% of the units correctly
across the whole frequency range. In general, T-F units in the
low-frequency range are labeled more accurately than those in
the high-frequency range. Fig. 2 also shows the error rate by
using only subsets of the features from the feature set, 7¢,, (7).
As shown in this figure, the ACF values at the pitch point and
instantaneous frequencies provide complementary information.
The response envelope is more indicative than the response it-
self in the high-frequency range. Best results are obtained when
all the six features are used.

It is worth noting that this study represents the first clas-
sification-based approach (specifically MLP) to pitch-based

Tem(T) = (A(qmﬁ),
Ag(c,m,T),

fle;m)r —int(f(c,m)7),
fe(c,m)T —int(fg(c,m)7),

int(f(c, m)r),
int(fg(c, m)7)) (€)]
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Fig. 2. Error percentage in T-F unit labeling using different subsets of six fea-
tures (see text for definitions) given target pitch. (a) Comparison between all six
features. (b) Comparison between the first three features. (c) Comparison be-
tween the last three features.

grouping. Casting grouping as classification affords us the
flexibility of using a 6-D feature vector that combines auto-
correlation and instantaneous-frequency measures. Besides
using MLPs, we have considered modeling the distribution of
Tem (7) using a Gaussian mixture model as well as a support
vector machine based classifier [15]. However, the results are
not better than using the MLPs.

B. Multiple Harmonic Sources

When interference contains one or several harmonic signals,
there are time frames where both target and interference are
pitched. In such a situation, it is more reliable to label a T-F
unit by comparing the period of the signal within the unit with
both the target pitch period and the interference pitch period.
In particular, u.,, should be labeled as target if the target period
not only matches the period of the signal but also matches better
than the interference period, i.e.,

{P(Holrcm(Ts(m))) > P(Hilrem(rg(m)))

P(Hol|rem(s(m))) > 0.5 )

where 75 (m) is the pitch period of the interfering sound at frame
m. We use (7) to label T-F units for all the mixtures of two
utterances in the test corpus. Both target pitch and interference
pitch are obtained by applying Praat to clean utterances. Fig. 3
shows the corresponding error rate by channel, compared with
using only the target pitch to label T-F units. As shown in the
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Fig. 3. Percentage of error in T-F unit labeling for two-voice mixtures using
target pitch only or both target and interference pitch.

figure, better performance is obtained by using the pitch values
of both speakers.

C. Unit Labeling With Information From a Neighborhood of
T-F Units

Labeling a T-F unit using only the local information within
the unit still produces a significant amount of error. Since
speech signal is wideband and exhibits temporal continuity,
neighboring T-F units potentially provide useful information
for unit labeling. For example, a T-F unit surrounded by
target-dominant units is also likely target dominant. Therefore,
we consider information from a local context. Specifically, we
label u.y, as target if

P(Ho[{P(Ho|rerm: (1s(m")))})

>05, | —¢ <N, |m'-—m|<N, @8
where N, and N,, define the size of the neighborhood along
frequency and time, respectively, and { P(Hg|rem: (Ts(m’)))}
is the vector that contains the P(Ho|rem(7s(m))) values of
the T-F units within the neighborhood. Again, for each fre-
quency channel, we train an MLP with one hidden layer to
calculate the probability P(H|{ P(Ho|rem:(Ts(m’)))}) using
the P(Hy|7em (Ts(m))) values within the neighborhood as fea-
tures.

The key here is to determine the appropriate size of a neigh-
borhood. Again, we divide the training samples equally into
two sets and use cross-validation to determine N, and N,,.
This cross-validation procedure suggests that N, = 8 and
N,, = 2 define an appropriate size of the neighborhood. By
utilizing information from neighboring channels and frames,
we reduce the average percentage of false rejection across all
channels from 20.8% to 16.7% and the average percentage
of false acceptance from 13.3% to 8.7% for the test corpus.
The hidden layer of such a trained MLP has two units, also
determined by cross-validation. Note that when both target
and interference are pitched, we label a T-F unit according
to (7) with probability P(Ho|{P(Ho|rem/(ts(m’)))}) and
PO {P(Hy e (T (m))}).

Since P(Ho|rem(7s(m))) is derived from 7¢,, (1s(m)), we
have also considered using 7., (75 (m)) directly as features. The
resulting MLPs are much more complicated, but yield no per-
formance gain.
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IV. PITCH DETERMINATION GIVEN TARGET MASK

A. Integration Across Channels

Given an estimated mask of the voiced target, the task here is
to estimate target pitch. Let L(m) = {L(c,m),Vc} be the set
of binary mask labels at frame m, where L(c,m) is 1 if ey,
is active and O otherwise. A frequently used method for pitch
determination is to pool autocorrelations across all the chan-
nels and then identify a dominant peak in the summary correl-
ogram—the summation of ACFs across all the channels [11].
The estimated pitch period at frame m, 75(m), is the lag cor-
responding to the maximum of the summary ACF in the plau-
sible pitch range. This simple method of pitch estimation is not
very robust when interference is strong because the autocorrela-
tions in many channels exhibit spurious peaks not corresponding
to the target period. One may solve this problem by removing
interference-dominant T-F units, i.e., calculating the summary
correlogram only with active T-F units:

A(m,T) = ZA(C./m./T)L(C, m). ©)

Similar to the ACF of the filter response, the profile of the
probability that unit u..,, is target dominant given pitch period
7, P(Hy|rem (7)), also tends to have a significant peak at the
target period when wu.,, is truly target dominant [see Fig. 1(c)].
One can use the corresponding summation of P(Ho|rem (7))

SPp(r) = P(Ho|rem(7))L(c,m) (10)

to identify the pitch period at frame m as the maximum of the
summation in the plausible pitch range.

We apply the above two methods for pitch estimation to two
utterances from the test corpus, one from a female speaker and
the other from a male speaker. These two utterances are mixed
with 20 intrusions at 0-dB SNR. In this estimation, we use the
IBM at the voiced frames of the target utterance to estimate a
pitch period at each frame. The percentages of estimation error
for the two methods are shown in the first two columns of the
first row of Table I. We use the pitch obtained by applying Praat
to the clean target as the ground truth of the target pitch. An error
occurs when the estimated pitch period and the pitch period ob-
tained from Praat differ by more than 5%. As shown in the
table, using the summation of P(Hy|rcm (7)) performs much
better than using the summary ACF for the female utterance.
Both methods, especially the one using the summary ACF, per-
form better on the male utterance. This is because the ACF and
P(Hp|rem(7)) in target-dominant T-F units all exhibit peaks
not only at the target pitch period, but also at time lags multiple
the pitch period. As a result, their summations have significant
peaks not only at the target pitch period, but also at its integer
multiples, especially for a female voice, making pitch estima-
tion difficult.

B. Differentiating True Pitch Period From its Integer Multiples

To differentiate a target pitch period from its integer multi-
ples for pitch estimation, we need to take the relative locations
of possible pitch candidates into consideration. Let 71 and
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TABLE 1
ERROR RATE OF DIFFERENT PITCH ESTIMATION GIVEN IDEAL BINARY MASK
Summary Summary .
ACF P(Hofron( ) Classifier

Method

F M F M F M

Without temporal

L 39.6 17.1 18.1
continuity

156 | 17.6

With temporal

continuity 14.8

12.7 | 16.8

To be two pitch candidates. We train an MLP-based clas-
sifier that selects the better one from these two candidates
using their relative locations and SP,,(7) as features, i.e.,
(11/72, SPmn(71), SPn(72)). The training set is the same as
described in Section III-A In constructing the training data, we
obtain S P,,(7) at each time frame from all the target-dominant
T-F units. In each training sample, the two pitch candidates
are the true target pitch period and the lag of another peak
of SP,,(7) within the plausible pitch range. Without loss of
generality, we let 71 < 7o. The desired output is 1 if 7y is the
true pitch period and O otherwise. The obtained MLP has three
units in the hidden layer. We use the obtained MLP to select
the better one from the two candidates as follows: if the output
of the MLP is higher than 0.5, we consider 7; as the better
candidate; otherwise, we consider 75 as the better candidate.

The target pitch is estimated with the classifier as follows.

* Find all the local maxima in S P,,(7) within the plausible
pitch range as pitch candidates. Sort these candidates ac-
cording to their time lags from small to large and let the
first candidate be the current estimated pitch period 7s(m).

* Compare the current estimated pitch period with the next
candidate using the obtained MLP and update the pitch
estimate if necessary.

The percentage of pitch estimation errors with the classifier
is shown in the last column of the first row in Table I. The clas-
sifier reduces the error rate on the female utterance but slightly
increases the error rate on the male utterance.

C. Pitch Estimation Using Temporal Continuity

Speech signals exhibit temporal continuity, i.e., their struc-
ture, such as frequency partials, tends to last for a certain period
of time corresponding to a syllable or phoneme, and the signals
change smoothly within this period. Consequently, the pitch and
the ideal binary mask of a target utterance tend to have good
temporal continuity as well. We found that less than 0.5% of
consecutive frames have more than 20% relative pitch changes
for utterances in our training set [15]. Thus, we utilize pitch con-
tinuity to further improve pitch estimation as follows.

First, we check the reliability of the estimated pitch based
on temporal continuity. Specifically, for every three consecutive
frames, m — 1, m, and m + 1, if the pitch changes are all less
than 20%, i.e.,

|Ts(m) — 7s(m — 1)| < 0.2min(rs(m), 7s(m — 1))
|Ts(m) — 7s(m 4+ 1)] < 0.2min(7s(m),7s(m + 1))
(1D
the estimated pitch periods in these three frames are all consid-
ered reliable.
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Second, we reestimate unreliable pitch points by limiting the
plausible pitch range using neighboring reliable pitch points.
Specifically, for two consecutive time frames, m — 1 and m,
if 75(1n) is reliable and 7s(m — 1) is unreliable, we reestimate
7s(m — 1) by limiting the plausible pitch range for 75(m — 1)
to be [0.875(m),1.275(m)], and vice versa. Another possible
situation is that 75(m) is unreliable while both 7s(m — 1) and
Ts(m + 1) are reliable. In this case, we use 75(m — 1) to limit
the plausible pitch range of 7g(rn) if the mask at frame n is
more similar to the mask at frame m — 1 than the mask at frame
m+1,1ie.,

ZL(Qm)L(qm -1)> Z L(c,m)L(e,m+1) (12)

otherwise, 7s(m+1) is used to reestimate 7 (m). Then the rees-
timated pitch points are considered as reliable and used to esti-
mate unreliable pitch points in their neighboring frames. This
reestimation process stops when all the unreliable pitch points
have been reestimated.

The second row in Table I shows the effect of incorporating
temporal continuity in pitch estimation as described above.
Using temporal continuity yields consistent performance im-
provement, especially for the female utterance.

V. ITERATIVE PROCEDURE

Our tandem algorithm first generates an initial estimate of
pitch contours and binary masks for up to two sources; a pitch
contour refers to a consecutive set of pitches that is considered
to be produced by the same sound source. The algorithm then
improves the estimation of pitch contours and masks in an iter-
ative manner.

A. Initial Estimation

In this step, we first generate up to two estimated pitch periods
in each time frame. Since T-F units dominated by a periodic
signal tend to have high cross-channel correlations of filter re-
sponses or response envelopes, we only consider T-F units with
high cross-channel correlations in this estimation. Let 75 1(m)
and 75 »(m) represent two estimated pitch periods at frame m,
and Lq(m) and Lo(m) the corresponding labels of the estimated
masks. We first treat all the T-F units with high cross-channel
correlations as dominated by a single source. That is,

1, C(e,m) > 0.985 or Cg(c,m) > 0.985
Ll(c’m):{O els(e. : el :
(13)
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We then assign the time delay supported by most active T-F
units as the first estimated pitch period. A unit u.,, is con-
sidered supporting a pitch candidate 7 if the corresponding
P(Hy|rem(7)) is higher than a threshold. Accordingly we have

Ts,1(m) = arg mf_ixz Li(c,m) - sgn(P(Ho|rem (7)) — 0p)
where
>0

(14)
L
sgn(z) = {0, z=0

-1, <0

and 6 p is a threshold. Intuitively, we can set 6 p to 0.5. However,
such a threshold may not position the estimated pitch period
close to the true pitch period because P(Ho|rem (7)) tends to
be higher than 0.5 in a relatively wide range centered at the true
pitch period [see Fig. 1(c)]. In general, fp needs to be much
higher than 0.5 so that we can position 7g 1 (m) accurately. On
the other hand, fp cannot be too high, otherwise most active
T-F units cannot contribute to this estimation. We found that
0.75 is a good compromise that allows us to accurately position
7s,1(m) without ignoring many active T-F units.

The above process yields an estimated pitch at many time
frames where the target is not pitched. The estimated pitch point
at such a frame is usually supported by only a few T-F units un-
less the interference contains a strong harmonic signal at this
frame. On the other hand, estimated pitch points corresponding
to target pitch are usually supported by many T-F units. In order
to remove spurious pitch points, we discard a detected pitch
point if the total number of channels supporting this pitch point
is less than a threshold. We found that an appropriate threshold is
7 from analyzing the training data set (see Section III-A). Most
spurious pitch points are thus removed. At the same time, some
true pitch points are also removed, but most of them will be re-
covered in the following iterative process.

With the estimated pitch period 7g 1(m), we reestimate the
mask Lq(m) as

17 P(H0|Tcm(7—571(m))) > 0.5

La(e;m) = {0 else. (1)

Then we use the T-F units that do not support the first pitch
period 75 1(m) to estimate the second pitch period, 75 2(m).
Specifically, we use (16) shown at the bottom of the next page.
We let

Tg2(m) = arg mﬁtxZLg(c, m) - sgu(P(Ho|rem (7)) — 0p).
) a7

1,
La(e,m) = {0 else.

P(Ho|rem(7s,1(m))) < 0p and (C(c,m) > 0.985 or Cg(c,m) > 0.985)

(16)
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Again, if fewer than seven T-F units support 75 2(m), we set it
to 0. Otherwise, we reestimate Lo(m) as

1, P(H0|rcm(7572(m))) > 0.5

0, else. (18)

L2(07m) = {
Here, we estimate up to two pitch points at one frame; one can
easily extend the above algorithm to estimate pitch points of
more sources if needed.

After the above estimation, our algorithm combines the esti-
mated pitch periods into pitch contours based on temporal con-
tinuity. Specifically, for estimated pitch periods in three consec-
utive frames, 75 &, (m — 1), 75k, (M), and 7g , (m + 1), where
k1, ko, and k3 are either 1 or 2, they are combined into one pitch
contour if they have good temporal continuity and their asso-
ciated masks also have good temporal continuity. That is, see
(19) shown at the bottom of the page. The remaining isolated
estimated pitch points are considered unreliable and set to 0.
Note that requiring only the temporal continuity of pitch periods
cannot prevent connecting pitch points from different sources,
since the target and interference may have similar pitch periods
at the same time. However, it is very unlikely that the target and
interference have similar pitch periods and occupy the same fre-
quency region at the same time. In most situations, pitch points
that are connected according to (19) do correspond to a single
source. As a result of this step, we obtain multiple pitch con-
tours and each pitch contour has an associated T-F mask.

B. Iterative Estimation

In this step, we first reestimate each pitch contour from its
associated binary mask. A key step in this estimation is to ex-
pand estimated pitch contours based on temporal continuity, i.e.,
using reliable pitch points to estimate potential pitch points at
neighboring frames. Specifically, let 7 be a pitch contour and
Ly (m) the associated mask. Let mq and mo be the first and
the last frame of this pitch contour. To expand 7, we first let
Li(my —1) = Li(my) and Lg(me + 1) = Li(ms). Then we
reestimate 7, from this new mask using the algorithm described
in Section IV-B. Reestimated pitch periods are further verified
according to temporal continuity described in Section I'V-C ex-
cept that we use (19) instead of (11) for continuity verification.
If the corresponding source of contour 7, is pitched at frame
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mq — 1, our algorithm likely yields an accurate pitch estimate at
this frame. Otherwise, the reestimated pitch period at this frame
usually cannot pass the continuity check, and as a result it is
discarded and 7y, still starts from frame m ;. The same applies
to the estimated pitch period at frame mso + 1. After expansion
and reestimation, two pitch contours may have the same pitch
period at the same frame and therefore they are combined into
one pitch contour.

Then, we reestimate the mask for each pitch contour as fol-
lows. First, we compute the probability of each T-F unit domi-
nated by the corresponding source of a pitch contour k, as de-
scribed in Section III-C. Then, we estimate the mask for contour
k according to the obtained probabilities, as shown in (20) at the
bottom of the page.

Usually, the estimation of both pitch and mask converges after
a small number of iterations, typically smaller than 20. Some-
times this iterative procedure runs into a cycle where there are
slight cyclic changes for both estimated pitch and estimated
mask after each iteration. In our implementation, we stop the
procedure after it converges or 20 iterations.

C. Incorporating Segmentation

So far, unit labeling does not take into account of T-F seg-
mentation, which refers to a stage of processing that breaks
the auditory scene into contiguous T-F regions each of which
contains acoustic energy mainly from a single sound source
[39]. By producing an intermediate level of representation be-
tween individual T-F units and sources, segmentation has been
demonstrated to improve segregation performance [16]. Here,
we apply a segmentation step after the iterative procedure stops.
Specifically, we employ a multiscale onset/offset based segmen-
tation algorithm [18] that produces segments enclosed by de-
tected onsets and offsets. After segments are produced, we form
T-segments each of which is a subset of a T-F segment within
an individual frequency channel or the longest section of con-
secutive T-F units within the same frequency channel of a T-F
segment. T-segments strike a reasonable balance between ac-
cepting target and rejecting interference [15], [19]. With ob-
tained T-segments, we label the T-F units within a T-segment
wholly as target if 1) more than half of T-segment energy is in-
cluded in the voiced frames of the target, and 2) more than half
of the T-segment energy in the voiced frames is included in the

|7_S.,k2 (m) — TS,k (T — 1)| < 0.2 min(ﬁgh (m),TS’kl m —

( (m—1))
|T5,k2 (m) — TS ks Em + 1)| < 0.2 IniIl(Ts,k2 (m) TS, ks ;m + 1))
( )

> oL, (e, m)Ly, (¢, m — 1) > 0.5max(},. Li,(c,m), Y. Lk, (¢, m — 1)) (19)
> oL, (c,m)Ly, (c,m+1) > 0.5max(} . Li,(c,m), Y. Li,(c, m+ 1))

1, k=argmaxy P(Ho[{P(Ho|rc/m (i (m')))}) and
Lk(c'/ m) = P(H0|{P(H0|7"c'm’ (Tk(m')))}) > 0.5 (20)

0, else
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Fig. 4. Estimated pitch contours for the mixture of one female utterance and
crowd noise.

active T-F units according to (20). If a T-segment fails to be la-
beled as the target, we still treat individual active T-F units as
the target.

Fig. 4 shows the detected pitch contours for a mixture of
the female utterance used in Fig. 1 and crowd noise at 0-dB
SNR. The mixture is illustrated in Fig. 5, where Fig. 5(a) and
(b) shows the cochleagram and the waveform of the female ut-
terance and Fig. 5(c) and (d) the cochleagram and the wave-
form of the mixture. In Fig. 4, we use the pitch points detected
by Praat from the clean utterance as the ground truth of the
target pitch. As shown in the figure, our algorithm correctly es-
timates most of target pitch points. At the same time, it also
yields one pitch contour for interference (the one overlapping
with no target pitch point). Fig. 5(e) and (g) shows the obtained
masks for the target utterance in the mixture without and with
incorporating segmentation, respectively. Comparing the mask
in Fig. 5(e) with the ideal binary mask shown in Fig. 5(i), we
can see that our system is able to segregate most voiced por-
tions of the target without including much interference. These
two masks yield similar resynthesized targets in the voiced in-
tervals, as shown in Fig. 5(f) and (j). By using T-segments, the
tandem algorithm is able to recover even more target energy,
but at the expense of adding a small amount of the interference,
as shown in Fig. 5(g) and (h). Note that the output consists of
several pitch contours and their associated masks. To determine
whether a segregated sound is part of the target speech is the
task of sequential grouping [6], [39], which is beyond the scope
of this paper. The masks in Fig. 5(e) and (g) are obtained by as-
suming perfect sequential grouping.

VI. EVALUATION

As mentioned earlier, the tandem algorithm produces a set of
pitch contours and their associated binary masks. This section
separately evaluates pitch estimation and voiced speech segre-
gation.

A. Pitch Estimation

We first evaluate the tandem algorithm on pitch determina-
tion with utterances from the FDA Evaluation Database [1]. This
database was collected for evaluating pitch determination algo-
rithms and provides accurate target pitch contours derived from
laryngograph data. The database contains utterances from two
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Fig. 5. Segregation illustration. (a) Cochleagram of a female utterance
showing the energy of each T-F unit with brighter pixel indicating stronger
energy. (b) Waveform of the utterance. (c) Cochleagram of the utterance mixed
with a crowd noise. (d) Waveform of the mixture. (¢) Mask of segregated
voiced target where 1 is indicated by white and 0 by black. (f) Waveform of
the target resynthesized with the mask in (e). (g) Mask of the target segregated
after using T-segments. (h) Waveform of the target resynthesized with the mask

in (g). (i) Ideal binary mask. (j) Waveform of the target resynthesized from the
IBM in (i).

speakers, one male and one female. We randomly select one sen-
tence that is uttered by both speakers. These two utterances are
mixed with a set of 20 intrusions at different SNR levels. These
intrusions are: N1 — white noise, N2 — rock music, N3 — siren,
N4 —telephone, N5 — electric fan, N6 — clock alarm, N7 — traffic
noise, N8 — bird chirp with water flowing, N9 — wind, N10 —
rain, N11 — cocktail party noise, N12 — crowd noise at a play-
ground, N13 — crowd noise with music, N14 — crowd noise with
clap, N15 — babble noise (16 speakers), N16 ~ N20 — 5 dif-
ferent utterances (see [15] for details). These intrusions have a
considerable variety: some are noise-like (N9, N11) and some
contain strong harmonic sounds (N3, N8). They form a reason-
able corpus for testing the capacity of a CASA system in dealing
with various types of interference.

Fig. 6(a) shows the average correct percentage of pitch
determination with the tandem algorithm on these mixtures
at different SNR levels. In calculating the correct detection
percentage, we only consider estimated pitch contours that
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Fig. 6. Results of pitch determination for different algorithms. (a) Percentage
of correct detection. (b) Percentage of mismatch. (c) Number of contours that
match the target pitch.

match the target pitch: an estimated pitch contour matches
the target pitch if at least half of its pitch points match the
target pitch, i.e., the target is pitched at these corresponding
frames and the estimated pitch periods differ from the true
target pitch periods by less than 5%. As shown in the figure, the
tandem algorithm is able to detect 69.1% of target pitch even
at —5 dB SNR. The correct detection rate increases to about
83.8% as the SNR increases to 15 dB. In comparison, Fig. 6(a)
also shows the results using Praat and from a multiple pitch
tracking algorithm by Wu et al. [40], which produces compet-
itive performance [23], [24]. Note that the Wu et al. algorithm
does not yield continuous pitch contours. Therefore, the correct
detection rate is computed by comparing estimated pitch with
the ground truth frame by frame. As shown in the figure, the
tandem algorithm performs consistently better than the Wu et
al. algorithm at all SNR levels. The tandem algorithm is more
robust to interference compared to Praat, whose performance
is good at SNR levels above 10 dB, but drops quickly as SNR
decreases.
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TABLE II
PERFORMANCE OF THE TANDEM ALGORITHM WITH
RESPECT TO THE NUMBER OF ITERATIONS

Iteration No. 0 1 2 3 4 Convergence
Percentage 1 3 | 663 | 678 | 688 | 68.9 69.1

of detection

SNR (dB) 6.97 744 | 7.62 7.77 7.89 8.04

Besides the detection rate, we also need to measure how well
the system separates pitch points of different sources. Fig. 6(b)
shows the percentage of mismatch, which is the percentage of
estimated pitch points that do not match the target pitch among
the pitch contours matching the target pitch. An estimated pitch
point is counted as mismatch if either target is not pitched at
the corresponding frame or the difference between the estimated
pitch period and the true period is more than 5%. As shown in
the figure, the tandem algorithm yields a low percentage of mis-
match, which is slightly lower than that of Praat when the SNR
is above 5-dB SNR. In lower SNR levels, Praat has a lower
percentage of mismatch because it detects fewer pitch points.
Note that the Wu algorithm does not generate pitch contours,
and the mismatch rate is 0. In addition, Fig. 6(c) shows the av-
erage number of estimated pitch contours that match target pitch
contours. The actual average number of target pitch contours
is 5. The tandem algorithm yields an average of 5.6 pitch con-
tours for each mixture. This shows that the algorithm well sep-
arates target and interference pitch without dividing the former
into many short contours. Praat yields almost the same numbers
of contours as the actual ones at 15-dB SNR. However, it de-
tects fewer contours when the mixture SNR drops. Overall, the
tandem algorithm yields better performance than either Praat or
the Wu et al. algorithm, especially at low SNR levels.

To illustrate the advantage of the iterative process for pitch
estimation, we present the average percentage of correct detec-
tion for the above mixtures at —5 dB with respect to the number
of iterations in the first row of Table II. Here O iteration cor-
responds to the result of initial estimation, and “convergence”
corresponds to the final output of the algorithm. As shown in
the table, the initial estimation already gives a good pitch esti-
mate. The iterative procedure, however, is able to improve the
detection rate, especially in the first iteration. Overall, the pro-
cedure increases the detection rate by 6.1 percentage points. It
is worth pointing out that the improvement varies considerably
among different mixtures, and the largest improvement is 22.1
percentage points.

B. Voiced Speech Segregation

The performance of the system on voiced speech segregation
has been evaluated on a test corpus containing 20 target utter-
ances from the test part of the TIMIT database mixed with the
20 intrusions described in the previous section. Note that the ut-
terances in the test part of the TIMIT are produced by different
speakers from those producing the utterances in the training part
of the corpus.



2076

50

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 8, NOVEMBER 2010

40

30

PeL

50

—6— Tandem Algorithm
—— Neighborhood
15 }| =& Hu and Wang (2004) |-

SNR of segregated target (dB)
)

5 ......
oL
-5 0 5 10 15
Mixture SNR (dB)
(c)

Fig. 7. Results of voiced speech segregation. (a) Percentage of energy loss on voiced target. (b) Percentage of noise residue. (c) SNR of segregated voiced target.

Estimated target masks are obtained by assuming perfect se-
quential grouping. Since our computational goal here is to es-
timate the IBM, we evaluate segregation performance by com-
paring the estimated mask to the IBM with two measures [16].

» The percentage of energy loss Pgy;, which measures the

amount of energy in the active T-F units that are labeled as
interference relative to the total energy in the active units.

» The percentage of noise residue P r which measures the

amount of energy in the inactive T-F units that are labeled

as the target relative to the total energy in the inactive units.
Pg1, and Py g provide complementary error measures of a seg-
regation system and a successful system needs to achieve low
errors in both measures.

In addition, to compare waveforms directly we measure the
SNR of the segregated voiced target in decibels [16]

2 s%(n)

[s(n) = 33 (n)]?

SNR = 10logy Q1)
2

where s(n) is the target signal resynthesized from the IBM and
Sy (n) is the segregated voiced target.

The results from our system are shown in Fig. 7. Each point
in the figure represents the average value of 400 mixtures in the
test corpus at a particular SNR level. Fig. 7(a) and (b) shows the
percentages of energy loss and noise residue. Note that since
our goal here is to segregate voiced target, the Pry, values here
are only for the target energy at the voiced frames of the target.
However, the IBM used in (21) is constructed for the entire
target, which contains both voiced and unvoiced speech, i.e., the

lack of unvoiced speech segregation in this study is accounted
for (or penalized) in the SNR measure.

As shown in the figure, our system segregates 78.3% of
voiced target energy at —5-dB SNR and 99.2% at 15-dB SNR.
At the same time, 11.2% of the segregated energy belongs to
intrusion at —5 dB. This number drops to 0.6% at 15-dB SNR.
Fig. 7(c) shows the SNR of the segregated target. Our system
obtains an average 12.2-dB gain in SNR when the mixture SNR
is —5 dB. This gain drops to 3.3 dB when the mixture SNR is
10 dB. Note that at 15 dB, our system does not improve the
SNR because most unvoiced speech is not segregated. Fig. 7
also shows the result of the algorithm without using T-segments
in the final estimation step (“Neighborhood”). As shown in the
figure, the corresponding segregated target loses more target
energy, but contains less interference. The SNR performance is
a little better by incorporating T-segments.

Fig. 7 also shows the performance using our previous voiced
speech segregation system [16], which is a representative CASA
system. Because the previous system can only track one pitch
contour of the target, in this implementation we provide target
pitch estimated by applying Praat to clean utterances. As shown
in the figure, the previous system yields a lower percentage of
noise residue, but has a much higher percentage of energy loss.
As clearly shown in the SNR measure of Fig. 7(c), even with
provided target pitch, the previous system does not perform as
well as the tandem algorithm, especially at higher input SNR
levels.

To illustrate the effect of iterative estimation, we present the
average SNR for the mixtures of two utterances and all the intru-
sions at —5-dB SNR in the second row of Table II. On average,
the tandem algorithm improves the SNR by 1.07 dB. Again,
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Fig. 8. SNR results for segregated speech and original mixtures for a corpus of
voiced speech and various intrusions.

the SNR improvement varies considerably among different mix-
tures, and the largest improvement is 7.27 dB.

As an additional benchmark, we have evaluated the tandem
algorithm on a corpus of 100 mixtures composed of ten target
utterances mixed with ten intrusions [10]. Every target utterance
in the corpus is totally voiced and has only one pitch contour.
The intrusions have a considerable variety; specifically they are:
NO —1kHz pure tone, N1 — white noise, N2 — noise bursts, N3
— cocktail party noise, N4 — rock music, N5 — siren, N6 — trill
telephone, N7 — female speech, N8 — male speech, and N9 — fe-
male speech. The average SNR of the entire corpus is 3.28 dB.
This corpus is commonly used in CASA for evaluating voiced
speech segregation [8], [16], [26]. The average SNR for each
intrusion is shown for the tandem algorithm in Fig. 8, compared
with those of the original mixtures, our previous system, and a
spectral subtraction method. Note that here our previous system
extracts pitch contours from mixtures instead of using pitch con-
tours extracted from clean utterances with Praat. Spectral sub-
traction is a standard method for speech enhancement [21] (see
also [16]). The tandem algorithm performs consistently better
than spectral subtraction, and our previous system except for
N4. On average, the tandem algorithm obtains a 13.4-dB SNR
gain, which is about 1.9 dB better than our previous system and
8.3 dB better than spectral subtraction.

VII. DISCUSSION

Classification, which is a form of supervised learning, plays
an important role in the tandem algorithm, particularly for
pitch-based unit labeling. As with any supervised approach,
one wonders how well our algorithm generalizes to datasets not
used in training. There are reasons to expect that the tandem
algorithm has only weak dependency on the specific training
corpus. First, pitch-based features used in IBM estimation
capture general acoustic characteristics, not corpus-specific
attributes. Second, in pitch determination, several parameter
values, e.g., the 20% relative pitch changes in deciding pitch
continuity, are chosen based on general observations such as
temporal continuity. As described in Section VI, our evaluation
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results are obtained using test signals that are not used in
training, and pitch tracking results in Fig. 6 and the benchmark
segregation results in Fig. 8 are reported with no retraining
using two datasets different from the TIMIT corpus used in
training. A very recent study [20] has successfully applied the
tandem algorithm to pitch tracking for segregating the IEEE
sentences [22] without any retraining or change.

Although we have emphasized the iterative nature of the
tandem algorithm, the algorithm also includes a specific
method to jump start the iterative process, which gives an
initial estimate of both pitch and mask with reasonable quality.
In general, the performance of the algorithm depends on the
initial estimate, and better initial estimates would lead to better
performance. Even with a poor estimate, which is unavoidable
in very low SNR conditions, our algorithm can still improve
the initial estimate during the iterative process, e.g., through the
pitch contour expansion described in Section V-B. The results
in Section VI show that the tandem algorithm performs well
even when the input SNR is —5 dB.

In terms of computational complexity, the main cost of the
tandem algorithm arises from autocorrelation calculation and
envelope extraction in the feature extraction stage and the it-
erative estimation of pitch contours and IBM consumes just a
small fraction of the overall cost. We implemented both tasks in
the frequency domain and their time complexity is O(N log V),
where IV is the number of samples in an input signal. Note that
these operations need to be performed for each filter channel,
and our system employs 128 channels. On the other hand, since
feature extraction takes place in different filter channels inde-
pendently, substantial speedup can be achieved through parallel
computing.

This study concentrates on voiced speech, and does not deal
with unvoiced speech. In a recent paper, we developed a model
for separating unvoiced speech from nonspeech interference on
the basis of auditory segmentation and feature-based classifi-
cation [19]. This unvoiced segregation system operates on the
output of voiced speech segregation, which was provided by Hu
and Wang [17] assuming the availability of target pitch contours.
The system in [17] is a simplified and slightly improved version
of [16]. We have substituted the voiced segregation component
of [19] by the tandem algorithm [15]. The combined system pro-
duces segregation results for both voiced and unvoiced speech
that are as good as those reported in [19], but with detected pitch
contours rather than ground-truth pitch contours (see [15] for
details).

A natural speech utterance contains silent gaps and other in-
tervals masked by interference. In practice, one needs to group
the utterance across such time intervals. This is the problem
of sequential grouping [6], [39]. This study does not address
the problem of sequential grouping. The system in [19] han-
dles the situation of nonspeech interference but not applicable to
mixtures of multiple speakers. Sequentially grouping segments
or masks could be achieved by using speech recognition in a
top-down manner (also limited to nonspeech interference) [2] or
by speaker recognition using trained speaker models [35]. Nev-
ertheless, these studies are not yet mature, and substantial effort
is needed in the future to fully address the problem of sequential

grouping.
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VIII. CONCLUSION

We have proposed an algorithm that estimates target pitch and
segregates voiced target in tandem. This algorithm iteratively
improves the estimation of both target pitch and voiced target.
The tandem algorithm is novel not only for its iterative nature
but also for the methods proposed for pitch-based labeling of
T-F units and pitch estimation from a given binary mask. The
tandem algorithm is robust to interference and produces good
estimates of both pitch and voiced speech even in the pres-
ence of strong interference. Systematic evaluation shows that
the tandem algorithm performs significantly better than previous
CASA and speech enhancement systems. Together with our pre-
vious system for unvoiced speech segregation [19], we have a
complete CASA system to segregate speech from various types
of nonspeech interference.
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