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Abstract

Speech segregation is an important task of auditory
scene analysis (ASA), in which the speech of a certain
speaker is separated from other interfering signals.
Wang and Brown proposed a multistage neural model
for speech segregation, the core of which is a two-layer
oscillator network. In this paper, we extend their model
by adding further processes based on psychoacoustic
evidence to improve the performance. These processes
include estimation of the pitch of target speech and
refined generation of a target speech stream with the
estimated pitch. Our model is systematically evaluated
and compared with the Wang-Brown model, and it
yields significantly better performance.

1 Introduction

In an environment with all kinds of audible signals, the
auditory system is able to segregate signals from
different sources or events and represent them
separately. This auditory process is described as
Auditory Scene Analysis (ASA) [1]. In practice, it is a
challenging task to develop a computational system to
separate signals from acoustic mixtures. Blind sources
separation [2, 7] provides a general way for signal
separation, which assumes that signals from different
sources are statistically independent. However, this
method only works when information of more than one
acoustic mixture is available [9]. Another approach is
to develop a system utilizing psychoacoustic cues to
mimic ASA [3-5, 8], which generally works in the
monaural condition.

An important task of ASA is to segregate speech from
other interfering signals. An efficient speech
segregation process is required for robust automatic
speech recognition (ASR) in a noisy environment.
Wang and Brown proposed a multistage neural
network model for speech segregation [8]. The
schematic diagram of their model is shown in Fig. 1.
The core of their model is a two-layer neural oscillator
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network that performs speech segregation in two
stages: segmentation and grouping. In the segmentation
stage, the acoustic mixture is decomposed into
segments. The corresponding signals of those
oscillators in the same segment are likely to come from
the same source. In the grouping stage, segments that
are likely to contain signals mainly from the same
source or event are grouped together.

The main psychoacoustic cues used in their model are
global pitch and temporal continuity. For an acoustic
mixture of target speech and intrusion, the global pitch
serves as a good grouping cue only when it is close to
either the pitch of target speech or the pitch of intrusion
(if pitched). When target speech mixed with wideband
intrusions, the global pitch is meaningless sometimes
and cannot provide useful information for grouping
(Fig. 2). Using the temporal continuity condition helps
in generating large segments across time. However,
when target speech and intrusion have a lot of
components with close frequencies, i.e., target speech
and intrusion overlap significantly in their spectra,
some segments may contain strong signals from both
sources. Due to the above reasons, the Wang-Brown
model performs poorly when intrusion is wideband.
For example, when the intrusion is the “cocktail party”
noise (N3, see Table 1), a lot of speech signals are
missed from the segregated target speech. In another
example when the intrusion is a female voice (N9), a
lot of intrusion signals remains in the segregated target
speech.

In this paper, we extend their model by introducing two
further processes to the oscillator network part. The
first process is to estimate the pitch of target speech,
which is a much better grouping cue than the global
pitch of the mixture. The pitch of target speech is
difficult to obtain from the mixture when the intrusion
signal is strong compared with the target speech signal.
However, it is much easier to obtain a good
approximation of it when target speech is dominant.
Since the target speech segregated by the Wang-Brown
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Figure 1: The schematic diagram of the Wang-Brown model. First, simulated auditory nerve activity is obtained by passing
the input through a model of the auditory periphery (cochlear filtering and hair cells). Mid-level auditory representations are
then formed (correlogram and cross-channel correlation map). Subsequently, a two-layer oscillator network performs grouping
of acoustic components. Finally, the resynthesis path allows the separation performance to be evaluated.

model contains dominant target speech signals, the
pitch of target speech can be estimated from it. The
second process refines the generation of a new target
speech stream. In this process, with the estimated pitch,
those segments that are likely to contain strong signals
from both sources are divided into smaller segments so
that each segment is more likely to arise from one
source. Then these smaller segments are grouped into a
target speech stream.

Detailed explanations of these two processes are given
in Section 2 and Section 3. In Section 4, the
performance of our model is systematically evaluated
and compared with that of the Wang-Brown model.
Discussions are given in the last section.

2 Target Pitch Estimation

For any input signal, the Wang-Brown model is first
applied to generate a target speech stream, referred to
as Sy, and a background stream. Let 7 represent

the estimated target pitch period at time frame j . Note

that signals are divided into time frames and every time
frame is 20 ms long with 10 ms overlap between
consecutive time frames. The target pitch is obtained
from Sy as follows:

First, 7j is obtained by searching the peaks in the

of Spp the

[2ms, 12.5 ms]. The pooled correlogram of a stream is

the summation of the autocorrelation functions
(obtained in the correlogram part in the Wang-Brown

model) of the oscillators in Spg, which is similar to

pooled  correlogram in range

the local summary autocorrelation computed by Brown
and Cooke [4]. These obtained pitch periods are
checked with oscillators in Sy . In the Wang-Brown
model, signals are analyzed by an auditory filterbank.
Every channel corresponds to an auditory filter with a
certain passband. For an oscillator of channel i at time
frame j, let A(i, ], 7) represent the corresponding
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autocorrelation function. The oscillator agrees with 7
if

where 84 =0.95, 7, is the lag where A(i, ], 7) is
maximum for 7 0[2 ms,12.5ms]. If more than half of
the oscillators in Syg at time frame j agree with 7,

this pitch period is marked as reliable.

Because in most cases the pitch of speech changes
smoothly, we stipulate that the difference between the
pitch periods of nearby time frames is no greater than
20% of the pitch periods themselves. Using this
criterion, these pitch periods are checked again. Let

. T —Ti_ if 7:_, reliable
. T: —T; if 7:,4 reliable
dr () ={fy1 Tl e ®

If d; (j)>0.2r; or d, (j)>0.27; 7 will be treated

as unreliable.

Among all the intervals where all 7 ’s are reliable, the
longest streak is selected. That is, let jg- j.represent a
streak: for all jg< j<]je, 7j is reliable and both
Tj-1and Tj . are unreliable. Among all these

streaks, let jos- jme be the selected streak. For

J <1Jms,each 7j is checked and determined one by

one. Starting with j = j,s —1, let

|7 —7j4| if 7j4isreliable

dz, (1) ={rj+1 otherwise “)



If d,, (j)>027,, 7; Will be changed as follows:

let fbe 1/7 41, those oscillators in Spp are selected if

they correspond to channels with center frequencies
close to f or 2f. If more than 3 oscillators are selected,
the autocorrelation functions of these oscillators are
added. The value of 7 is determined by searching the

peak in this summary autocorrelation in the range
[0.8741,127j41], and 7; is marked as reliable.

Otherwise, let T i =T+ and T i is treated as

unreliable. Subsequently, 7; is determined for

j=Jms =2 Jms=3 --,1. For all j>jne, 7j is
determined similarly. Finally, every unreliable 7 is

determined by a linear interpolation from reliable 7 s

at earlier and later time frames.

As an example, in Fig. 2(a), the global pitch periods
obtained from the mixture are quite different from the
pitch periods obtained from clean target speech. In Fig.
2(b), the estimated pitch periods obtained from the
same acoustic mixture match that obtained from clean
target speech well except at the several time frames in
the beginning and end of target speech.

3 Stream Generation

Based on the estimated pitch, the target speech stream
is generated as follows. First, with the estimated pitch,
Eq. (1) is used to determine whether an oscillator
agrees with the estimated pitch with the following
modifications. Due to wide bandwidths for high-
frequency channels (>1 kHz), the responses of these
channels usually contain several harmonic components
when the input is speech. Therefore, these responses
and the corresponding autocorrelation functions are
likely to be amplitude modulated. As an example, Fig.
3(a) shows amplitude-modulated response of a high-
frequency channel. In 3(b), the corresponding
autocorrelation function is also amplitude modulated.
The pitch period corresponds to a local maximum, but
not the global maximum for 70[2ms,12.5mg].

Therefore, the range for searching maximum to

determine A(i, j,7;,) is changed accordingly. Let
Amin represent the minimum of A, j,7) for
r0[0,225ms]. If Ay, is greater than 50,
Al j,Tm) will  be the maximum  for

rU[r; 12,125 ms]. Otherwise, A(i, J,Tp) is still the
maximum for 70[2ms,12.5ms]. Furthermore, the
threshold 8y is changed to 0.85.

1091

14 14
& 12 x* & 12
E E
B 10t x .8 10
5] x 5] *
o g o glx
o 6 . o 6
4 - 4
0 0.5 1 0 0.5 1
Time (Sec) Time (Sec)

(@) (b)

Figure 2: The global pitch and the estimated pitch of the
speech obtained from the mixture of a male voice and the
“cocktail party” noise. In both (a) and (b), the line contour
represents the pitch obtained from clean speech. In (a),
symbol ‘x’ represents the global pitch periods. In (b),
symbol ‘x’ represents the estimated pitch periods.

We say that a segment agrees with the estimated pitch
period at a particular time frame if more than half of
the oscillators in this segment at this time frame agree
with the estimated pitch period [8]. Furthermore, the
segment agrees with the estimated pitch contour if it
agrees with the estimated pitch periods at more than
half of its total time frames. Oscillators are marked as
follows:

100

50 1

‘f

-100
180

195 200 205 210
Time (ms)

@

185 190

350

300 1

250 1

200

1501

1 . . . . . .
00O 2 4 6 8 10 12

Lag (ms)
(b)

Figure 3: (a) The response from the auditory filter with
center frequency 2.6 KHz. The input contains only the male
voice used in Fig. 2. (b) The corresponding autocorrelation
function. The vertical line marks the position of the
corresponding lag of the pitch period.
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Figure 4: (a) Black part - the speech stream obtained from the Wang-Brown model. (b) The speech stream obtained from our
model. (c) The stream corresponds to the ideal mask. These are generated from the same mixture as used in Figure 2.

a All the oscillators in the segments that do not agree
with the estimated pitch contour are marked -1.

b.For those in the segments that agree with the
estimated pitch contour, if the oscillators themselves
agree with the estimated pitch periods, they are
marked 1; otherwise, they are marked 2.

c. For those that do not belong to any segment, they are
marked 3 if they agree with the estimated pitch.

d. Other oscillators are marked 0.

New segments are formed by putting nearby oscillators
together if they are marked the same. Based on the
lengths of these segments across time, we adjust their
marks as follows. If a new segment with oscillators
marked 2 is longer than 50 ms, all the oscillators in this
segment will be marked -1. For a new segment with
oscillators marked 1 is shorter than 50 ms, all the
oscillators in this segment will be marked 2.
Furthermore, if a new segment with oscillators marked
3 is longer than 50 ms, all the oscillators in this
segment will be marked 1.

All the new segments containing oscillators marked 1
are grouped together into a new target speech stream,
referred as Sygy - All the new segments containing
oscillators marked —1 are grouped into a background
stream. The background stream expands in the
following way: for every oscillator in the background
stream, any nearby oscillator marked 2 will be added
into it. The background stream keeps on expanding
until no additional oscillator can be put in. Then all the
oscillators marked 2 are added into Sygy . Snew
expands in the following way: for all the oscillators in
Snew - any nearby oscillator marked 3 will be added,

and it keeps on expanding until no additional
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oscillators can be put in. Syg, represents the target

speech stream generated by our model. As an example,
Fig. 4(a) shows the target speech stream generated by
the Wang-Brown model. Fig. 4(b) shows the target
speech stream generated by our model from the same
mixture, which is much closer to the speech stream
corresponding to the ideal mask, which will be
explained later.

4 Results

Our model is evaluated with the same corpus of
mixtures-10 voiced utterances mixed with 10
intrusions-as used to evaluate the Wang-Brown model
[8]. The speech signal resynthesized [4] from the target
speech stream is used for evaluation. In resynthesis, the
target speech stream provides a binary mask, which
guides the formation of the segregated speech.

Because target speech and intrusion are available,
before mixing it in the corpus, we generate an “ideal
mask” for every mixture by comparing the energies of
the target speech signal and the intrusion signal
corresponding to each oscillator. The ideal mask
corresponds to a stream consisting of all the oscillators
with stronger target speech signals. Here, we use the
speech resynthesized from the ideal mask as ground
truth of target speech. This evaluation methodology is
supported by the following observations. First, it is
well known that in a critical band, a weak signal is
masked by a stronger one [6]. Second, the ideal mask is
very similar to the prior mask used in a recent study
that employs a missing data technique for ASR [10],
and the study yields excellent recognition performance.



Let §(t) represent the speech resynthesized from Sygy
and I(t) the corresponding speech resynthesized using
the ideal mask. Let

et) = 1(t) - S(t) )
which includes two parts. The first part consist of the
signal present in I(t), but not in §t). This part is the lost
speech and let e)(t) represent this part. The second part
consists of the signal present in (t), but not in I(t).

This part is the noise residue in S(t), and let e (t)
represent this part.

Now we define the energy loss ratio Rg and noise
residue ratio Ryg as follows:

ReL :Zelz(t)/z|2(t)
T T

(6)

(N

RNR = Ze%(t)/z S%(1)
t t

Table 1 shows the Ry and Ryg values for the 10 kinds
of noise intrusions. Each value is the average of 10
voiced utterances mixed with a certain intrusion. Table
1 also shows the Rg and Ryg values of the
resynthesized speech obtained by the Wang-Brown
model.

Table 1: Rz and Ryy of resynthesized speech from both the
Wang-Brown model and the proposed model. Here, NO = 1
kHz tone, N1 = random noise, N2 = noise bursts, N3
“cocktail party” noise, N4 = rock music, N5 = siren, N6
trill telephone, N7 = female speech, N8 = male speech, N9 =
female speech.

. Wang-Brown model Proposed model
Intrusions
Re. Rir Re Rir
NO 6.99% 0% 3.93% 0.0019%
N1 28.96% 1.61% 8.16% 0.75%
N2 5.77% 0.71% 3.13% 0.75%
N3 21.92% 1.92% 6.88% 1.42%
N4 10.22% 1.41% 6.19% 0.97%
N5 7.47% 0% 4.58% 0.0055%
N6 5.99% 0.48% 3.46% 0.22%
N7 8.61% 4.23% 5.88% 2.30%
N8 7.271% 0.48% 3.91% 0.83%
N9 15.81% 33.03% 11.93% 26.20%
Average| 11.9% 4.39% 5.81% 2.73%
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Figure 5: Black bar-The relative difference between the
target speech resynthesized from the Wang-Brown model
and that resynthesized from the ideal binary mask. White
bar-The relative difference between the resynthesized
speech from the proposed model and the speech
resynthesized from the ideal mask. The different intrusion
types are shown in Table 1.

Rg. obtained from our model is significantly smaller
than from the Wang-Brown model, especially for
random noise (N1) and the cocktail party noise (N3).
For most wideband intrusions (N1, N3, N4, N7, N9),
Rur is decreased in our model, especially for N9. On
the other hand, Ryg is also increased for some other
intrusions (NO, N2, N5, N8), but the increase is rather
small. Overall, the pattern of results from our model is
substantially better.

To measure the waveform directly, we also calculate
the relative difference in decibel between I(t) and (t)
as follows:

D =10l0g;o[ 1 %(1) /Z e’ (t)] ®
t t

D is an evaluation that combines both R, and Ryg. The
average D for each intrusion is shown in Fig. 5. Each
value is again the average of 10 voiced utterances
mixed with a certain kind of intrusion. The results of
the Wang-Brown model are also shown in Fig. 5. For
all the intrusions, we observe an improvement, and the
average increase is around 3 dB.

5 Discussion

In this paper, we have extended the Wang-Brown
model to improve the performance of speech
segregation. Our model includes two novel processes,
both of which can be implemented by oscillator neural
networks similar to the two-layer oscillator network



employed by Wang and Brown. Neural implementation
will be addressed in future research.

Our estimation for the pitch of target speech is based
on the outcome of the Wang-Brown model. For all the
mixtures in the evaluation corpus, most estimated pitch
contours are close to the ones obtained from clean
target speech. With the estimated pitch, most
oscillators of low-frequency channels (<1 kHz) are
grouped correctly for most intrusions. One exception is
the intrusion N9, which is a female voice with
fundamental frequency (FO) close to the doubles of the
FOs of target speech. Therefore, the spectra of N9 and
target speech overlap considerably. Although the
performance of our model on N9 is still relatively poor,
the amount of the residue noise is significantly
reduced.

For two oscillators of nearby high-frequency channels
(>1 kHz), the corresponding responses may not be
highly correlated even when they mainly come from
the same source. These oscillators are put to the
background in the Wang-Brown model, though many
of them containing target speech signals. In our model,
segments are generated with less constraint by cross-
correlation between adjacent oscillators. These
segments will be grouped into the new target speech
stream if they agree with the estimated pitch contour
and are sufficiently long. As a result, our model is able
to recover more target speech signals in the high-
frequency domain.

In generally, the oscillators corresponding to high-
frequency channels (>1 kHz) are difficult to group by
pitch alone. There are three reasons:

1. Amplitude modulation (AM). Our model handles
AM with our new grouping criterion.

2. The fundamental frequency of target changes with
time. As a result, the peaks of the autocorrelation
functions in the high-frequency domain do not
always align with those in the low-frequency
domain.

3.The responses in the high-frequency domain change
rapidly, and the peaks in the autocorrelation
functions are steep. As a result, a small difference
between the estimated pitch period and the ideal
pitch period may cause incorrect grouping.

The grouping method in our model does not deal with
the last two issues, which will be addressed in future
research.

In summary, our model mainly includes the following
innovations:
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» Estimate the pitch contour of target speech directly
and use it for grouping.

* Further divide segments into smaller ones. The target
speech stream 1is generated by grouping these
segments. This helps in dealing with situations where
target speech and intrusion overlap significantly in
their spectra.

e Further group the oscillators whose corresponding
signal is not highly correlated with that of nearby
oscillators.

* A new grouping criterion is proposed to deal with
AM.
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