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Abstract 

Unvoiced speech separation is an important and challenging 
problem that has not received much attention. We propose a 
CASA based approach to segregate unvoiced speech from 
nonspeech interference. As unvoiced speech does not contain 
periodic signals, we first remove the periodic portions of a 
mixture including voiced speech. With periodic components 
removed, the remaining interference becomes more 
stationary. We estimate the noise energy in unvoiced intervals 
on the basis of segregated voiced speech. Spectral subtraction 
is employed to extract time-frequency segments in unvoiced 
intervals, and we group the segments dominated by unvoiced 
speech by simple thresholding or Bayesian classification. 
Systematic evaluation and comparison show that the proposed 
method considerably improves the unvoiced speech 
segregation performance under various SNR conditions. 
Index Terms: unvoiced speech segregation, CASA, spectral 
subtraction 

1. Introduction 

Background noise interferes with target speech and poses a 
serious problem for many applications. Unvoiced speech is 
highly susceptible to interference due to relatively weak 
energy and lack of harmonic structure. While recent research 
in computational auditory scene analysis (CASA) has made 
considerable advances in voiced speech segregation, unvoiced 
speech segregation has been little studied (see [1] for an 
exception). In this paper, we propose a new approach to 
segregating unvoiced speech monaurally from nonspeech 
interference. 

Speech enhancement methods have been proposed to 
enhance noisy speech based on a single recording [2]. 
Representative algorithms include spectral subtraction, 
Wiener filtering, minimum mean square error based estimator, 
and subspace analysis. Such methods work with the whole 
noisy utterance and therefore have the potential to deal with 
unvoiced speech. However, they often assume that 
interference satisfies certain statistical properties and lack the 
ability to deal with general interference. Another class of 
methods models source speakers and searches for the best 
combination to match the mixture and estimate source 
speech. For example, Radfar et al. [3] use a Gaussian mixture 
model to represent each source speaker and derive a 
minimum mean square error estimator to separate individual 
speech signals. Model-based techniques apply to unvoiced 
speech, but the assumption that the mixture consists of only 
speech utterances of trained speakers limits the scope of their 

applications. It is also unclear that how the system performs 
when two speakers utter unvoiced speech simultaneously. 

On the other hand, CASA aims to achieve sound 
organization based on human auditory perceptual principles 
[4]. Segmentation and grouping are the two main stages of 
CASA. In segmentation, the input is decomposed to segments, 
each of which is a contiguous time-frequency (T-F) region 
originating mainly from a single sound source. The grouping 
stage combines segments that likely arise from the same 
source into a stream.  Ideal binary mask (IBM) has been 
suggested as a main goal of CASA [5]. The IBM takes the 
value of 0 or 1 in each T-F unit, where 1 indicates target 
dominance and 0 interference dominance. Subject tests have 
shown that IBM-segregated mixtures lead to dramatic 
intelligibility improvements for both normal-hearing and 
hearing-impaired listeners [6], [7], [8].  

Hu and Wang recently studied unvoiced speech 
segregation [1]. They utilize onset and offset cues to extract 
unvoiced speech segments. Acoustic-phonetic features are 
then used to segregate unvoiced speech in a classification 
stage. In [9], we incorporated spectral subtraction and noise 
type in unvoiced speech segregation. Although results are 
promising, the noise-type dependent grouping involves a 
large amount of training and the system is evaluated only at 
one SNR level.  

In this work, we propose a simpler method for unvoiced 
speech grouping. Different from [9], our method first 
segregates voiced speech and removes it along with periodic 
portions of interference before segregating unvoiced speech. 
With periodic signal removal, the remaining interference 
becomes more stationary and we estimate interference energy 
in unvoiced intervals by averaging the mixture energy of 
masked units (those labeled as 0) in neighboring voiced 
intervals. Estimated noise energy is then used by spectral 
subtraction to generate T-F segments, and unvoiced speech is 
grouped based on thresholding or Bayesian classification. 

 The rest of the paper is organized as follows. We first 
describe voiced speech segregation in the next section. 
Unvoiced speech segregation is described in Section 3. 
Systematic evaluation and comparison are given in Section 4 
and we conclude the paper in Section 5. 

2. Voiced speech segregation 

Our system is shown in Fig. 1. Noisy speech is first 
decomposed in the T-F domain using a 64-channel 
gammatone filterbank. Each filter response is then transduced 
by the Meddis hair cell model and divided to 20-ms time 
frames with 10-ms overlapping (see [5] for details of the 
peripheral analysis). Voiced speech segregation is carried out 
by a tandem algorithm [10] which segregates voiced speech 
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Figure 1: Schematic diagram of the proposed unvoiced speech segregation system. The system first estimates voiced speech and 
removes it together with periodic portions of interference. Spectral subtraction is employed to generate T-F segments in unvoiced 
intervals and unvoiced speech segments are subsequently grouped. 
 

and detects pitch contours jointly and iteratively. The tandem 
algorithm requires a multilayer perceptron (MLP) for voiced 
speech segregation. Therefore, we extract 6-dimensional 
pitch-based feature vectors [10] to train an MLP for each 
frequency channel. The training corpus is created by mixing 
100 utterances from the training part of the TIMIT database 
[11] with 100 nonspeech interferences [12] at 0 dB. In 
training, feature extraction requires pitch information so that 
we extract pitch contours from clean utterances using Praat 
[13]; IBM provides the desired output. All 64 MLPs have the 
same architecture of 6 input nodes, one hidden layer of 5 
nodes and 1 output node.  

3. Unvoiced speech segregation 

3.1. Periodic signal removal 

T-F units dominated by periodic signals cannot originate from 
unvoiced speech and should be removed. Let uc,m denote a T-
F unit at channel c and frame m. We consider uc,m to be 
dominated by a periodic signal if the unit is included in the 
segregated voiced speech, or it has a high cross-channel 
correlation [5]. The cross-channel correlation is calculated on 
the basis of autocorrelation responses (correlogram), and 
deemed high if it is above a certain threshold  
                        ( , ) RC c m θ>  or ( , )E EC c m θ>                    (1) 

where C(c,m) is the cross-channel correlation between filter 
responses in uc,m and uc+1,m, and CE(c,m) denote that of the 
response envelopes. �R and �E represent their corresponding 
thresholds.  

The above thresholds determine the balance between  
periodic signal removal and unvoiced speech preservation. To 
find appropriate thresholds, we vary �R and �E from 0.86 to 1, 
respectively, and calculate the loss of unvoiced speech during 
periodic signal removal. Specifically, unvoiced speech is 
taken as the unmasked portions of the IBM across non-
pitched frames, and pitch contours are detected from clean 
utterances using Praat in this analysis. To exclude inharmonic 
voiced speech, segments extending below 1 kHz are 
excluded. We mix 100 sentences from the IEEE sentence 
database [14] recorded by a single female speaker with 15 
nonspeech interferences (see Section 4 for specific 
interference types) to provide the analysis data.  Given this 
systematic analysis, we set �R to 0.9 and �E to 0.96 to achieve 
a good compromise between periodic signal removal and 

unvoiced speech preservation. In this case, less than 2% of 
the unvoiced speech is lost on average. 

3.2. Unvoiced speech segmentation based on spectral 
subtraction 

After periodic signal removal, we deal with the mixtures of 
only unvoiced speech and aperiodic interference. Letting 
X(c,m) be noisy speech energy and ˆ ( , )N c m  the estimated 
noise energy in uc,m, we estimate the local SNR (in dB) in this 
unit as 
 

where the function [ ]z z
+ =  if 0z ≥  and [ ] 0z

+ = otherwise. 
A T-F unit is then labeled as 1 if ( , )c mξ is greater than 0 dB, 
or 0 otherwise. Interference energy ˆ ( , )N c m  in an unvoiced 
T-F unit is estimated by averaging the mixture energy (in the 
dB scale) of masked T-F units in two neighboring voiced 
intervals. For the unvoiced interval at the start or end of an 
utterance, estimation is only based on the succeeding or 
preceding voiced interval, respectively. If neighboring voiced 
intervals contain no masked unit, we continue to search the 
two further neighboring voiced intervals until at least one 
contains masked units. In case no masked unit is found in a 
channel, the mixture energy of the first 5 frames is averaged 
to obtain the noise estimate. We have also tried linear 
interpolation and smoothing spline interpolation in noise 
estimation, but got no better performance. On the other hand, 
we have investigated the over-subtraction technique to 
attenuate music noise [2]. We find an over-subtraction factor 
of 2 to be a good tradeoff and double the noise estimate in (2) 
during labeling. Unvoiced speech segments are subsequently 
formed by merging neighboring unmasked T-F units within 
unvoiced intervals. 

The accuracy of the average-based noise estimation 
improves with periodic signal removal. To show this, we 
calculate the root mean square (RMS) error of estimated 
noise over unvoiced intervals with or without periodic signal 
removal. We mix 100 utterances of the IEEE corpus, which 
are different from those used in the previous subsection, with 
the bird chirp noise [12] at 0 dB for evaluation. Fig. 2 shows 
the mean RMS errors. The RMS error with periodic signal 
removal is uniformly smaller than that without the removal, 
especially at high frequencies where the energy of the bird 
chirp noise is concentrated. Two reasons are suggested. First, 
inharmonic voiced speech is eliminated during periodic signal 
removal, leading to more accurate noise estimation. Second, 
voiced harmonics in high frequencies are relatively weak and 

        ( )10
ˆ ˆ( , ) 10log ( , ) ( , ) ( , )c m X c m N c m N c mξ

+
� �= −� �       (2) 
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Figure 2: Mean RMS errors of noise energy estimation 
with respect to frequency for bird chirp noise. The 
estimation performance with the chosen thresholds (solid 
line) is better than that without periodic signal removal 
(dotted line). 
 
 

thus we have sufficiently many masked T-F units for noise 
estimation.  

3.3. Unvoiced segment grouping 

Spectral subtraction based segmentation captures most of 
unvoiced speech, but some segments correspond to residual 
noise. In this subsection, we propose a method to group only 
unvoiced speech segments. Unvoiced speech consists of 
unvoiced fricatives, stops and affricates. In speech 
production, the acoustic cavity of an unvoiced fricative is 
often small so that resonance concentrates at high frequencies 
[15]. For example, the alveolar fricative (/s/) often has a 
spectral peak around 4.5 kHz. An unvoiced stop is generated 
by forming a closure in the vocal tract and releasing it 
abruptly [15]. At the stop release multiple acoustic events 
happen, including a transient, a burst of frication noise, and 
aspiration noise. As a result, the energy of an unvoiced stop is 
often located in middle (1.5 kHz–3 kHz) and high frequency 
bands (3 kHz–8 kHz). The unvoiced affricate, /t�/, can be 
treated as a composite of a stop and a fricative. Therefore, the 
energy of unvoiced speech is often distributed at middle and 
high frequencies. This property, however, is not shared by 
noise residues, which often do not appear in high frequencies 
due to the relatively accurate noise estimation in that range.  

To differentiate unvoiced speech and noise residues, we 
analyze their energy distributions with respect to frequency. 
Lower and upper frequency bounds of a segment are used to 
characterize its frequency span. We perform an ideal 
classification using 0-dB mixtures of 100 speech utterances 
and 15 interferences described in Section 3.1. A segment is 
classified as unvoiced speech if more than half of its energy is 
retained by the unvoiced IBM, which corresponds to the 
portions of the IBM with non-pitched frames. Fig. 3(a) shows 
the normalized energy distribution of segments with respect 
to their segment lower bounds and Fig. 3(b) the upper 
bounds. As we expected, unvoiced speech segments mainly 
reside at high frequencies while interference dominates at 
low frequencies. Based on this observation and acoustic-
phonetic characteristics of unvoiced speech [15], we can 
simply perform grouping by thresholding: selecting segments 
with a lower bound higher than 2 kHz or an upper bound 
higher than 6 kHz as unvoiced speech and removing others as 
noise. 

We can also formulate grouping as a hypothesis test and 
perform Bayesian classification. Let S denote the segment to  

  
                  (a)                                             (b) 
                    

Figure 3: Normalized energy distributions of unvoiced speech 
segments (white) and interference segments (black) over (a) 
segment lower bound and (b) segment upper bound. At each 
frequency, a lower bar is displayed in front of a higher bar. 

 
 
be classified and two hypotheses be H0: S is dominated by 
unvoiced speech, and H1: S is dominated by interference. For 
classification, we construct 3 features for S  

           ( , , )S S
S L Uf f S=X                                    (3) 

where S
Lf  and S

Uf  denote the frequency lower and upper 

bounds of S, respectively, and the third feature represents the 
size of segment S. We retain S as unvoiced speech if 

We use the MLP in training and adopt the SNR-based 
objective function in [16] to maximize the output SNR. The 
same 0-dB mixtures described above are used for training. 
The MLP classification yields similar performance to simple 
thresholding. It is probably because the distributions of two 
types of segments are so well separated that the two 
thresholds we choose are already effective. We have also 
tried to incorporate the prior probability ratio or use the 
acoustic-phonetic features in [1] for classification but also 
obtained similar results. 

4. Evaluation and comparisons 

We evaluate the proposed algorithm using a noisy speech 
corpus composed of 100 utterances and 15 nonspeech 
interferences. The interference set comprises electric fan, 
white noise, crowd noise at a playground, crowd noise with 
clapping, crowd noise with music, rain, babble noise, rock 
music, wind, cocktail party noise, clock alarm, traffic noise, 
siren, bird chirp with water flowing, and telephone ring [12]. 
They are chosen to cover a wide variety of real-world noise 
types. The 100 test sentences are randomly selected from 
those of the IEEE sentences which are not used for analysis or 
training before. All utterances are downsampled from 20 kHz 
to 16 kHz and each is mixed with an individual interference 
at the SNR levels of −5, 0, 5, 10, and 15 dB. In training, the 
first half of an interference is mixed with speech, while in 
testing the second half is used.  

The computational goal of our system is to estimate the 
unvoiced IBM. Therefore, we adopt the SNR measure in [1] 
and consider the resynthesized speech from the unvoiced IBM 
as the ground truth 

     ( )2 2
10SNR 10log [ ] ( [ ] [ ])I I En n

S n S n S n= −� � ,         (5) 

where SI[n] and SE[n] are the signals resynthesized using the 
unvoiced IBM and estimated unvoiced IBM, respectively. In 
estimation, pitch contours are estimated using the tandem 
algorithm.  

We compare our method with the unvoiced speech 

                     0 1( | ) ( | )S SP H P H>X X .                            (4) 
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Figure 4: SNR performance of three unvoiced speech 
segregation algorithms. The ordinate denotes the SNR gain, 
which is computed from the output SNR of segregated 
speech subtracted by the initial SNR of the mixture over 
unvoiced intervals. 
 
 

segregation system proposed by Hu and Wang [1], the only 
previous system directly dealing with unvoiced speech 
segregation to our knowledge. In particular, we retrain their 
acoustic-phonetic feature based MLP classifier using the 
1500 mixtures described in Section 3.1. Fig. 4 shows the 
comparative results. Our algorithm performs better than their 
system with an average of 1.6 dB SNR improvement over all 
input SNR levels. In terms of computational complexity, our 
spectral subtraction based segmentation is more efficient than 
their method employing multiscale onset-offset analysis 
which needs to analyze the signal in different scales. In 
grouping, the proposed thresholding method is 
computationally much simpler, requiring no MLP training in 
segment removal and classification.  

Since spectral subtraction plays a major role in the 
segmentation stage of our system, it is informative to evaluate 
its performance alone. For this evaluation, noise is estimated 
as described in Section 3.2 but without periodic signal 
removal. As in our method, an over-subtraction factor of 2 is 
used and portions of the estimated unvoiced mask below 1 
kHz are removed to evaluate unvoiced speech segregation. 
The performance of the spectral subtraction algorithm is 
shown in Fig. 4. As can be seen in the figure, the proposed 
algorithm performs much better than spectral subtraction. The 
largest gap is about 9.3 dB when the input SNR is -5 dB and 
the gap is about 1.8 dB as the input SNR increases to 15 dB. 
We note that the performance without over-subtraction is 
even worse. We have also evaluated the performance of 
spectral subtraction directly, i.e. without binary masking, and 
obtained similar results. It is worth mentioning that large 
gains at low input SNR levels are particularly useful for 
people with hearing loss [17]. Here the need to improve SNR 
in these conditions is more acute than at high input SNRs. 

The proposed method also has advantages over our 
previous system in [9]. First, the proposed method is 
computationally simpler since it does not use either noise 
type detection or noise-type dependent grouping. Second, the 
proposed system has been demonstrated to be effective under 
various SNR conditions, especially at low SNRs.  

5. Conclusions 

Unvoiced speech separation is a challenging task. Our 
proposed CASA system first removes periodic signals and 
subsequently estimates interference energy on the basis of 
segregated voiced speech. Spectral subtraction is employed to 
extract T-F segments, and unvoiced speech is grouped by 
thresholding or classification. Systematic comparisons show 
that the proposed system outperforms a recent system over a 
range of input SNR levels and performs substantially better 
than spectral subtraction. 
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