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Abstract 

Monaural speech separation has been studied in previous systems that 
incorporate auditory scene analysis principles. A major problem for 
these systems is their inability to deal with speech in the high-
frequency range. Psychoacoustic evidence suggests that different 
perceptual mechanisms are involved in handling resolved and 
unresolved harmonics. Motivated by this, we propose a model for 
monaural separation that deals with low-frequency and high-
frequency signals differently. For resolved harmonics, our model 
generates segments based on temporal continuity and cross-channel 
correlation, and groups them according to periodicity. For unresolved 
harmonics, the model generates segments based on amplitude 
modulation (AM) in addition to temporal continuity and groups them 
according to AM repetition rates derived from sinusoidal modeling. 
Underlying the separation process is a pitch contour obtained 
according to psychoacoustic constraints. Our model is systematically 
evaluated, and it yields substantially better performance than previous 
systems, especially in the high-frequency range. 

1 Int roduct ion 

In a natural environment, speech usually occurs simultaneously with acoustic 
interference. An effective system for attenuating acoustic interference would greatly 
facilitate many applications, including automatic speech recognition (ASR) and 
speaker identification. Blind source separation using independent component analysis 
[10] or sensor arrays for spatial filtering require multiple sensors. In many situations, 
such as telecommunication and audio retrieval, a monaural (one microphone) solution 
is required, in which intrinsic properties of speech or interference must be considered. 
Various algorithms have been proposed for monaural speech enhancement [14]. These 
methods assume certain properties of interference and have difficulty in dealing with 
general acoustic interference. Monaural separation has also been studied using phase-
based decomposition [3] and statistical learning [17], but with only limited evaluation. 

While speech enhancement remains a challenge, the auditory system shows a 
remarkable capacity for monaural speech separation. According to Bregman [1], the 
auditory system separates the acoustic signal into streams, corresponding to different 
sources, based on auditory scene analysis (ASA) principles. Research in ASA has 
inspired considerable work to build computational auditory scene analysis (CASA) 
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systems for sound separation [19] [4] [7] [18]. Such systems generally approach speech 
separation in two main stages: segmentation (analysis) and grouping (synthesis). In 
segmentation, the acoustic input is decomposed into sensory segments, each of which 
is likely to originate from a single source. In grouping, those segments that likely come 
from the same source are grouped together, based mostly on periodicity. In a recent 
CASA model by Wang and Brown [18], segments are formed on the basis of similarity 
between adjacent filter responses (cross-channel correlation) and temporal continuity, 
while grouping among segments is performed according to the global pitch extracted 
within each time frame. In most situations, the model is able to remove intrusions and 
recover low-frequency (below 1 kHz) energy of target speech. However, this model 
cannot handle high-frequency (above 1 kHz) signals well, and it loses much of target 
speech in the high-frequency range. In fact, the inability to deal with speech in the 
high-frequency range is a common problem for CASA systems. 

We study monaural speech separation with particular emphasis on the high-frequency 
problem in CASA. For voiced speech, we note that the auditory system can resolve the 
first few harmonics in the low-frequency range [16]. It has been suggested that 
different perceptual mechanisms are used to handle resolved and unresolved harmonics 
[2]. Consequently, our model employs different methods to segregate resolved and 
unresolved harmonics of target speech. More specifically, our model generates 
segments for resolved harmonics based on temporal continuity and cross-channel 
correlation, and these segments are grouped according to common periodicity. For 
unresolved harmonics, it is well known that the corresponding filter responses are 
strongly amplitude-modulated and the response envelopes fluctuate at the fundamental 
frequency (F0) of target speech [8]. Therefore, our model generates segments for 
unresolved harmonics based on common AM in addition to temporal continuity. The 
segments are grouped according to AM repetition rates. We calculate AM repetition 
rates via sinusoidal modeling, which is guided by target pitch estimated according to 
characteristics of natural speech. 

Section 2 describes the overall system. In section 3, systematic results and a 
comparison with the Wang-Brown system are given. Section 4 concludes the paper. 

2  Model descript ion 

Our model is a multistage system, as shown in Fig. 1. Description for each stage is 
given below. 

2.1 In i t i a l  process ing  

First, an acoustic input is analyzed by a standard cochlear filtering model with a bank 
of 128 gammatone filters [15] and subsequent hair cell transduction [12]. This 
peripheral processing is done in time frames of 20 ms long with 10 ms overlap between 
consecutive frames. As a result, the input signal is decomposed into a group of time-
frequency (T-F) units. Each T-F unit contains the response from a certain channel at a 
certain frame. The envelope of the response is obtained by a lowpass filter with 
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  Figure 1. Schematic diagram of the proposed multistage system. 
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passband [0, 1 kHz] and a Kaiser window of 18.25 ms.  

Mid-level processing is performed by computing a correlogram (autocorrelation 
function) of the individual responses and their envelopes. These autocorrelation 
functions reveal response periodicities as well as AM repetition rates. The global pitch 
is obtained from the summary correlogram. For clean speech, the autocorrelations 
generally have peaks consistent with the pitch and their summation shows a dominant 
peak corresponding to the pitch period. With acoustic interference, a global pitch may 
not be an accurate description of the target pitch, but it is reasonably close.  

Because a harmonic extends for a period of time and its frequency changes smoothly, 
target speech likely activates contiguous T-F units. This is an instance of the temporal 
continuity principle. In addition, since the passbands of adjacent channels overlap, a 
resolved harmonic usually activates adjacent channels, which leads to high cross-
channel correlations. Hence, in initial segregation, the model first forms segments by 
merging T-F units based on temporal continuity and cross-channel correlation. Then 
the segments are grouped into a foreground stream and a background stream by 
comparing the periodicities of unit responses with global pitch. A similar process is 
described in [18]. 

Fig. 2(a) and Fig. 2(b) illustrate the segments and the foreground stream. The input is a 
mixture of a voiced utterance and a cocktail party noise (see Sect. 3). Since the 
intrusion is not strongly structured, most segments correspond to target speech. In 
addition, most segments are in the low-frequency range. The initial foreground stream 
successfully groups most of the major segments. 

2.2 Pi tch track ing  

In the presence of acoustic interference, the global pitch estimated in mid-level 
processing is generally not an accurate description of target pitch. To obtain accurate 
pitch information, target pitch is first estimated from the foreground stream. At each 
frame, the autocorrelation functions of T-F units in the foreground stream are 
summated. The pitch period is the lag corresponding to the maximum of the summation 
in the plausible pitch range: [2 ms, 12.5 ms]. Then we employ the following two 
constraints to check its reliability. First, an accurate pitch period at a frame should be 
consistent with the periodicity of the T-F units at this frame in the foreground stream. 
At frame j, let τ ( j) represent the estimated pitch period, and A(i, j,τ) the autocorrelation 
function of uij, the unit in channel i. uij agrees with τ( j) if 

dmjiAjjiA θττ >),,(/))(,,(               (1) 
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Figure 2. Results of initial segregation for a speech and cocktail-party mixture. (a) 
Segments formed. Each segment corresponds to a contiguous black region. (b) 
Foreground stream. 
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Here, θd=0.95, the same threshold used in [18], and τm is the lag corresponding to the 
maximum of A(i, j,τ) within [2 ms, 12.5 ms]. τ( j) is considered reliable if more than 
half of the units in the foreground stream at frame j agree with it. Second, pitch periods 
in natural speech vary smoothly in time [11]. We stipulate the difference between 
reliable pitch periods at consecutive frames be smaller than 20% of the pitch period, 
justified from pitch statistics. Unreliable pitch periods are replaced by new values 
extrapolated from reliable pitch points using temporal continuity. As an example, 
suppose at two consecutive frames j and j+1 that τ( j) is reliable while τ( j+1) is not. All 
the channels corresponding to the T-F units agreeing with τ( j) are selected. τ( j+1) is 
then obtained from the summation of the autocorrelations for the units at frame j+1 in 
those selected channels. Then the re-estimated pitch is further verified with the second 
constraint. For more details, see [9]. 

Fig. 3 illustrates the estimated pitch periods from the speech and cocktail-party 
mixture, which match the pitch periods obtained from clean speech very well. 

2.3 Uni t  l abe l ing  

With estimated pitch periods, (1) provides a criterion to label T-F units according to 
whether target speech dominates the unit responses or not. This criterion compares an 
estimated pitch period with the periodicity of the unit response. It is referred as the 
periodicity criterion. It works well for resolved harmonics, and is used to label the units 
of the segments generated in initial segregation. 

However, the periodicity criterion is not suitable for units responding to multiple 
harmonics because unit responses are amplitude-modulated. As shown in Fig. 4, for a 
filter response that is strongly amplitude-modulated (Fig. 4(a)), the target pitch 
corresponds to a local maximum, indicated by the vertical line, in the autocorrelation 
instead of the global maximum (Fig. 4(b)). Observe that for a filter responding to 
multiple harmonics of a harmonic source, the response envelope fluctuates at the rate 
of F0 [8]. Hence, we propose a new criterion for labeling the T-F units corresponding 
to unresolved harmonics by comparing AM repetition rates with estimated pitch. This 
criterion is referred as the AM criterion. 

To obtain an AM repetition rate, the entire response of a gammatone filter is half-wave 
rectified and then band-pass filtered to remove the DC component and other possible 
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Figure 3. Estimated target pitch for 
the speech and cocktail-party 
mixture, marked by “x”. The solid 
line indicates the pitch contour 
obtained from clean speech. 

Figure 4. AM effects. (a) Response of a 
filter with center frequency 2.6 kHz. (b) 
Corresponding autocorrelation. The vertical 
line marks the position corresponding to the 
pitch period of target speech. 
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harmonics except for the F0 component. The rectified and filtered signal is then 
normalized by its envelope to remove the intensity fluctuations of the original signal, 
where the envelope is obtained via the Hilbert Transform. Because the pitch of natural 
speech does not change noticeably within a single frame, we model the corresponding 
normalized signal within a T-F unit by a single sinusoid to obtain the AM repetition 
rate. Specifically,  

2

1,
)]/2sin(),(ˆ[minarg, φπφ
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kf
ijij ffkkTjirf ,  for  f∈[80 Hz, 500 Hz],   (2) 

where a square error measure is used. ),(ˆ tir  is the normalized filter response, fS is the 
sampling frequency, M spans a frame, and T=10 ms is the progressing period from one 
frame to the next. In the above equation, fij gives the AM repetition rate for unit uij. 
Note that in the discrete case, a single sinusoid with a sufficiently high frequency can 
always match these samples perfectly. However, we are interested in finding a 
frequency within the plausible pitch range. Hence, the solution does not reduce to a 
degenerate case. With appropriately chosen initial values, this optimization problem 
can be solved effectively using iterative gradient descent (see [9]). 

The AM criterion is used to label T-F units that do not belong to any segments 
generated in initial segregation; such segments, as discussed earlier, tend to miss 
unresolved harmonics. Specifically, unit uij is labeled as target speech if the final 
square error is less than half of the total energy of the corresponding signal and the AM 
repetition rate is close to the estimated target pitch: 

fij jf θτ <− |1)(| .                (3) 

Psychoacoustic evidence suggests that to separate sounds with overlapping spectra 
requires 6-12% difference in F0 [6]. Accordingly, we choose θf  to be 0.12. 

2.4 Fina l  segregat ion and resynthes is  

For adjacent channels responding to unresolved harmonics, although their responses 
may be quite different, they exhibit similar AM patterns and their response envelopes 
are highly correlated. Therefore, for T-F units labeled as target speech, segments are 
generated based on cross-channel envelope correlation in addition to temporal 
continuity.  

The spectra of target speech and intrusion often overlap and, as a result, some segments 
generated in initial segregation contain both units where target speech dominates and 
those where intrusion dominates. Given unit labels generated in the last stage, we 
further divide the segments in the foreground stream, SF, so that all the units in a 
segment have the same label. Then the streams are adjusted as follows. First, since 
segments for speech usually are at least 50 ms long, segments with the target label are 
retained in SF only if they are no shorter than 50 ms. Second, segments with the 
intrusion label are added to the background stream, SB, if they are no shorter than 50 
ms. The remaining segments are removed from SF, becoming undecided. 

Finally, other units are grouped into the two streams by temporal and spectral 
continuity. First, SB expands iteratively to include undecided segments in its 
neighborhood. Then, all the remaining undecided segments are added back to SF. For 
individual units that do not belong to either stream, they are grouped into SF iteratively 
if the units are labeled as target speech as well as in the neighborhood of SF. The 
resulting SF is the final segregated stream of target speech.  

Fig. 5(a) shows the new segments generated in this process for the speech and cocktail-
party mixture. Fig. 5(b) illustrates the segregated stream from the same mixture. Fig. 
5(c) shows all the units where target speech is stronger than intrusion. The foreground 
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stream generated by our algorithm contains most of the units where target speech is 
stronger. In addition, only a small number of units where intrusion is stronger are 
incorrectly grouped into it. 

A speech waveform is resynthesized from the final foreground stream. Here, the 
foreground stream works as a binary mask. It is used to retain the acoustic energy from 
the mixture that corresponds to 1’s and reject the mixture energy corresponding to 0’s. 
For more details, see [19]. 

3 Evaluat ion and comparison 

Our model is evaluated with a corpus of 100 mixtures composed of 10 voiced 
utterances mixed with 10 intrusions collected by Cooke [4]. The intrusions have a 
considerable variety. Specifically, they are: N0 - 1 kHz pure tone, N1 - white noise, N2 
- noise bursts, N3 - “cocktail party” noise, N4 - rock music, N5 - siren, N6 - trill 
telephone, N7 - female speech, N8 - male speech, and N9 - female speech. 

Given our decomposition of an input signal into T-F units, we suggest the use of an 
ideal binary mask as the ground truth for target speech. The ideal binary mask is 
constructed as follows: a T-F unit is assigned one if the target energy in the 
corresponding unit is greater than the intrusion energy and zero otherwise. 
Theoretically speaking, an ideal binary mask gives a performance ceiling for all binary 
masks. Figure 5(c) illustrates the ideal mask for the speech and cocktail-party mixture. 
Ideal masks also suit well the situations where more than one target need to be 
segregated or the target changes dynamically. The use of ideal masks is supported by 
the auditory masking phenomenon: within a critical band, a weaker signal is masked by 
a stronger one [13]. In addition, an ideal mask gives excellent resynthesis for a variety 
of sounds and is similar to a prior mask used in a recent ASR study that yields 
excellent recognition performance [5]. 

The speech waveform resynthesized from the final foreground stream is used for 
evaluation, and it is denoted by S(t). The speech waveform resynthesized from the ideal 
binary mask is denoted by I(t). Furthermore, let e1(t) denote the signal present in I(t) 
but missing from S(t), and e2(t) the signal present in S(t) but missing from I(t). Then, 
the relative energy loss, REL, and the relative noise residue, RNR, are calculated as 
follows: 

∑∑=
tt

tIteREL )()( 22
1 ,             (4a) 

∑∑=
tt

tSteRNR )()( 22
2 .             (4b)  

0 0.5 1
  80

 387

1054

2355

5000
(a)

Time (Sec)

F
re

qu
en

cy
 (

H
z)

0 0.5 1

(b)

Time (Sec)
0 0.5 1

(c)

Time (Sec)  
Figure 5. Results of final segregation for the speech and cocktail-party mixture. (a) 
New segments formed in the final segregation. (b) Final foreground stream. (c) 
Units where target speech is stronger than the intrusion. 
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  Table 1: REL and RNR 
 

Proposed 
model 

Wang-Brown 
model Intrusion 

REL (%) RNR (%) REL (%) RNR (%) 

N0 2.12 0.02 6.99 0 
N1 4.66 3.55 28.96 1.61 
N2 1.38 1.30 5.77 0.71 
N3 3.83 2.72 21.92 1.92 
N4 4.00 2.27 10.22 1.41 
N5 2.83 0.10 7.47 0 
N6 1.61 0.30 5.99 0.48 
N7 3.21 2.18 8.61 4.23 
N8 1.82 1.48 7.27 0.48 
N9 8.57 19.33 15.81 33.03 

Average 3.40 3.32 11.91 4.39 

The results from our model are shown in Table 1. Each value represents the average of 
one intrusion with 10 voiced utterances. A further average across all intrusions is also 
shown in the table. On average, our system retains 96.60% of target speech energy, and 
the relative residual noise is kept at 3.32%. As a comparison, Table 1 also shows the 
results from the Wang-Brown model [18], whose performance is representative of 
current CASA systems. As shown in the table, our model reduces REL significantly. In 
addition, REL and RNR are balanced in our system. 

Finally, to compare waveforms directly we measure a form of signal-to-noise ratio 
(SNR) in decibels using the resynthesized signal from the ideal binary mask as ground 
truth: 

]))()(()([log10 22
10 ∑∑ −=

tt

tStItISNR .             (5) 

The SNR for each intrusion averaged across 10 target utterances is shown in Fig. 6, 
together with the results from the Wang-Brown system and the SNR of the original 
mixtures. Our model achieves an average SNR gain of around 12 dB and 5 dB 
improvement over the Wang-Brown model. 

4 Discussion 

The main feature of our model lies in using different mechanisms to deal with resolved 
and unresolved harmonics. As a result, our model is able to recover target speech and 
reduce noise interference in the high-frequency range where harmonics of target speech 
are unresolved.  

The proposed system considers the pitch contour of the target source only. However, it 
is possible to track the pitch contour of the intrusion if it has a harmonic structure. With 
two pitch contours, one could label a T-F unit more accurately by comparing whether 
its periodicity is more consistent with one or the other. Such a method is expected to 
lead to better performance for the two-speaker situation, e.g. N7 through N9. As 
indicated in Fig. 6, the performance gain of our system for such intrusions is relatively 
limited. Our model is limited to separation of voiced speech. In our view, unvoiced 
speech poses the biggest challenge for monaural speech separation. Other grouping 
cues, such as onset, offset, and timbre, have been demonstrated to be effective for 
human ASA [1], and may play a role in grouping unvoiced speech. In addition, one 
should consider the acoustic and phonetic characteristics of individual unvoiced 
consonants. We plan to investigate these issues in future study. 
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Figure 6. SNR results for segregated 
speech. White bars show the results 
from the proposed model, gray bars 
those from the Wang-Brown system, 
and black bars those of the mixtures. 
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