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ABSTRACT 
 
Unvoiced speech poses a big challenge to current monaural speech 
segregation systems. It lacks harmonic structure and is highly 
susceptible to interference due to its relatively weak energy. This 
paper describes a new approach to segregate unvoiced speech from 
nonspeech interference. The system first estimates a voiced binary 
mask, and then performs unvoiced speech segregation in two 
stages: segmentation and grouping. In segmentation, time-
frequency units labeled as 0 in the voiced binary mask are first 
used to estimate the noise energy and spectral subtraction is then 
performed to generate time-frequency segments in unvoiced 
intervals. Based on the type of noise, unvoiced segments are 
grouped either by selecting segments consistent with those 
generated by onset/offset analysis or by Bayesian classification of 
acoustic-phonetic features. Systematic evaluation and comparison 
show that the proposed approach improves the performance of 
unvoiced speech segregation considerably.  
 
      Index Terms— Unvoiced speech segregation, nonspeech 
interference, spectral subtraction, onset/offset analysis, Bayesian 
classification 
 

1. INTRODUCTION 
 
In real-world listening environments, speech reaching our ears is 
often corrupted by various types of acoustic interference. 
Segregating speech monaurally from interference is very useful for 
many applications. While previous research has led to considerable 
advances in voiced speech segregation, unvoiced speech 
segregation remains a major challenge. In this paper, we study 
monaural segregation of unvoiced speech from nonspeech 
interference.  
      Motivated by the auditory scene analysis theory of Bregman 
[1], computational auditory scene analysis (CASA) aims to achieve 
sound organization based on perceptual principles [2]. A 
reasonable goal of CASA is the ideal binary mask (IBM) [3], 
which assigns values of 0 and 1 in the time-frequency (T-F) 
domain by comparing the local signal-to-noise ratio (SNR) within 
each T-F unit against a threshold using premixed source signals. 

Subject tests have shown that speech segregated by IBM leads to 
dramatic intelligibility improvements for both normal-hearing and 
hearing-impaired listeners [4, 5, 6].       
       Segmentation and grouping are two main stages of CASA. In 
segmentation, the input is decomposed to segments, each of which 
is a contiguous T-F region primarily originating from a single 
sound source. The second stage combines segments that likely 
arise from the same source into a stream. Fundamental frequency 
(F0) has been used as a primary cue for speech segregation; 
however, systems that employ F0 only cannot deal with unvoiced 
speech segregation.  
      Hu and Wang recently studied the unvoiced speech segregation 
problem in the CASA framework and successfully extracted a 
majority of unvoiced speech from nonspeech interference [7]. 
However, auditory segmentation based on onsets and offsets may 
miss weak portions of unvoiced speech. From another perspective, 
monaural speech enhancement methods enhance noisy speech 
based on certain assumptions or models of speech and interference 
[8]. Speech enhancement methods improve speech quality. 
However, they have a limited ability to improve speech 
intelligibility [9], probably because generated masks show large 
deviations from the IBM [6]. 
      In this paper, we describe a speech segregation algorithm that 
directly estimates the unvoiced IBM. In the first step, our system 
estimates a voiced binary mask using a supervised learning 
approach [10]. Then unvoiced speech segregation takes place in 
two stages: segmentation and grouping. In segmentation, noise 
energy is first estimated using the voiced binary mask and spectral 
subtraction is then performed to generate unvoiced T-F segments. 
Considering that noise characteristics vary in different 
environments, we propose to use different grouping methods based 
on noise type. Noise is categorized into three classes based on the 
variance of noise energy: stationary, nonstationary and highly 
nonstationary. For each type of interference, an appropriate 
grouping method is applied to grouping target segments.  
      The rest of the paper is organized as follows. The next section 
describes the proposed system in detail. Section 3 shows the 
systematic evaluation results and conclusion is given in Section 4. 
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Fig. 1. Schematic diagram of the proposed CASA system. Voiced segregation lays the foundation for unvoiced speech segregation. The 
unvoiced segregation consists of two stages: segmentation and grouping. In segmentation, the system performs spectral subtraction on 
noise estimate from voiced binary mask. Grouping is done based on the noise type either by using segments from onset/offset analysis or 
Bayesian classification of acoustic-phonetic features.  

 
 

2. SYSTEM DESCRIPTION 
 
The complete system is illustrated in Fig. 1. The input of the noisy 
speech is first processed by an auditory front-end, which models 
cochlear filtering and auditory nerve transduction. Specifically, 
cochlear filtering is performed using a gammatone filterbank with 
128 frequency channels whose center frequencies range from 50 
Hz to 8 kHz. Each channel output is then processed by the Meddis 
hair cell model to simulate auditory nerve transduction. The output 
from the Meddis model is divided into 20-ms-long time frames 
with a 10-ms frame shift. The resulting representation is called a 
cochleagram. Details of cochleagram analysis and synthesis can be 
found in [2]. The envelope of each cochleagram channel is further 
extracted using a bandpass filter with passband from 50 Hz to 550 
Hz. In the following subsections, we describe the voiced speech 
segregation algorithm and detail the unvoiced speech segregation 
algorithm. 
 
2.1. Voiced Speech Segregation 
 
Voiced speech segregation is performed first for the purpose of 
aiding the unvoiced speech segregation. Following [10], a 6-
dimensional feature vector is extracted to represent the harmonic 
structure within the T-F unit of frequency channel c and time frame 
m in voiced frames: 
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where A(c,m,�m) is the autocorrelation function of the front-end 
response with time lag of the estimated pitch period �m, and the 
function int(x) returns the nearest integer. ( , )f c m  denotes the 
estimated average instantaneous frequency of the response within 
the T-F unit. We estimate the harmonic number as ( , ) mf c m τ⋅ , 
which is close to an integer (greater than or equal to 1) when the 
unit responds to a harmonic. The third feature measures the 
deviation from the nearest harmonic. Essentially, the first three 

features are extracted from auditory front-end responses, and the 
last three are extracted from response envelopes (indicated by the 
subscript E). Given the feature vector, we train a Multilayer 
Perceptron (MLP) for each channel to directly maximize the SNR 
of segregated speech [11]. During MLP training, IBM provides the 
desired output. Since the input SNR of all mixtures is set to 0 dB, 
we choose the local SNR threshold (LC) [4] to be 0 dB. Trained 
MLP’s are then used to label T-F units in voiced frames. A T-F 
unit is labeled as target speech if the posterior probability that the 
unit contains stronger target energy is greater than the posterior 
probability that the unit contains stronger interference energy. For 
convenience, we call target dominant units as active units (with 
label 1), and those dominated by interference as inactive units 
(with label 0).  
 
2.2. Unvoiced Speech Segmentation Based on Spectral 
Subtraction 
 
Obviously, the feature vector in [10], which encodes harmonic 
structure, cannot be used to segregate unvoiced speech. 
Nevertheless, voiced speech segregation result can assist in 
segregation of unvoiced speech. Our unvoiced speech segregation 
algorithm follows the CASA framework of segmentation and 
grouping. 
       In segmentation, we first estimate the noise energy for each 
channel in unvoiced intervals (sets of consecutive unvoiced frames) 
by averaging mixture energy in inactive T-F units in neighboring 
voiced intervals: 
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where m1 and m2 denote the indices of first and last frames of the 
current unvoiced interval respectively, and l1 and l2 are the frame 
lengths of preceding and succeeding voiced intervals, respectively. 
Ec(m) is the mixture energy at frame m and channel c, and yc(m) 
the actual output from the MLP. Given estimated noise energy, we 
calculate the local SNR in each T-F unit in unvoiced intervals. A 
T-F unit is labeled as target if and only if its local SNR exceeds the 
LC. Given labeled T-F units, segments are formed by simply 
merging neighboring T-F units in both temporal and spectral 
dimensions. 
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Fig. 2. Unvoiced speech SNR gain of four algorithms. On average, 
the proposed system achieves an SNR gain of 17.3 dB across all 
interferences. It has a 2.6 dB SNR improvement over Hu and 
Wang system. Also, we observe that there is a substantial gap 
between speech enhancement methods and CASA algorithms. 
 
 
2.3. Noise Type Based Grouping 
 
Spectral subtraction based segmentation captures most of the 
unvoiced speech segments, but still retains many T-F units 
dominated by interference. To further remove residual noise after 
subtraction is the task of grouping. We find that in order to obtain 
good grouping performance, different grouping methods are 
needed for different noise types.  
      We classify interference into three classes – stationary, 
nonstationary and highly nonstationary. The classification is based 
on noise energy variance as the amount of noise energy fluctuation 
directly defines the type of noise. We estimate the nonstationarity 
of interference by calculating the variance of noisy speech energy 
in inactive units in the voiced mask for each channel: 
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where VFc denotes the set of frame indices of inactive units in 
voiced intervals at channel c and cE  represents the mean energy 
for all inactive units at channel c. We use the mean variance σ  
and the maximum variance maxσ  across all channels to classify 
current interference into three classes 

• Stationary: σ < C1 
• Nonstationary: σ > C1 and maxσ < C2 
• Highly nonstationary: maxσ > C2 

where C1 is chosen to be 3dB to represent the threshold that the 
energy fluctuation is as large as the average and C2 is empirically 
chosen as 10dB. After the noise type classification, a grouping 
method is used for each noise type to combine segments as follows. 
      For stationary noise, we use segments generated by onset/offset 
analysis [12] to select target segments. Specifically, if a 
subtraction-based segment overlaps with an onset/offset based 
segment so that at least 90% of the latter energy is contained in the 
overlapping region, the segment is kept; otherwise, it is discarded. 
Since segments marked by onsets and offsets only correspond to 
speech in stationary noise, the selection removes segments that are 

likely dominated by background noise. Furthermore, noise 
estimation by averaging is relatively accurate in stationary noise 
and spectral subtraction based segments also capture weak portions 
of unvoiced speech, which can be missed in onset/offset analysis. 
      For nonstationary and highly nonstationary noises, segments 
produced by onset-offset analysis also contains those 
corresponding to interference, hence providing little help to 
identify the T-F boundaries of unvoiced speech segments. In this 
case, we train two different Bayesian classifiers based on acoustic-
phonetic features to classify segments for the two types of noise. 
Following [7], we use the masked spectral vector   
                             { ( , ), }mY Y c m c= ∀                                        (4) 

as the input to the MLP’s, where Y(c,m)=Ec(m)· yc(m). Specifically, 
yc(m) is the binary label from spectral subtraction. By making the 
independence assumption of frames in one segment, a segment S 
lasting from frame m1 to m2 is classified as unvoiced speech if the 
posterior probability that it belongs to unvoiced speech is higher 
than that it belongs to interference 
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where H0 is the hypothesis that the segment is dominated by 
unvoiced speech and H1 is the hypothesis that it is dominated by 
interference. Each of the two classifiers is trained for its 
corresponding type of noise (nonstationary or highly 
nonstationary). MLP’s have the same architecture as those in 
voiced segregation and IBM provides the desired output in training. 
The trained MLP’s are then used to classify segments into speech 
dominant or interference dominant, hence grouping target 
segments. 

 
3. EVALUATION 

 
We evaluate our system on mixtures of IEEE sentences [13] and 
15 nonspeech interferences. The noises are N1–electric fan, N2–
white noise, N3–crowd noise at a playground, N4–crowd noise 
with clap, N5–rain, N6–babble noise, N7–clock alarm, N8–
cocktail party noise, N9–rock music, N10–siren, N11–traffic noise, 
N12–wind, N13–machine noise, N14–bird chirp with water 
flowing, and N15–telephone ring. These are chosen to cover a 
wide variety of real-world interferences. The interferences can be 
found at [14] and [15]. The IEEE sentence corpus contains 720 
phonetically-balanced sentences with relatively low word-context 
predictability. All sentences were recorded by a single female 
speaker at a 20 kHz sampling frequency. We downsample the 
signals to 16 kHz. Each target utterance is mixed with a noise 
sample randomly cut out from an individual interference at the 
input SNR of 0 dB. For supervised learning in voiced speech 
segregation, the training set contains 100 mixtures for MLP 
training and the remaining 620 are used to evaluate system 
performance. Feature extraction requires the knowledge of F0 at 
each frame, and we use a pitch tracking algorithm [10] to obtain 
the pitch contours.  

Given that the computational objective of our proposed system 
is to estimate the unvoiced IBM, we use the same SNR measure in 
[7] and use the resynthesized speech from the unvoiced IBM as the  
ground truth 
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where SI[n] and SE[n] are signals resynthesized from the unvoiced 
IBM and the mask estimated by our system, respectively. The 
unvoiced IBM is taken as the part of IBM in unvoiced intervals, 
which are determined by the pitch contours extracted from clean 
speech using Praat [16]. To obtain only unvoiced speech, we 
consider segments that are below 1 kHz and connected with voiced 
mask as voiced speech segments. 
      Segregation performance of the proposed system in terms of 
SNR gain for unvoiced speech is summarized in Fig. 2. Each white 
bar in the figure shows the average SNR gain of all test mixtures 
for one interference. Across all interferences, the proposed system 
achieves an average SNR gain of 17.3 dB.  
       To put the performance of our system in perspective, we 
compare the performance of the Hu and Wang [7]. In their system, 
segmentation is performed by onset-offset analysis and grouping is 
based on Bayesian classification of acoustic-phonetic features. As 
clear in the figure, the proposed algorithm performs uniformly 
better for all interferences. On average, the proposed algorithm has 
a 2.6 dB SNR improvement over the Hu and Wang system. The 
improvement is more pronounced for stationary and nonstationary 
noises. We attribute the improvement to the successful capture of 
weak portions of unvoiced speech and noise type based grouping. 
Accurate noise energy estimation in stationary noises enables the 
extraction of weak unvoiced speech. In nonstationary and highly 
nonstationary noises, Bayesian classifiers specially designed for 
different noise types increase the discriminant power. 
       To further isolate the effects of noise type based grouping, we 
also show the segregation performance for unvoiced speech with 
spectral subtraction only in Fig. 2. Finally, we compare with a 
Wiener algorithm based on a priori SNR estimation (Wiener-as), 
which is reported as the best performing speech enhancement 
algorithm in sentence and consonant recognition tasks [9]. For all 
the algorithms, we use the same pitch tracking algorithm [10] to 
produce pitch contours. As can be observed, there is a substantial 
gap between the speech enhancement methods and the CASA 
algorithms. This indicates that the CASA framework of 
segmentation and grouping is effective for speech segregation. 
 

4. CONCLUSION 
 
Separation of unvoiced speech is a very challenging problem. This 
paper proposes a CASA-based approach for unvoiced speech 
segregation from nonspeech interference. We take advantage of 
voiced speech segregation to estimate noise and apply spectral 
subtraction to produce unvoiced segments. Segments produced this 
way are subsequently grouped into a speech stream that takes noise 
types into account. Systematic evaluation and comparison show 
our algorithm performs considerably better than previous 
approaches. 
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