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Abstract
The problem of sequential organization in the cochannel speech
situation has previously been studied using speaker-model
based methods. A major limitation of these methods is that they
require the availability of pretrained speaker models and prior
knowledge (or detection) of participating speakers. We pro-
pose an unsupervised clustering approach to cochannel speech
sequential organization. Given enhanced cepstral features,
we search for the optimal assignment of simultaneous speech
streams by maximizing the between- and within-cluster scat-
ter matrix ratio penalized by concurrent pitches within indi-
vidual speakers. A genetic algorithm is employed to speed up
the search. Our method does not require trained speaker mod-
els, and experiments with both ideal and estimated simultane-
ous streams show the proposed method outperforms a speaker-
model based method in both speech segregation and computa-
tional efficiency.

Index Terms: sequential grouping, cochannel speech separa-
tion, clustering

1. Introduction
Cochannel speech separation is the task of separating two si-
multaneous speech signals in a single channel. This is a very
challenging task considering the significant amount of speech
overlap between two talkers and only one available mixture.
Despite the difficulty of this task, humans show remarkable
ability to select and follow one speaker under such conditions.
Bregman calls this perceptual process auditory scene analy-
sis [1], which takes place in two main stages: segmentation
and grouping. Segmentation decomposes an auditory scene
into time-frequency (T-F) segments, each of which primarily
originates from a single sound source, and grouping selec-
tively aggregates them to form perceptual streams correspond-
ing to sound sources. Grouping itself consists of simultaneous
and sequential grouping. Simultaneous grouping organizes T-
F segments across frequency to produce simultaneous streams,
and sequential grouping organizes segments across time. In
this work, we study how to sequentially organize simultaneous
streams of two speakers in an unsupervised manner.

Previous research on sequential grouping of cochannel
speech uses speaker model based methods. In [2], Shao and
Wang extend the traditional speaker identification framework to
the cochannel situation and perform sequential organization by
maximizing the joint speaker recognition score given all pos-
sible groupings and speaker pairs. Their method is further de-
veloped in [3] to deal with the situation where only the target
speaker model is known. Similarly, a CASA system in [4]

employs speaker-dependent (SD) hidden Markov models and
searches for the best grouping by coupling segmentation with
speech recognition. Related model based methods directly re-
cover individual speech signals [5], [6]. Model-based meth-
ods can achieve satisfactory performance when trained models
match those of participating speakers. However, this condition
is often not met in practice.

On the other hand, unsupervised speaker clustering aims to
organize speech contents based on speaker identities in multi-
talker environments. For example, in [7], two Gaussian mix-
ture models (GMM), each representing one speaker, are built
from two speaker-homogeneous sections of the mixture on the
fly and used to label such sections. Sequential grouping resem-
bles speaker clustering except for two major differences. First,
simultaneous streams in sequential grouping contain spectrally
separated components while the speech sections in speaker
clustering consist of whole frames. Second, a simultaneous
stream is much shorter than a speech section in speaker clus-
tering. The analysis of Ofoegbu et al. [8] on intra- and inter-
speaker distances of voiced speech suggests that a minimum of
5 phones is needed for speaker separability. Short simultaneous
streams generally do not contain enough acoustic information
for speaker clustering. To verify this, we have directly applied
speaker clustering methods for sequential grouping but found
unsatisfactory results.

We propose a search based clustering approach for cochan-
nel speech sequential grouping. Unreliable units in simultane-
ous streams are first reconstructed using a speech prior, and cep-
stral features are subsequently derived for clustering. We search
for two clusters exhibiting the biggest speaker difference, i.e.
the trace of the between- and within-cluster scatter matrix ra-
tio. An exhaustive search becomes computationally expensive
as the mixture length grows. Thus we employ a genetic algo-
rithm to speed up the search.

In the next section, we describe proposed clustering based
sequential organization. Evaluation and comparison are given
in Section 3, and we conclude the paper in Section 4.

2. Unsupervised sequential organization
2.1. Early processing

The input mixture is first decomposed into the T-F domain using
a 128-channel gammatone filterbank with center frequencies
ranging from 50 Hz to 8000 Hz [9]. Gammatone features (GF)
are then extracted by downsampling each of the 128-channel
outputs to 100 Hz along the time dimension and compressing
the magnitude of each downsampled output by a cubic root op-
eration [10].
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Figure 1: An example of simultaneous streams estimated using
the tandem algorithm.

To extract simultaneous streams, we employ a recently de-
veloped tandem algorithm [11]. This algorithm performs seg-
mentation based on cross-channel correlations, and forms ini-
tial pitch contours and corresponding simultaneous streams us-
ing harmonicity and temporal continuity. Given the initial esti-
mates, the algorithm re-estimates pitch contours and their cor-
responding simultaneous streams jointly and iteratively. The re-
sulting simultaneous streams are represented by binary masks,
which are estimates of the ideal binary mask (IBM) [12]. In
the IBM, 1 indicates target dominance and 0 interference domi-
nance. The tandem algorithm is shown to significantly improve
the SNR of segregated speech under various noise conditions.
An example of estimated simultaneous streams is shown in Fig.
1 for a cochannel speech mixture. Each colored region repre-
sents one simultaneous stream.

2.2. Feature reconstruction

Before clustering, we derive gammatone frequency cepstral co-
efficients (GFCC) for simultaneous streams [10]. First, unre-
liable GF units (those labeled as 0 in a binary mask) are re-
constructed using a speech prior and the reconstructed GFs are
converted to GFCCs through discrete cosine transform.

We denote a GF feature vector derived from one frame of
the mixture as X. According to the estimated binary mask, a GF
vector can be partitioned into reliable units Xr , and unreliable
ones Xu. To enhance the GF vector, we use a GMM speech
prior p(X) to reconstruct the unreliable units as the mean con-
ditioned on the reliable units

X̂u =

K∑

k=1

p(k|Xr)μu,k, (1)

where K is the number of Gaussians, k is the Gaussian index,
and μu,k refers to the mean vector of the uth unreliable unit
in the kth Gaussian of the speech prior. The reliable units are
retained in the reconstruction. We calculate the posterior prob-
ability of the kth Gaussian given the reliable GF units as

p(k|Xr) =
p(k)p(Xr|k)

∑K
k=1 p(k)p(Xr|k)

. (2)

where p(k) represents the prior of the kth Gaussian. As in [10],
diagonal covariance matrices are assumed in our GMM model.

Then for every frame, the reconstructed GFs are trans-
formed into GFCCs. Our GMM model is trained using pre-
mixed uttrances from speakers other than target and interfer-
ing speakers; one can expect better reconstruction performance
with matched speaker models.

2.3. Objective function

We formulate sequential organization as a problem of unsuper-
vised clustering: simultaneous streams will be clustered into
two speakers. Different clustering possibilities are evaluated
using an objective function, and the one with the highest score
is chosen as the result.

Clustering aims to find a partition of data so that objects
in the same cluster are similar while those in different clusters
are far apart [13]. Given different speakers, one objective func-
tion for cochannel speech separation would be to measure the
acoustic difference of two simultaneous stream groups. Given
a binary label vector g, we thus pool the GFCC features of si-
multaneous streams in each group and measure the group dif-
ference by calculating the trace of the matrix from the product
of the between-cluster and within-cluster matrices

O(g) = tr(S−1
W (g)SB(g)) (3)

where SW (g) and SB(g) are the within-cluster scatter matrix
and between-cluster scatter matrix with respect to g, respec-
tively. The trace operation amounts to measuring the ratio of the
between- and within-cluster scatter matrices along the eigenvec-
tor dimensions [13].

While maximizing (3), two simultaneous streams with
overlapping pitch contours should not be assigned to the same
speaker cluster. For any clustering g with a total of m overlap-
ping frames in the two individual speaker clusters, we penalize
this clustering by

P (g) = 1/(1 + ea(mg−b)), a < 0 and b ≥ 0 (4)

where mg denotes the number of overlapping pitch frames for
g, and a and b are constants controlling the steepness of the
penalty and tolerance to overlapping errors, respectively. The
penalty function has a value ranging from 0 to 1. It will be
1/2 when there are b overlapping frames. Since a is negative,
P (g) will saturate to 1 as mg increases and to zero when mg is
significantly smaller than b.

Adding the penalty, the objective function becomes

J(g) = λO(g) − (1 − λ)cP (g), 0 ≤ λ ≤ 1 (5)

where c is a constant which scales P (g) to the range of O(g),
and λ controls the tradeoff between these two terms. In this
work, we set c to be maxg O(g). Empirically, we find that λ
needs to be greater or equal than 0.5 to achieve good results.

Our objective function pools multiple simultaneous streams
for clustering. We have also considered clustering simultaneous
streams iteratively using a GMM based likelihood function [7]
but obtained worse results. It is probably because an individual
simultaneous stream does not contain sufficient speaker infor-
mation. In addition, a sum-of-squared-error objective function
is not chosen considering its sensitivity to outliers [13].

2791



2.4. Search

Given the objective function, the clustering problem can thus
be formulated as an optimization problem, i.e. to find a bi-
nary label vector g that maximizes the objective function (5).
In principle, the optimal solution can be found by an exhaus-
tive search. However, this method is only feasible when there
is a relatively small number of simultaneous streams. When
the system needs to process longer mixtures, this brute force
method becomes computationally expensive. To overcome this
difficulty, we use a genetic algorithm (GA) [14] to search for
the optimal grouping.

In GA, each chromosome, often encoded as a binary string,
represents a potential solution for a given problem. To start the
search, GA randomly generates a set of chromosomes to form
a seed population. These chromosomes are evaluated in par-
allel using a fitness function and according the fitness scores,
individual chromosomes are altered through a set of operations
including selection, crossover, and mutation to generate a new
population. This procedure is repeated until the maximum num-
ber of generations is reached. The chromosome with the highest
fitness score in the final population is taken as the GA solution.

Our clustering problem fits into the GA framework. In our
task, each chromosome corresponds to a binary label vector g.
The fitness function for evaluating the partitions is the objec-
tive function in (5). For selection, we employ the linear ranking
method [15] to prevent premature convergence. This method
sorts chromosomes by their fitness values in an increasing or-
der, and uses the output ranks to determine their corresponding
numbers of offsprings. Crossover among chromosomes is per-
formed by swapping the subsequences of the two chromosomes
between two random points. A crossover probability is used
to control the percentage of newly generated offsprings in the
whole population. Mutation is carried out by replacing one el-
ement of a chromosome by a random number with a mutation
probability. In this study, we set the initial population size, num-
ber of generations, and the crossover probability to be 500, 50,
and 0.8, respectively. We have also tried other parameters and
obtained similar results.

3. Evaluation and comparison
Following [3], we evaluate our algorithm by measuring the
target speaker segregation performance. Two types of simul-
taneous streams, either estimated using the tandem algorithm
or generated directly from the IBM, are employed for sequen-
tial grouping. For estimated simultaneous streams, we take the
resynthesized speech from the voiced IBM as the ground truth
and measure the SNR of segregated target speech as

SNR = 10 log10(
∑

n

S2
I [n]/

∑

n

(SI [n] − SE [n])2), (6)

where SI [n] and SE [n] are the target signals resynthesized from
the voiced IBM and the estimated voiced IBM, respectively.
The voiced IBM is generated by taking the portions of the IBM
with pitched frames. We also evaluate the system using ideal si-
multaneous streams derived from ground-truth pitch contours
and IBMs. Specifically, ground-truth pitch contours are de-
tected for each speaker from the premixed utterance using Praat
[16] and the corresponding portions of the IBM are taken as
simultaneous streams. To prevent the SNR to become infinity
in this case, we compare the estimated masks with the overall
IBM (i.e. not the voiced IBM). In addition, since our algorithm
is unsupervised, we treat the segregated signal matching SI [n]

better as the estimated target and the other as interference.
We create cochannel speech mixtures using the speech sep-

aration challenge (SSC) corpus [17]. The SSC corpus contains
34 speakers with both males and females. We use the test part of
this corpus to generate two-talker mixtures. All utterances are
first downsampled from 25 kHz to 20 kHz. For each utterance
deemed a target, another utterance is randomly selected from
other speakers and mixed with the target. The interfering utter-
ance is either cut or concatenated with itself to match the length
of the corresponding target signal. In total, we have created 100
mixtures at 0 dB for evaluation. Among them, 49 are mixtures
of different gender (DG) talkers, and 51 are same gender (SG)
mixtures. For feature reconstruction, we build a speech prior
by training a 64-component GMM model of 128-dimensional
GFs for each speaker, and then pooling the GMMs of all speak-
ers other than those of the target and interfering speakers. For
the penalty term in (4), a and b are ideally set to -10 and 0.5,
respectively, to penalize concurrent pitches in a single speaker.
However, since the tandem algorithm may overdetect pitches
for a single speaker, we set a and b to -0.3 and 15, respectively,
to tolerate such errors.

We compare our method to the background model (BM)
based method of [3] since both algorithms operate on simulta-
neous streams for sequential grouping. For each input mixture,
the BM method forms a target speaker set by randomly selecting
a group of 10 speakers including the target one, and constructs
the interferer model using all speakers other than the two con-
stituent speakers. We emphasize that our method is completely
speaker independent (SI) while the BM method needs to know
the target speaker. The results with both ideal and estimated
simultaneous streams are shown in Table 1, where the “SI”
column under “Proposed” describes our performance, and the
“BM” column shows that using the background model. Com-
pared with the BM method, the proposed algorithm improves
the segregation performance by 3.4 dB on average in the ideal
case and 0.4 dB in the estimated case. The improvement de-
creases in the latter case, suggesting that our algorithm is more
sensitive to errors in simultaneous stream estimation and pitch
detection. On the other hand, our method would benefit more
from improved simultaneous streams. Note that our method
performs better for both SG and DG mixtures.

To test the speaker dependency of our method, we have
also used SD models for feature reconstruction. The results
are shown in the “SD” column under “Proposed” in Table 1.
We have also incorporated different levels of prior information
in the BM method: the “Target” column denotes the scenario
where the target identity is provided directly, and the “SD”
column represents that identities of both target and interfering
speakers are given. As expected, the performance improves as
more prior information is incorporated. In the SD case, our
method performs a little better with ideal simultaneous streams
but a little worse with estimated simultaneous streams. How-
ever, our method with a speaker-independent speech prior per-
forms comparably or better than the BM method with prior tar-
get information.

To evaluate the effectiveness of the GA search, we show
the grouping performance using exhaustive search in Table 1.
The exhaustive search method performs only marginally bet-
ter: an improvement of 0.5 dB in the ideal case and 0.2 dB in
the estimated case. This indicates that our GA search does a
good job in approximating the optimal solution. To establish
a performance upper-bound, we also perform ideal sequential
grouping (ISG). In ISG, a simultaneous stream is grouped as
target if more than half of its energy is retained by the IBM.
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Table 1: Comparisons of output SNRs (in dB) between the proposed method and a speaker-model based method

Simultaneous MODEL-BASED PROPOSED EXHAUSTIVE
Gender ISG

streams BM Target SD SI SD SI SD

SG 7.9 8.9 13.0 12.2 14.1 13.2 14.1 14.4

Ideal DG 11.5 11.9 15.3 14.1 15.2 14.1 15.2 15.7

Both 9.7 10.4 14.1 13.1 14.6 13.6 14.6 15.0

SG 3.5 3.9 5.5 3.7 5.1 3.8 5.2 6.5

Estimated DG 6.8 7.1 8.6 7.4 8.2 7.7 8.5 9.0

Both 5.1 5.5 7.0 5.5 6.6 5.7 6.8 7.7

Our method with SD reconstruction in the ideal case performs
only 0.4 dB worse than the ISG, but the gap increases to 1.1 dB
in the estimated case.

We have also measured the speed of the proposed algorithm
as well as the BM method on an Intel Xeon 2.5 GHz server
with 8 GB of RAM. The operating system is Linux Red Hat
Enterprise 5.4. Table 2 summarizes the average runtime per
mixture (about 1s long) for different methods as well as the
speedup with respect to the BM method.

Table 2: Comparisons of average per-mixture runtime between

the proposed methods and the BM method

BM Exhaustive GA

Runtime (s) 61.4 55.2 26.5

Speedup - 10% 57%

As shown in Table 2, the time complexity of the exhaustive
search is not too bad in our case since the mixture length is
around 1s. It is even 10% faster than the BM method. By using
the GA algorithm, the system speeds up the sequential grouping
process by more than 50% compared to the BM method.

4. Conclusion
We have proposed a novel unsupervised clustering method for
sequential organization in cochannel speech. With enhanced
GFCC features, our method searches for the best clustering by
maximizing the acoustic difference of two simultaneous stream
groups. Our method does not use pretrained speaker models
for separation. Systematic evaluations and comparisons show
that our method outperforms a previous speaker-model based
method with both ideal and estimated simultaneous streams.
In addition, the proposed method is computationally more ef-
ficient.
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