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Abstract – We propose a computational auditory scene
analysis (CASA) model for monaural speech segregation. It
deals with low-frequency and high-frequency signals
differently. For high-frequency signals, it generates segments
based on common amplitude modulation (AM) and groups
them according to AM repetition rates. This model performs
substantially better than previous CASA systems.

I. INTRODUCTION

In the real-world environment, target speech usually
occurs simultaneously with acoustic interference. An
effective speech segregation system will greatly facilitate
many applications, including automatic speech recognition
(ASR) and speaker identification. Many systems have been
proposed to deal with speech segregation, primarily using
blind source separation (BSS) [1] or speech enhancement
techniques [2]. BSS performs well when there are enough
sensors and the mixing signals satisfy some statistical
independence. However, BSS techniques require at least two
sensors, while many applications such as telecommunication
and audio retrieval need a monaural (one sensor) solution.
Speech enhancement techniques perform well in certain
environments where some prior knowledge about
target/interference is available. However, no system can
efficiently separate speech from a variety of acoustic
intrusions with one sensor.

While monaural segregation remains a difficult
challenge for computational systems, the auditory system
shows an impressive capacity for monaural segregation.
ASA is the perceptual process in which an acoustic mixture
is analyzed and separated into streams, corresponding to the
acoustic sources [3]. Considerable research has been carried
out to build monaural CASA systems [4-7]. Almost all
existing systems rely on periodicity as a main grouping cue.
However, the performance of these systems is limited and

progress has stagnated in recent years. A main problem with
the current systems is that they lack the ability to deal with
high-frequency signals.

We study monaural speech segregation with particular
emphasis on the high-frequency problem. For voiced signal,
we note that the auditory system can resolve the first few
harmonics in the low-frequency range but higher harmonics
are unresolved unless they are much more intense than
adjacent ones [8]. Psychoacoustic evidence suggests that
different mechanisms are used to deal with resolved and
unresolved harmonics [9]. Consequently, our model employs
different methods to segregate target speech in the low-
frequency range and in the high-frequency range.

According to Bregman [3], ASA takes place in two
stages: segmentation (or analysis) and grouping. In
segmentation, the acoustic input is decomposed into sensory
segments, each of which would belong to one source. In
grouping, those segments that are likely to respond to the
same source are grouped together. Inspired by this
suggestion, our model performs segregation in two
corresponding stages across all frequency channels. More
specifically, for low-frequency channels, our model
generates segments based on temporal continuity and cross-
channel correlation between responses from nearby
channels. These segments are grouped by comparing
periodicities of these responses with the estimated pitch of
the target speech. On the other hand, high-frequency
channels due to the wide bandwidths tend to respond to
multiple harmonics of voiced speech, which are usually
unresolved. These high-frequency responses are amplitude
modulated, and their envelopes fluctuate at the frequency
corresponding to the fundamental frequency (F0) [10]. Our
model generates segments in the high-frequency range based
on common AM and temporal continuity. These segments
are grouped by comparing AM repetition rates with
estimated F0 of the target speech.
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Fig. 1. The schematic diagram of the proposed system.

0-7803-7278-6/02/$10.00 ©2002 IEEE



Section 2 describes the overall system. In section 3,
systematic results and a comparison with an existing CASA
model are given. Section 4 concludes the paper.

II. MODEL DESCRIPTION

Our model is a multistage system, as shown in Fig. 1.
Description for each stage is given below.

A. Peripheral and Mid-level Processing

First, an acoustic input is analyzed by a peripheral model
comprising cochlear filtering with a bank of 128 gammatone
filters and subsequent hair cell transduction. This peripheral
processing is done in time frames of 20ms long and 10ms
overlap between consecutive ones. As a result, the input
signal is decomposed into a group of cells. Each time-
frequency cell contains the response of a certain channel in a
certain frame. The envelope of the response is obtained by a
lowpass filter with passband [0, 1kHz] and a Kaiser window
of 18.25ms. Mid-level processing is performed by
computing a correlogram (autocorrelation function) of the
individual responses and their envelopes. The global pitch
contour is obtained from the summary correlogram. (See [7]
for more details.)

As an example, Fig. 2 shows the correlogram of the
responses and their envelopes at a particular frame and the
corresponding summary correlogram. The input is a voiced
utterance mixed with the “cocktail party” noise.

B. Initial Segregation

Initial segregation takes place in two steps. First,
segments are formed by grouping neighboring time-
frequency cells based on temporal continuity and cross-
channel correlation. In general, segments correspond to
resolved components of the input signal, and most of them
lie in the low-frequency range. Then, according to global
pitch, segments are grouped into a foreground stream, which

corresponds to the target speech, and a background stream,
which corresponds to the intrusion. This process is same as
the segregation process implemented in the Wang-Brown
model through a two-layer oscillatory neural network [7],
which provides a good basis for accurate pitch estimation.

As an example, Fig. 3 shows the segments and the
foreground stream generated in initial segregation. The input
is the mixture of speech and “cocktail party” noise.

C. Pitch Tracking

The target pitch contour is obtained using the same
method we described previously in [11]. First, it is estimated
from the foreground stream. Then the estimated pitch is
checked according to two psychoacoustically-inspired
constraints: 1) An accurate pitch period should be consistent
with the periodicity of responses in the channels where the
target speech dominates; 2) Pitch periods should vary
smoothly in time. Unreliable pitch periods are replaced by
new values obtained based on temporal continuity. (See [11]
for more details.)

D. Pitch-based Labeling

Each cell is labeled according to whether target speech
dominates the corresponding response or not. To label cells,
we can compare the periodicities of the corresponding
responses with the estimated target pitch in time domain.
More specifically, a cell of channeli and frame j is
labeled as target speech dominant if

dmjiAjjiA θττ >),,(/))(,,( , (1)

where )( jτ is the estimated pitch period in framej ,

),,( τjiA is the autocorrelation function of the

corresponding response,mτ is the lag corresponding to the

maximum of ),,( τjiA for ∈τ [2 ms, 12.5ms], dθ is the

threshold. Here, we let 85.0=dθ .
This criterion, referred as the time criterion, works well

in the low-frequency range where harmonics are resolved
and therefore the pitch period of target speech corresponds
to the global maximum of the autocorrelation function, as
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Fig. 2. a) The correlogram of individual responses for a mixture of a
voiced utterance and the “cocktail party” noise at time frame 45 (i.e. 0.45
second after the start of the stimulus). For clarity, only half of all the
channels are shown. The summary correlogram is shown in the bottom
panel. b) The correlogram of response envelops at the same frame for the
same input.
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Fig. 3. (a) The segments generated in initial segregation. (b) The
foreground stream formed in initial segregation. The input is the
mixture of speech and “cocktail party” noise.
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shown in Fig. 4(a) and 4(b). However, it is not suitable for
high-frequency channels because their responses are likely
to contain multiple harmonics and therefore are amplitude
modulated. As shown in Fig. 4(c) and 4(d), for a strongly
amplitude-modulated response, the pitch period of target
speech corresponds to a local maximum in the
autocorrelation function instead of the global maximum. In
addition, the peaks of the correlogram are steep, which
makes this criterion less robust.

Here we propose a criterion for labeling cells with
amplitude-modulated responses based on the following
observation: for high-frequency responses where speech
dominates, response envelopes fluctuate at the rate of F0
[10]. The new criterion compares AM repetition rate with
estimated F0 at every sample, which is obtained by
interpolating estimated pitch periods of target speech.

The AM repetition rate is obtained as follows. First, for
each channel, the output from the corresponding gammatone
filter is half-wave rectified and then bandpass filtered to
remove DC component and other possible harmonics except
the F0 component. Here we use a filter with passband

[0.9 f , 1.2 f ] and a Kaiser window of 50ms~100ms for

response in every 100ms period. f is the average of
estimated F0 in every 100ms period, and it determines the
size of the corresponding Kaiser window. The instantaneous
frequency (IF) of the rectified and filtered signal, obtained
through a linear prediction algorithm in the spectral domain
[12], indicates the AM repetition rate of the corresponding
response.

As an example, Fig. 5(a) shows the output from a
gammatone filter with center frequency 2.6kHz in several
frames when the input is the clean speech. Fig. 5(b) shows

the output from the same filter when the input is “cocktail
party” noise. Fig. 5(c) shows the rectified and filtered output
from the same filter when the input is the mixture of speech
and “cocktail party” noise. Fig. 5(d) shows the obtained AM
repetition rate. It matches the estimated F0 very well when
the target speech signal dominates, and does not match the
estimated F0 when the intrusion signal dominates.

To measure the difference between the estimated F0 and
the AM repetition rate for each cell, we calculate the root
mean square of the difference between their logarithms.
That is,

∑
−

=
−−−=

1

0

2
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I kjTifkjTf

M
jiD ,

(2)

where )(0 tf is the estimated F0, ),( tif I is the obtained
AM repetition rate for channeli . M spans 20ms, and

=T 10ms. The smaller ),( jiD is, the more likely it is for
target speech to dominate the response of the corresponding
cell. A cell of channeli and frame j is labeled as target
speech dominant if:

fjiD θ<),( , (3)

where fθ is the threshold. We refer this criterion as the

frequency criterion.
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Fig. 4. (a) The response from the auditory filter whose center
frequency is 140 Hz. (b) The corresponding autocorrelation function
of the response in (a). (c) The response from the auditory filter whose
center frequency is 2.6kHz. (d) The corresponding autocorrelation
function of the response in (c). The input is the clean speech. The
vertical lines in (b) and (d) mark the position of the lag corresponding
to the pitch period.
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Fig. 5. (a) The output from a gammatone filter with center frequency
2.6 kHz. The input is the clean speech. (b) The output from the same
filter when the input is “cocktail party” noise. (c) The rectified and
filtered output from the same filter. The input is the mixture of the
speech and “cocktail party” noise. (d) Solid line: the AM repetition
rate. Dash line: the estimated F0.
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Psychoacoustic evidence shows that listeners can
discriminate two simultaneous sounds with unresolved
harmonics if the difference in F0 is more than 10% [9].
When there is a stable 10% difference between F0 and AM
repetition rate, the corresponding measurement of their
difference, ),( jiD , is about 0.1. However, consider that
usually the difference between F0 and AM repetition rate are
randomly distributed and F0 cannot be perfectly estimated,
we choose fθ to be 0.15, a looser threshold.

E. Final Segregation

First, new segments are generated based on temporal
continuity and common AM for cells that satisfy the
frequency criterion. In this process, only the cells that are
neither in the foreground stream nor in the background
stream are included for the following considerations. There
should be no conflict between this segmentation process and
the one in initial segregation. Furthermore, the segments
generated in initial segregation tend to reflect resolved
components, and therefore shall be retained. The similarity
of AM between the responses of nearby cells is measured by
the cross-channel correlation of response envelopes.
Segments are formed by grouping neighboring cells
satisfying the above criteria. Most of them are in the high-
frequency range. As an example, Fig. 6 shows the segments
generated from the mixture of speech and “cocktail party”
noise.

Then these segments are grouped into the foreground
stream. Other segments in the foreground stream, which are
grouped into this stream in initial segregation, are separated
so that all the cells in one segment either satisfy or violate
the time criterion. Some segments are removed from the
foreground stream as a result, and they are put into the
background stream if they contain cells violating the time
criterion only.

Other cells that do not belong to either stream are
grouped according to temporal and spectral continuity. More
specifically, first, the background stream expands iteratively
by grouping neighboring cells violating the time criterion or
frequency criterion. It keeps on expanding until no more
cells can be added. Then the foreground stream expands by
grouping neighboring cells satisfying the time criterion or
frequency criterion iteratively.

F. Resynthesis

Segregated target speech is resynthesized from the
foreground stream. In resynthesis, the foreground stream
works as a binary mask. It retains the signals corresponding
to the cells in foreground stream, and removes other signals
from the mixture[5].

III. RESULTS AND COMPARISON

Our model is evaluated with a corpus of 100 mixtures
composed of 10 voiced utterances mixed with 10 intrusions
collected by Cooke [4]. The speech waveform resynthesized
from the segregated speech stream is used for evaluation.
For every mixture, the speech waveform resynthesized from
the ideal stream composed of all the cells where target
speech dominates, is used as the ground truth of target
speech [11]. Theoretically speaking, the ideal stream gives
the ceiling of performance for all binary masks. This
evaluation methodology is supported by the following
observations. In a critical band, a weak signal is masked by a
stronger one [8]. In addition, the ideal stream is similar to
the prior mask used in a recent study for ASR [13], which
yields excellent recognition performance.

As an example, Fig. 7(a) shows the speech stream
segregated from the mixture of speech and “cocktail party”
noise. Fig. 7(b) shows the corresponding ideal stream of the
mixture.

Let )(tS be the resynthesized waveform by our model,

)(tI the waveform from the ideal stream, )(1 te the signal

present in )(tI but missing from )(tS , and )(2 te the signal

present in )(tS but missing from )(tI . We measure the ratio

of energy loss, ELR , and the ratio of noise residueNRR as
follows:

∑∑=
tt

EL tIteR )()( 22
1 . (4)

∑∑=
tt

NR tSteR )()( 22
2 . (5)
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Fig. 6. The segments generated in final segregation. The input is the
mixture of speech and “cocktail party” noise.

0 0.5 1 1.5
  80

 387

1028 

2335

5000

(a)

Time (Sec)

F
re

qu
en

cy
 (

H
z)

0 0.5 1 1.5
   80

 387 

1028 

2335

5000
(b)

Time (Sec)

Fig. 7. (a) The final segregated target speech stream. (b) The ideal
stream. The input signal is the mixture of speech and “cocktail party”
noise.
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TABLE 1. THE RATIO OF ENERGY LOSS AND NOISE RESIDUE

Proposed model Wang-Brown model
Intrusion

ELR (%) NRR (%) ELR (%) NRR (%)

N0 2.52 0.01 6.99 0

N1 7.76 1.08 28.96 1.61

N2 1.96 0.11 5.77 0.71

N3 5.27 1.64 21.92 1.92

N4 5.45 0.91 10.22 1.41

N5 3.38 0.02 7.47 0

N6 2.20 0.09 5.99 0.48

N7 4.14 1.71 8.61 4.23

N8 2.56 1.34 7.27 0.48

N9 10.00 19.08 15.81 33.03

Average 4.52 2.60 11.91 4.39

The results are shown in table 1. Each value is the
average of each intrusion over 10 voiced utterances.
Intrusions are: N0 pure tone, N1 white noise, N2
noise bursts, N3 “cocktail party” noise, N4 rock
music, N5  siren, N6  trill telephone, N7 female
speech, N8 male speech, and N9 female speech. The
table also shows for comparison the results from the Wang-
Brown model [7]. Each value is the average of a certain
intrusion type. Compared with the Wang-Brown model, our
model generates significantly smaller ratios of energy loss,
especially for N1 and N3. Similar ratios of noise residue are
obtained from both models except for N9 where our result is
much better. We note that our overall improvement comes
mainly from high-frequency channels.

To compare waveforms directly, we also measure a form
of signal to noise ratio (SNR) in decibels using the
resynthesized waveform from the ideal stream as ground
truth:

]))()(()([log10 22
10 ∑∑ −=

tt

tStItISNR . (6)

The average SNR for each intrusion is shown in Fig. 8.
Compared with the Wang-Brown model, our model
increases SNR for all the intrusions. The average
improvement is about 4.5 dB. The performance of this
model is also better than a preliminary version that does not
carry out the segmentation process based on common AM
and use the AM repetition rate for grouping cells [11].

IV. CONCLUSION

Our monaural model contains two segregation processes:
initial segregation and final segregation. Both processes can
be implemented through the oscillatory neural network
employed in the Wang-Brown model [7], and it is not
further addressed here.

Our model applies different mechanisms to segregate
low-frequency speech and high-frequency speech. For high-
frequency speech signals, it generates segments based on
common AM and groups them by comparing AM repetition
rates with estimated F0. Our model has been systematically
evaluated on a mixture corpus, and it yields very good
results. The performance of our model is substantially better
than those pervious CASA systems evaluated on the same
corpus [4] [5] [7] [11], especially in the high-frequency
range. Our study demonstrates that computational
investigation that incorporates ASA principles is a
promising direction for monaural speech segregation, given
the remarkable ability of the auditory system for the task.
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