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ABSTRACT 

Acoustic signals from different sources in a natural environment 
form an auditory scene. Auditory scene analysis (ASA) is the 
process in which the auditory system segregates an auditory 
scene into streams corresponding to different sources. 
Segmentation is an important stage of ASA where an auditory 
scene is decomposed into segments, each of which contains 
signal mainly from one source. We propose a system for 
auditory segmentation based on analyzing onsets and offsets of 
auditory events. Our system first detects onsets and offsets, and 
then generates segments by matching corresponding onsets and 
offsets. This is achieved through a multiscale approach based on 
scale-space theory. Systematic evaluation shows that much 
target speech, including unvoiced speech, is correctly 
segmented, and target speech and interference are well 
separated into different segments. 

1. INTRODUCTION 
In a natural environment, multiple sounds from different sources 
form an auditory scene. Many applications, including automatic 
speech recognition and hearing aids design, require an effective 
system that segregates speech in a complex scene. Currently, 
speech segregation with one microphone (or monaurally) 
remains a major challenge [7] [9]. 

On the other hand, the auditory system shows a remarkable 
capacity in monaural segregation of different sources. This 
perceptual process is referred to as auditory scene analysis 
(ASA) [1]. In general, ASA takes place in two stages, 
segmentation and grouping. In segmentation, the auditory 
system decomposes the complex scene into a collection of 
segments (or sensory elements), each of which mainly arises 
from one source. In grouping, segments that are likely to arise 
from the same source are grouped together. Considerable 
research has been carried out to develop computational auditory 
scene analysis (CASA) systems for sound separation [2] [4] [5] 
[7] [13]. 

In our view, a successful CASA system needs to perform 
effective segmentation, which provides a foundation for 
grouping. However, no existing CASA system performs 
segmentation consistently well. In fact, no system has addressed 
segmentation for unvoiced speech at all. 

The goal of segmentation is to decompose an auditory scene 
into contiguous time-frequency (T-F) regions, each of which 
should contain signal mainly from one source. From a 
computational standpoint, auditory segmentation is similar to 
image segmentation, which is extensively studied in computer 
vision. In image segmentation, the main task is to find bounding 

contours of visual objects. These contours usually correspond to 
sudden changes of certain image properties, such as color and 
texture. In auditory segmentation, the corresponding task is to 
find onsets and offsets of individual auditory events. The onsets 
and offsets generally correspond to sudden changes of acoustic 
energy.  

In this paper we propose a system for auditory segmentation 
based on onset and offset analysis of auditory events. Onsets 
and offsets are important ASA cues [1] and there is strong 
evidence for onset detection by auditory neurons [12]. Our 
analysis is based on scale-space theory, which is a multiscale 
analysis widely used in image segmentation [14]. The advantage 
of using a multiscale analysis is to provide different levels of 
details for an auditory scene so that one can detect and localize 
auditory objects at appropriate scales. Our system performs 
segmentation in three stages. First, an auditory scene is 
smoothed through a diffusion process. The smoothed scenes at 
different scales, or different diffusion times, compose a scale 
space. Second, the system detects onsets and offsets at certain 
scales, and obtains segments by matching individual onset and 
offset fronts. Third, the system generates a final set of segments 
by combining segments obtained at different scales. Note that to 
determine from which source a segment arises is the task of 
grouping, which is not addressed in this paper. 

This paper is organized as follows. In Sect. 2, we propose a 
working definition for an auditory event in order to clarify the 
computational goal of segmentation. Details of the system are 
given in Sect. 3. In Sect. 4, we propose a quantitative measure 
to evaluate segmentation, and report our results for speech 
segmentation. A brief discussion is given in Sect. 5. 

2. WHAT IS AN AUDITORY EVENT? 
Consider the signal from one source that contains a series of 
acoustic events. One may define the computational goal of 
segmentation as identifying the onsets and offsets of these 
events. However, at any time there are infinite acoustic events 
taking place simultaneously, and one must limit the definition to 
an acoustic environment relative to a listener; in other words, 
only events audible to a listener should be considered. To 
determine the audibility of a sound, two perceptual effects must 
be considered. First, a sound must be audible on its own, i.e. its 
intensity must exceed a certain level, referred to as the absolute 
threshold [8]. Second, when there are multiple sounds in the 
same environment, a weaker sound tends to be masked by a 
stronger one [8]. Hence, we consider a sound to be audible in a 
local T-F region if it satisfies the following two criteria: 

 Its intensity is above the absolute threshold.  
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 Its intensity is higher than the summated intensity of all 
other signals in that region. 

The absolute threshold of a sound depends on frequency and is 
different among different listeners [8]. For simplicity, we take a 
constant value, 15 dB sound pressure level (SPL), as the 
absolute threshold. 

Based on the above criteria, we define an auditory event as 
the collection of all the audible T-F regions for an acoustic 
event. This definition is consistent with the ASA principle of 
exclusive allocation, that is, a T-F region should be attributed to 
only one event [1]. Thus the computational goal of 
segmentation is to generate segments for contiguous T-F 
regions from the same auditory event. To make this goal 
concrete requires a specific T-F decomposition of an auditory 
scene; here we decompose an input in the frequency domain 
using a filterbank with 128 gammatone filters centered from 50 
Hz to 8 kHz [10]. In the time domain, we decompose the signal 
into consecutive 20-ms windows with 10-ms window shifts. 
Fig. 1(a) shows such decomposition for a mixture of a target 
female utterance with an acoustic crowd and music in the T-F 
domain. The overall signal-to-noise ratio (SNR) is 0 dB. Fig. 
1(b) shows the ideal segments for the mixture. Here each 
phoneme is considered as an acoustic event, and the 
corresponding segments are represented by regions with 
different gray levels between neighboring regions, except for 
white regions, which form the background corresponding to the 
entire interference.  

3. SYSTEM DESCRIPTION 
The proposed system contains three stages: smoothing, 
onset/offset detection and matching, and multiscale integration. 
An acoustic mixture is first normalized at 60 dB SPL. Then it is 
passed through a bank of gammatone filters (Sect. 2). The input 
to the system is the average intensity of each filter output at 
every 1.25-ms frame. (Note the difference between a frame and 

a window described in Sect. 2.) 

3.1 Smoothing 
Onsets and offsets generally correspond to sudden intensity 
increases and decreases. To find these sudden intensity changes, 
one may take the derivative of intensity with respect to time and 
then find the peaks and valleys of the derivative. However, 
because of the intensity fluctuation within individual events, 
many peaks and valleys of the derivative do not correspond to 
actual onsets and offsets. Therefore, the intensity is smoothed 
over time to reduce the intensity fluctuation. Since an event 
usually has synchronized onsets and offsets in the frequency 
domain, the intensity is further smoothed over frequency to 
enhance common onsets and offsets in adjacent channels. The 
system performs the smoothing through a diffusion process 
[14]. A one-dimensional diffusion of a quantity v across a 
physical dimension x can be described as: 

))(( vvDv xxt ∂⋅∂=∂ ,     (1) 

where ∂t represents the partial derivative with respect to time t, 
and ∂x that to x. D is a function controlling the diffusion process. 
Eq. (1) describes a process that the change of v is determined by 
the gradient of v across x. When D satisfies certain conditions, v 
will change so that the gradient of v across x in desired regions 
gradually approaches a constant, i.e., v is gradually smoothed 
over x in these regions [14]. The longer t is, the smoother v is. 
The diffusion time t is referred to as the scale parameter. The 
smoothed v at different t composes a scale space. 

As an illustration, here we consider a simple case where D = 
1. Eq (1) becomes 

vv xt
2∂=∂ .       (2) 

According to Eq (2), the change of v forces vx
2∂ gradually 

approach 0. In other words, as t increases, v becomes smoother 
over x. In fact, Eq. (2) is equal to Gaussian smoothing [14]: 

)2,0()0,(),( tGxvtxv ∗= ,     (3) 

where G(0, 2t) is a Gaussian function with mean 0 and variance 
2t, and “∗” represents convolution.  

Let the input intensity be the initial value of v, and let v 
diffuse across time frames and filter channels. That is: 

),()0,0,,( mcImcv = ,     (4) 

))(( vvDv mmmtm
∂⋅∂=∂ ,     (5) 

))(( vvDv ccctc
∂⋅∂=∂ ,     (6) 

where I(c, m) is the logarithmic average intensity of the mixture 
in channel c at frame m. tc is the scale for the diffusion across 
filter channels, and tm for the diffusion across time frames. Note 
that the diffusion time tc and tm is different from the time of 
input sound, which corresponds to time frames represented by 
m. With appropriate Dc and Dm, the output of the diffusion 
process at each scale, v = v(c, m, tc, tm), will be a smoothed 
version of the input intensity. Since time and frequency are 
different physical dimensions, the system undergoes the 
diffusion process across time frames and across filter channels 
separately. More specifically, to obtain v(c, m, tc, tm), the 
intensity first diffuses across time frames for time tm, which 
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Figure 1. (a) T-F decomposition of a mixture of a female 
utterance, “That noise problem grows more annoying each day,” 
and an acoustic crowd with music. (b) The ideal segments for 
the speech. The total number of ideal segments is 87. 



yields v(c, m, 0, tm). Then this smoothed intensity diffuses 
across filter channels for time tc.  

Two forms of Dm(v) are employed here. The first one is a 
constant Dm(v), i. e., Gaussian smoothing. The second one is the 
commonly used Perona-Malik model [11]: 

]/||1/[1)( 22 λvvD mm ∂+= ,     (7) 

where λ is a parameter. Compared with Gaussian smoothing, 
the Perona-Malik model is able to keep better locations of onset 
and offset. As an example, Fig. 2 shows the smoothed intensity 
from these two forms of diffusion at different tm. The input is 
the mixture of speech, crowd sound and music filtered by a 
gammatone filter centered around 350 Hz. For the Perona-Malik 
model, λ  = 1. A constant Dc(v) is applied for the diffusion across 
frequency.  

3.2 Onset/offset detection and matching 
At a certain scale (tc, tm) , onset and offset candidates are 
detected by marking peaks and valleys of the difference of v 
between consecutive time frames. An onset candidate is 
removed if the corresponding difference is very small, which 
suggests that the candidate is likely to relate to an intensity 
fluctuation rather than an event onset.  

In order to merge T-F regions in adjacent channels from the 
same event, the system first combines common onsets and 
offsets into onset and offset fronts since an event usually has 
synchronized onsets and offsets. More specifically, an onset 
candidate is connected with the closest onset candidate in an 
adjacent channel if their distance in time is smaller than 20 ms, 
and so is it for an offset candidate. If an onset front occupies 
less than three channels, we do not further process it because it 
is insignificant. Onset and offset fronts are vertical contours in 
the 2-D time-frequency representation. 

The next step is to match individual onset and offset fronts 
to form segments. For an onset front, the system first determines 
a corresponding offset for it in each corresponding channel. 
Then it uses these offsets to determine the corresponding offset 
front. Let mON[c, i] and mOFF[c, j] represent the frame for the ith 
onset candidate and jth offset candidate in channel c, 

respectively. For each onset candidate, the system identifies the 
corresponding offset among the offset candidates located 
between mON[c, i] and mON[c, i+1]. The decision is simple if 
there is only one offset candidate in this range. When there are 
multiple offset candidates, the system chooses the one with the 
largest intensity decrease, i.e., with the smallest difference of v. 
We have also considered choosing either the first or the last 
offset candidate, and they perform slightly worse. Let (mON[c1, 
i1],  mON[c1+1, i2], …, mON[c1+n−1, in]) be an onset front 
occupying n channels, and (mOFF[c1, j1], mOFF[c1+1, j2], …, 
mOFF[c1+n−1, jn]) the corresponding offsets determined above. 
The system compares (mOFF[c1, j1], mOFF[c1+1, j2], …, 
mOFF[c1+n−1, jn]) with each offset front, and the offset front 
with the largest overlap is chosen as the matching offset front. 
The T-F region between them yields a segment.  

3.3 Multiscale integration  
As a result of smoothing, event onsets and offsets occupying 
small T-F regions may be blurred at a larger (coarser) scale. 
Consequently, the system tends to miss small events or to 
generate segments combining different events, which is a case 
of under-segmentation. On the other hand, at a smaller (finer) 
scale, the system may be sensitive to intensity fluctuations 
within individual events. Consequently, the system tends to 
separate an event into several segments, which is a case of over-
segmentation. Therefore, it is difficult to obtain a satisfactory 
result of segmentation with a single scale. Our system handles 
this problem by integrating segments generated across different 
scales in an iterative manner. First, it forms segments by 
matching onset and offset fronts at a larger scale. Then, at a 
smaller scale, it locates more accurate onset and offset positions 
for these segments. In addition, new segments are formed 
according to the onset and offset fronts detected at the current 
scale. Then the system goes to an even smaller scale if 
necessary. Here the integration starts from a large scale and then 
moves to smaller scales. One could also start from a small scale 
and then move to larger scales. However, in the latter case, the 
chances of over-segmenting an input mixture is much higher, 
which is undesirable since in subsequent grouping larger 
segments are preferred.  

Fig. 3 shows the bounding contours of obtained segments for 
the mixture of speech, crowd sound and music at different 
scales. Comparing it with Fig. 1(b), we can see that at the 
largest scale, the system captures most speech events, but 
misses some small segments. As the scale decreases, more 20
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Figure 2. Smoothed intensity at different scales in a channel 
centered around 350 Hz. (a) Intensity at scale (0, 0), i.e., the 
initial intensity. (b) Smoothed intensity at scale (0, 50) for the 
Perona-Malik model (solid line) and that for Gaussian 
smoothing (dash line). (c) Smoothed intensity at scale (0, 200) 
for the Perona-Malik model (solid line) and that for Gaussian 
smoothing (dash line). The input is the mixture of speech, 
crowd sound and music. 
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Figure 3. The bounding contours of obtained segments at 4 
different scales: (a) (32, 200), (b) (18, 200), (c) (32, 100), and 
(d) (18, 100), for the mixture of speech, crowd sound and 
music. 



speech segments are generated; at the same time, some 
segments for interference are also generated. 

4. EVALUATION 
We have applied our system to 20 speech utterances mixed with 
10 intrusions. The utterances are randomly selected from the 
TIMIT database. The intrusions are: white noise, electrical fan, 
rooster crow and clock alarm, traffic sound, crowd sound in a 
playground, crowd sound and music, crowd clapping, bird 
chirping and waterflow, wind, and rain.  

Only a few previous models have explicitly addressed the 
problem of auditory segmentation [2] [13], but none have 
evaluated the segmentation performance. How to quantitatively 
evaluate segmentation results is a complex issue, since one has 
to consider various types of mismatch between a collection of 
true segments and that of computed segments. On the other 
hand, similar issues occur also in image segmentation, which 
has been extensively studied in computer vision and image 
analysis. So we have decided to adapt a region-based definition 
by Hoover et al. [6], which has been widely used for evaluating 
image segmentation systems. The general idea is to examine the 
overlapping between ideal segments and estimated segments. 
Based on the degree of overlapping, we label a T-F region as 
correct, under-segmented, over-segmented, missing, or 
mismatching. Fig. 4 illustrates these cases, where we let ovals 
represent ideal segments (numbered with Arabic numerals) and 
rectangles estimated segments (numbered with Roman 
numerals). Segment I well covers segment 1, and the 
overlapping region is labeled as correct. So is the overlap 
between segment 7 and VII. Segment III well covers two ideal 
segments, 3 and 4, and the overlapping regions are labeled as 
under-segmented. Segment IV and V are both well covered by 
segment 5, and the overlapping regions are labeled as over-
segmented. All the remaining regions from ideal segments  
segment 2 and 6 and the gray parts of segments 5 and 7  are 
labeled as missing. The black region in segment I belongs to the 
ideal background, but it is combined with ideal segment 1 into 
an estimated segment. This black region is labeled as 
mismatching. So is the black region in segment III. Segment II 
is well covered by the ideal background. Here we do not 
consider this type of regions in the evaluation because our 
evaluation focuses on target speech, not interference. We expect 
that segment-II type regions will be eliminated in subsequent 
processing. Much of segment VI is covered by the ideal 
background and therefore we treat the white region of segment 
VI the same as segment II. (Note the difference between 
segment I and VI.) 

Quantitatively, let {rGT[k]}, k=0,1,… , K, be the set of ideal 
segments, where rGT[0] indicates the ideal background and 

others the segments of target speech. These ideal segments are 
obtained according to the definition of an auditory event (Sect. 
2), with the knowledge of target speech and interference before 
mixing. Note that we consider here each phoneme as an acoustic 
event, and all the interference as the background, which 
contains little speech. Let {rS[l]}, l=0,1,… , L, be the estimated 
segments, where rS[l], l>0, corresponds to an obtained segment 
and rS[0] the obtained background. Let r[k, l] be the overlapping 
region between an ideal segment, rGT[k], and an estimated 
segment, rS[l]. Furthermore, let E[k, l], EGT[k], and ES[l] denote 
the corresponding energy in these regions. Given the threshold 
θ∈[0.5, 1), we say that an ideal segment rGT[k] is well-covered 
by an estimated segment rS[l] if the overlapping region, r[k, l], 
includes most of the energy of rGT[k]. That is, 

][],[ kElkE GT⋅>θ . Similarly, we say rS[l] is well-covered by 
rGT[k] if ][],[ lElkE S⋅>θ . Then we label an overlapping 
region as follows. 

 A region r[k, l], k>0 and l>0, is labeled as correct if rGT[k] 
and rS[l] are mutually well-covered.  

 Let {rGT[k′]}, k ′=k1, k2 , … , kK′, and K ′>1, be all the ideal 
segments of target speech that are well-covered by an 
estimated segment, rS[l], l >0. The corresponding 
overlapping regions, {r[k′, l]}, k ′=k1, k 2 , … , kK′, are 
labeled as under-segmented if these regions combined 
include most of the energy of rS[l], that is: 

KSk
kkkklElkE ′′ =′⋅>′ ,,,],[],[ 21θ    (8) 

 Let {rS[l′]}, l ′= l1, l 2 , … , lL′, and L′>1 be all the obtained 
segments that are well-covered by an ideal segment of 
target speech, rGT[k], k>0. The corresponding overlapping 
regions, {r[k, l′]}, l ′= l1, l2 , … , lL′, are labeled as over-
segmented if these regions include most of the energy of 
rGT[k], that is: 

LGTl
llllkElkE ′′ =′⋅>′ ,,,],[],[ 21θ     (9) 
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Figure 4. Illustration for correct segmentation, under-
segmentation, over-segmentation, missing, and mismatch. Here 
an oval indicates an ideal segment and a rectangle an estimated 
one. 
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Figure 5. The result of auditory segmentation for the proposed 
system using the Perona-Malik model. The speech and 
interference are mixed at 0 dB SNR. (a) The average correct 
percentage. (b) The average percentage of under-segmentation. 
(c) The average percentage of over-segmentation. (d) The 
average percentage of mismatch. 



 If a region r[k, l] is part of an ideal segment of target 
speech, i.e., k>0, but cannot be labeled as either correct, 
under-segment, or over-segment, it is labeled as missing.  

 For a region r[0, l], the overlap between the ideal 
background rGT[0] and an estimated segments rS[l], it is 
labeled as mismatching if the estimated segment rS[l] is not 
well-covered by the ideal background.   

To avoid labeling a region more than once, we stipulate that a 
region can only take one label with the following order of 
precedence: correct, under-segmented, over-segmented, 
missing, and mismatching.  

Let EC be the summated energy in all the regions labeled as 
correct, and EU, EO, EM, and EI in the regions labeled as under-
segmented, over-segmented, missing, and mismatching 
respectively. Further let EGT be the total energy of all ideal 
segments, except for the ideal background, and ES that of all 
estimated segments, except for the estimated background. We 
use the following measurements for evaluation: 

 The correct percentage is the percentage of correctly 
segmented speech to the total energy of ideal speech 
segments, i.e., PC =EC / EGT ×100%.  

 The percentage of under-segmentation is the percentage of 
under-segmented speech to the total energy of ideal speech 
segments, i.e., PU =EU /EGT ×100%. 

 The percentage of over-segmentation is the percentage of 
over-segmented speech to the total energy of ideal speech 
segments, i.e., PO =EO /EGT ×100%. 

 The percentage of mismatch is the percentage of 
interference in the generated segments for target speech, 
i.e., PI =EI /ES×100%. 

There is no need to provide a separate measure for the missing 
category since EC + EU + EO + EM = EGT. The advantage of 
evaluation according to each category is that it clearly shows 
each type of error. In image segmentation, the region 
corresponding to each segment is used for evaluation literally. 
Here, we use the energy of each segment instead. This is 
because for acoustic signal, T-F regions with strong energy are 
much more important than those with weak energy.  

Fig. 5 shows the average PC, PU, PO, and PI for different θ . 
Note that the evaluation is more stringent for higher θ . Speech 
and interference are mixed at 0 dB SNR. Here the Perona-Malik 
model is used with λ  = 3, and the segments are generated in the 
order of the four scales: (32, 200), (18, 200), (32, 100) and (18, 
100) (see Sect. 3). We have also considered segmentation using 
more scales, but results are not significantly better. As shown in 
Fig. 5, the correct percentage is about 63% when θ  is 0.5, and it 
decreases to 10% as θ  increases to 0.95. A significant amount 
of speech is under-segmented, which is due mainly to strong 
coarticulation between phonemes. Luckily, under-segmentation 
is not really an error since it basically gives larger segments for 
target speech, good for subsequent grouping. By combining PC 
and PU together, we have 83% of speech correctly segmented 
when θ  is 0.5. Still more than 50% of speech is correctly 
segmented when θ  increases to 0.85. In addition, we can see 
from Fig. 5 that over-segmentation is not a serious problem. The 
major error comes from missing, which indicates that portions 
of target speech are buried in the background. Compared with 
the SNR of the mixture, which is 0 dB, the percentage of 
mismatch is not significant. This shows that the interference and 
the target speech are well separated in the generated segments. 

Fig. 6 shows the average PC, PU, PO for stops, fricatives, and 
affricates, which constitute the major sources of unvoiced 
speech. The overall performance on these phonemes is worse 
than that for other phonemes. The average PC +PU for them is 
about 65% when θ is 0.5, and it drops below 50% when θ  is 
larger than 0.75.  

Fig. 7 compares the above result with that from a system 
using Gaussian smoothing over time (Sect. 3) and that from the 
segmentation stage preformed by the Wang-Brown model [13], 
which is chosen for comparison because it is a representative 
CASA model that includes segmentation as an explicit stage. 
Note that with Gaussian smoothing, the system amounts in fact 
to a Canny edge detector for onset and offset detection [3]. As 
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Figure 6. The result of auditory segmentation for stops, 
fricatives, and affricates. The speech and interference are 
mixed at 0 dB SNR. (a) The average correct percentage. (b) 
The average percentage of under-segmentation. (c) The average 
percentage of over-segmentation.  
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Figure 7. The result of auditory segmentation for the proposed 
system using the Perona-Malik model and Gaussian smoothing, 
and the segmentation result from the Wang-Brown model. 
Speech and interference are mixed at 0 dB SNR. (a) The 
average correct percentage plus the average percentage of 
under-segmentation for all the phonemes. (b) The average 
percentage of mismatch. (c) The average correct percentage 
plus the average percentage of under-segmentation for stops, 
fricatives, and affricates. 



shown in the figure, Gaussian smoothing gives similar PC +PU 
performance for all the phonemes compared to the Perona-
Malik model. However, it performs slightly worse than the 
Perona-Malik model on average PI and on average PC +PU for 
stops, fricatives, and affricates. Our model outperforms the 
Wang-Brown model by large margins, except for PI  where their 
model performs better. Fig. 8 shows the performance of the 
system at different SNR levels using the Perona-Malik model. 
As SNR increases, the system performs better as expected. The 
improvement is most pronounced from 0 dB to 5 dB. 

5. DISCUSSION 
We have proposed a system for auditory segmentation and 
tested it on speech segmentation. This system correctly 
segments a majority of speech, including unvoiced speech. In 
addition, speech and interference are well separated to different 
segments.  

Since there is no common definition for an acoustic event, we 
treat a phoneme, which is accepted as the basic unit of speech, 
as an acoustic event for target speech. In addition, a closure of a 
stop or an affricate is treated as a phoneme on its own. By our 
definition, the acoustic signal within each phoneme is generally 
stable and over-segmentation is undesirable. However, 
neighboring phonemes can be coarticulated, and it may also be 
appropriate to treat coarticulated phonemes as a single event. 
Coarticulation may cause false boundaries in ideal segments, 
and as a result under-segmentation can sometimes be more 
desirable. One may also define the whole utterance from the 
same speaker as one event. With this definition, we would have 
lower correct and under-segmentation percentages and much 
higher over-segmentation percentages. On the other hand, there 
are well-delineated boundaries between phonemes, and 
segmenting such boundaries should not be treated as an error. 

Compared with previous CASA systems [2] [4] [5] [7] [13], 
our model makes four novel contributions. First, it provides a 
general framework for segmentation. Although we have only 
tested it on speech segmentation, the system should be easily 

extended to other signal types, such as music, because the 
model is not based on specific properties of speech. Second, it 
performs segmentation for general auditory events based on 
onset and offset analysis. Although it is well known that onset 
and offset are important CASA cues, their utility has not been 
clearly demonstrated previously. Third, we have employed 
scale-space theory in the auditory domain. To our knowledge, it 
is the first time this theory is used in CASA. Finally, our system 
generates segments for both unvoiced and voiced speech. Little 
previous research has been conducted on organization of 
unvoiced speech, and yet speech segregation must address 
unvoiced speech.  
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Figure 8. The result of auditory segmentation at different 
levels of SNR. (a) The average correct percentage plus the 
average percentage of under-segmentation for all the 
phonemes. (b) The average percentage of mismatch. (c) The 
average correct percentage plus the average percentage of 
under-segmentation for stops, fricatives, and affricates.  

 


