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ABSTRACT:
The practical efficacy of deep learning based speaker separation and/or dereverberation hinges on its ability to

generalize to conditions not employed during neural network training. The current study was designed to assess the

ability to generalize across extremely different training versus test environments. Training and testing were

performed using different languages having no known common ancestry and correspondingly large linguistic

differences—English for training and Mandarin for testing. Additional generalizations included untrained speech

corpus/recording channel, target-to-interferer energy ratios, reverberation room impulse responses, and test talkers.

A deep computational auditory scene analysis algorithm, employing complex time-frequency masking to estimate

both magnitude and phase, was used to segregate two concurrent talkers and simultaneously remove large amounts

of room reverberation to increase the intelligibility of a target talker. Significant intelligibility improvements were

observed for the normal-hearing listeners in every condition. Benefit averaged 43.5% points across conditions and

was comparable to that obtained when training and testing were performed both in English. Benefit is projected to be

considerably larger for individuals with hearing impairment. It is concluded that a properly designed and trained

deep speaker separation/dereverberation network can be capable of generalization across vastly different acoustic

environments that include different languages. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Advances in deep learning have substantially elevated

our ability to improve speech understanding in complex

listening situations. This is of particular importance for

the nearly half of a billion people worldwide with hearing

loss (World Health Organization, 2020) who typically dis-

play poor speech understanding when interfering sounds

and/or reverberation are present (e.g., Souza, 2016). Prior

to current deep-learning solutions, the problem was partic-

ularly intractable, as a single-microphone (speech and

interfering sounds picked up by the same microphone)

solution capable of improving speech understanding had

proven elusive.

The practical efficacy of deep learning based speaker

separation and/or dereverberation, as well as noise reduc-

tion, hinges on its ability to generalize to conditions not

employed during network training. Generalization forms the

focus of the current work. The challenge arises because it is

obviously impossible to train a neural network in every

condition it will encounter, and an improperly trained net-

work can overfit its training environment and display perfor-

mance limited to that acoustic environment.

This concept of generalization to untrained environ-

ments is multifaceted and encompasses a wide variety of

differences between training and test environments. In each

of the generalization examples that follow, success is dic-

tated by improved intelligibility of target speech following

processing to remove interference. Different speech utteran-

ces are always used for training and test, and so prior dem-

onstrations possess this generalization (e.g., Healy et al.,
2013). Generalization to signal-to-noise or target-to-inter-

ferer energy ratios not used during training has also been

demonstrated (e.g., Chen et al., 2016). Generalization to

untrained background noises represents a particular chal-

lenge. However, success has been demonstrated using

different segments of the same noise type for training and

testing (e.g., Healy et al., 2015; Monaghan et al., 2017;

Zhao et al., 2018; Keshavarzi et al., 2019) as well as entirely

novel noise types (Chen et al., 2016; Healy et al., 2021).

Reverberation characteristics (room impulse responses)

have differed across training and test and have been shown

to generalize well (e.g., Zhao et al., 2018; Healy et al.,
2019; Healy et al., 2020). It has also been possible to
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develop talker-independent systems that allow the talker

producing the test speech to be absent during training (e.g.,

Chen and Wang, 2017; Goehring et al., 2017; Goehring

et al., 2019; Keshavarzi et al., 2019; Healy et al., 2020).

Other aspects of generalization are perhaps underappre-

ciated. One involves the speech corpora used for training

and test (cross-corpus generalization or corpus indepen-

dence; see Healy et al., 2020; Pandey and Wang, 2020).

Differences between corpora involving syllables versus

word lists versus sentences are generally well recognized.

Sentences are preferred, as they possess greater ecological

validity and provide the large signal durations required for

network training. However, even corpora all composed of

sentences can differ. Sentence lists versus connected speech

(e.g., read-aloud passages from written sources) versus

spontaneously produced speech can possess different lin-

guistic and acoustic characteristics. These characteristics

include co-articulation between sentences, phonetic compo-

sition, lexical content, syntactic structure, prosodic struc-

ture, semantic predictability, and clarity of articulation (e.g.,

Underhill, 2005).

A closely related, and perhaps similarly underappreci-

ated, aspect of generalization involves the recording chan-

nel. The recording equipment employed to produce the

speech materials used for training and test can impart spe-

cific characteristics. Notably, the frequency response of the

microphone shapes the long-term average spectrum and

impulse response of the signal. The acoustic environment in

which the speech productions are made and recorded also

imparts specific characteristics. Notably, background noise

adds to the signal, and the frequency and impulse response/

reverberation characteristics of the room modify the signal.

Channel characteristics such as these can challenge generali-

zation, particularly at lower signal-to-noise ratios (SNRs), if

they differ across training and test utterances. Channel char-

acteristics tend to be constant throughout a given recording,

but different across different recordings, causing generaliza-

tion across channel and the generalization across corpora

described just above to be highly related. This issue was

examined in detail by Pandey and Wang (2020), who attrib-

uted the challenge of cross-corpus generalization largely to

differences in recording channels and who propose techni-

ques to improve cross-corpus generalization.

In the current study, a perhaps ultimate generalization is

considered—that to an entirely unrelated language. It might

be reasonable to assume that a deep learning network could

generalize to an untrained language if that language is in the

same family and therefore possesses many commonalities.

An example might include training on Spanish-language

speech materials and testing on Portuguese materials. These

languages share a common ancestry, as reflected in their

proximity to one another on the language-family trees com-

mon to historical linguistics. Accordingly, they share many

common phonetic, morphological, lexical, syntactic, and

other linguistic characteristics.

In contrast, the greatest degree of generalization was

forced in the current study by selecting two widely spoken

languages having no known common ancestry—English and

Mandarin Chinese. English is a Germanic language with

Indo-European roots. Mandarin is a Sinitic language with

Sino-Tibetan roots. These entirely independent ancestries

cause the languages to be very different in a variety of ways.

First, English and Mandarin have different phonetic invento-

ries. English has more vowels, and only two vowels are

common across the languages. Mandarin has none of the

voiced fricatives of English but has fricatives that English

lacks. Mandarin has none of the English voiced stops and

only one of the two English approximants. Perhaps related,

the orthographic systems are entirely different across these

languages. Whereas English uses a Latinate alphabet, in

which letters correspond roughly to individual phonemes,

Mandarin uses a logographic system in which symbols rep-

resent words. Orthography can potentially influence phono-

logical representations and production of phonemes (e.g.,

Ranbom and Connine, 2007). For example, the commonly

produced English flap [Q] is often represented as the written

letter hti, and that orthographic representation can poten-

tially shift pronunciation toward the voiceless alveolar stop

[t] in some situations. English and Mandarin also differ in

their prosody and the rhythm with which they are spoken

and perceived. Whereas English is a stress-timed language,

Mandarin is a syllable-timed language. Finally, Mandarin is

a tonal language whereas English is not. Accordingly, pitch

contours of the voice carry important semantic cues in

Mandarin, whereas pitch contours in English primarily code

prosodic information.

The current study was designed to establish the ability

of a deep learning speech-processing algorithm to generalize

across vastly different training versus test environments.

Training was performed using English-language speech

materials, and testing was performed using Mandarin-

language speech materials. The algorithm was required to

perform separation of two concurrent talkers and dereverb-

eration to increase intelligibility of a target talker. A deep

Computational Auditory Scene Analysis (deep CASA) algo-

rithm was employed. In addition to cross-language generali-

zation, the algorithm was tasked with generalizing across

corpora and channel, to untrained target-to-interferer inten-

sity ratios (TIRs), and to untrained room impulse responses

(RIRs). Finally, the network was talker independent and

evaluated using a talker not involved in training.

II. METHOD

A. Subjects

Ten native speakers of Mandarin Chinese were

recruited from The Ohio State University and surrounding

community. All had normal hearing, as indicated by pure-

tone audiometric thresholds of 20 dB HL or lower at octave

frequencies from 250 to 8000 Hz on day of test (ANSI,

2004, 2010a). Ages ranged from 23 to 46 years (mean

¼ 30.2), four were female, and six were male. None had any

prior experience with the test-sentence materials used in the
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current study, and all received a monetary incentive for

participating.

B. Stimuli

The stimuli used for training and test consisted of sen-

tence pairs, one target and one interfering sentence, both

having substantial amounts of room reverberation. All train-

ing and test signals were processed at 16 kHz sampling with

16 bit resolution.

The stimuli used for training the deep learning algo-

rithm involved English-language speech from the Wall

Street Journal Continuous Speech Recognition Corpus

(WSJ0; Paul and Baker, 1992). This corpus contains record-

ings from a large number of talkers reading Wall Street

Journal newspaper articles from the late 1980s (approxi-

mately 39 000 sentences, 80 h of audio). Accordingly, it rep-

resents continuous speech. It was designed to support the

development of automatic speech recognition systems and is

commonly used for training and testing talker-independent

speaker separation (Hershey et al., 2016). Sentences were

drawn from the si_tr_s folders, which contain recordings

from 101 talkers (49 male and 52 female), each of whom

produced an average of 124 sentences.

Training-sentence pairs were created by selecting sen-

tences produced by different WSJ0 talkers and equating

them to the same root mean square level. This equating pro-

duced a single training TIR of 0 dB, different from the TIRs

used for testing. The talkers comprising each sentence pair

were always different and either could be male or female.

The longer-duration sentence of each pair was trimmed to

match the duration of the shorter, to avoid periods contain-

ing a single talker.

To generate room reverberation, a 6 m�7 m�3 m simu-

lated room was used. The room reverberation time (T60

value) for each sentence pair was selected randomly from

0.3 to 1.0 s. The target talker was placed 1 m from the micro-

phone position (the listener), and the interfering talker was

placed 2 m away, both at the same elevation as the micro-

phone. The microphone position was fixed in the room at (3,

4, 1.5) m, and each talker was positioned at one of 36 ran-

domly selected angles evenly distributed around the micro-

phone. Each individual sentence of each pair was convolved

with an RIR to generate reverberant speech, using an RIR

generator (Habets, 2020) that implements the image method

(Allen and Berkley, 1979).

The reverberant sentence recordings for each pair were

mixed to generate the reverberant two-talker mixtures. A

total of 200 500 training mixtures were generated, from

which 500 were reserved for cross-validation. These training

utterances and their processing were identical to those

employed by Healy et al. (2020), who performed training

and testing both in the same language, in order to facilitate

direct comparison to the current cross-language conditions.

The sentence pairs used for testing (inference) were cre-

ated using different corpora containing Mandarin speech

materials. These were produced by talkers different from

those producing the training materials. The target test sen-

tences were drawn from the Mandarin Speech Perception

test (MSP, Fu et al., 2011), and the interfering test sentences

were drawn from the Tsinghua Chinese 30 h database

(THCHS-30, Wang and Zhang, 2015).1

The MSP contains 100 sentences arranged into ten lists.

Each sentence contains seven monosyllabic words selected

to be familiar and widely used in daily life. The sentences

are phonetically balanced in terms of vowels, consonants,

and tones, with proportions approximating those of natural

everyday Mandarin speech. The standard recording of these

materials was used, which was produced by a female profes-

sional radio broadcaster at a natural speaking rate. Fu et al.
(2011) reported 100% recognition accuracy in quiet for

normal-hearing (NH) speakers of Mandarin. For the current

study, 80 sentences were used for testing and 20 were

reserved for practice.

The THCHS-30 includes sentences read from an ency-

clopedic reference book and, like the WSJ0, was designed

to support the development of automatic speech recognition

systems. The corpus contains approximately 35 h of speech

produced by 40 native speakers of Mandarin. Productions

from male talker D8 were selected for the current study. Of

the 250 sentences produced by this talker, 100 sentences

were selected, with each approximating the duration of a

paired sentence from the MSP.

The sentences from the two Mandarin test corpora were

arranged into pairs, with the interfering sentence always lon-

ger in duration than the target sentence. The use of

different-gender talkers for these sentence pairs allowed the

human subjects to differentiate and identify which talker

was the target. It has been shown that deep learning algo-

rithm performance is similar when target and interfering

talkers are different genders versus when they are both male

or both female (see Table V from Liu and Wang, 2019).

The preparation of the test-sentence pairs followed that

for the training-sentence pairs. Exceptions were that each

sentence pair was mixed at the two test TIRs of –8 and

–5 dB, chosen to produce intelligibility values generally free

of floor and ceiling effects. With regard to room reverbera-

tion, each of the talker positions in the virtual room was

shifted by five degrees relative to the training positions, to

produce different RIRs across training and test. The test T60

values were 0.6 and 0.9 s, and each test-sentence pair was

prepared in each of these TIR/T60 conditions.

C. Deep learning algorithm description

The algorithm was a variant of deep CASA, which was

proposed for talker-independent speaker separation by Liu

and Wang (2019), then extended to reverberant conditions

by Healy et al. (2020). Figure 1 displays its basic function.

Deep CASA contains a simultaneous grouping stage fol-

lowed by a sequential grouping stage. Simultaneous group-

ing involves the separation of acoustic components from the

two sound sources in each time frame. Dereverberation is

also performed during this stage. Sequential grouping
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involves the organization of the separated frames into two

streams, one for each talker. The rationale for such a two-

stage model comes from classic theories of auditory scene

analysis, in which the human processing of sound is hypothe-

sized to involve such stages (Bregman, 1990), and from com-

putational auditory scene analysis (Wang and Brown, 2006),

which often employs such stages. In the current study, the

first stage was accomplished using a U-Net convolutional

neural network with densely connected layers (Dense-UNet;

Liu and Wang, 2019), and the second stage employed a tem-

poral convolutional network (TCN; Bai et al., 2018; Lea

et al., 2016). Note that deep CASA is a dedicated speaker

separation algorithm. The network also performed de-

reverberation, but noise removal was not addressed.

In the current study, both the amplitude and phase of

the signal of interest were obtained by working in the com-

plex domain. In this approach, the real and imaginary parts

are both estimated by the deep neural network, which allows

both the amplitude and phase of the signal of interest to be

obtained. This approach contrasts with that of most studies,

in which only the amplitude representation of the signal of

interest is estimated by the deep neural network, then com-

bined with the phase of the original unprocessed sound mix-

ture (“noisy phase”) to reconstruct the isolated signal of

interest. The current training target was the complex ideal

ratio mask (cIRM, Williamson et al., 2016), and the features

involved the real and imaginary components of the complex

short-time Fourier transform (STFT).

The current algorithm and its training were identical to

that employed by Healy et al. (2020). In that study, talker-

independent reverberant speaker separation was performed,

but the network was trained and tested both using English-

language speech materials. The use of an identical algorithm

allowed the current cross-language results to be directly

compared to the previous within-language results.

Accordingly, the interested reader is directed to Healy et al.
(2020) and Liu and Wang (2019) for additional details on

the deep neural network.

The current model was non-causal. This is in accord with

our overall approach, in which we first establish high perfor-

mance benchmarks through the use of unconstrained net-

works. We then address implementation concerns, including

causal operation. This two-stage approach allows the ramifica-

tions of each implementation modification to be known.

The mixture signal y tð Þ can be expressed as,

y tð Þ ¼ h1 tð Þ � s1 tð Þ þ h2 tð Þ � s2 tð Þ; (1)

where s1 tð Þ and s2 tð Þ are the two anechoic talker signals,

h1 tð Þ and h2 tð Þ are the RIRs corresponding to each speaker

location in the room, and � denotes convolution. The com-

putational problem is defined as extracting s1 tð Þ and s2 tð Þ
from y tð Þ.

1. Simultaneous grouping

Dense-Unet (Liu and Wang, 2019) extends the U-net

architecture (Ronneberger et al., 2015) by interleaving

FIG. 1. (Color online) A schematic of the current deep CASA algorithm to

separate and dereverberate simultaneous talkers. (A) is the reverberant

two-talker mixture signal; (B1) and (B2) are the signals corresponding to

the two talkers dereverberated and separated in each time frame, without

regard to which talker is which; (C) is the predicted frame-talker assign-

ment vector, where 0 indicates that the talker assignment in stage B is

correct and 1 indicates that the talker assignment needs to be reversed in

that frame; (D1) and (D2) are the separated and dereverberated signals

corresponding to the two individual talkers; and (E1) and (E2) are the

corresponding output waveforms. The simultaneous grouping DNN was a

U-Net convolutional neural network with densely-connected layers, and

the sequential grouping DNN was a temporal convolutional network. Both

the amplitude and phase of the signal of interest were obtained by working

in the complex domain.
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dense blocks between its layers. Dense blocks were origi-

nally introduced with the DenseNet architecture (Huang

et al., 2017). In the current Dense-Unet implementation, a

U-net was used having four upsampling and four downsam-

pling layers, with each layer interleaved by a dense block.

The input to this simultaneous grouping network was

real and imaginary STFT features Mðm; f Þ, where m repre-

sents the frame index and f is the frequency channel. This

network was used to estimate two cIRMs, one for each

talker. Pointwise multiplying these masks by Mðm; f Þ in the

complex domain resulted in two STFT signals Ŝu1
ðm; f Þ and

Ŝu2
ðm; f Þ that represent the separated and dereverberated

frames for each talker.

Frame-level permutation invariant training (tPIT;

Kolbaek et al., 2017) was used as the training loss.

Accordingly, two loss functions l1 and l2 were calculated for

each time frame,

l1 mð Þ ¼ Rf Ŝu1
m; fð Þ � S1 m; fð Þ

�� ��

þ Rf Ŝu2
m; fð Þ � S2 m; fð Þ

�� ��; (2)

l2 mð Þ ¼ Rf Ŝu1
m; fð Þ � S2 m; fð Þ

�� ��

þ Rf Ŝu2
m; fð Þ � S1 m; fð Þ

�� ��; (3)

where S1 m; fð Þ and S2 m; fð Þ are the clean anechoic talker

signals.

Next, frames were assigned to each talker based on the

smaller loss. These optimally organized STFT features were

converted to time-domain signals, from which the SNR-

based loss function JSNR was calculated and minimized,

JSNR ¼ �10
X

i¼1;2

log

X

t

si tð Þ2

X

t

si tð Þ � ŝoi
tð Þ

� �2 ; (4)

in which si tð Þ are the clean anechoic signals and ŝoi
tð Þ are

their corresponding estimations.

2. Sequential grouping

The TCN is able to capture long-range contextual infor-

mation due to its series of dilated convolutions and resulting

large receptive fields. This is desirable for speech processing

and enables the tracking of a talker over a long utterance.

The current TCN had eight dilated convolutional blocks,

each with three convolutional layers.

The previous simultaneous stage was trained using opti-

mal talker-frame assignments based on the signals s1 tð Þ and

s2 tð Þ, which are not available at test time. Therefore, the cur-

rent sequential grouping stage used the outputs of the first

stage Ŝu1
m; fð Þ and Ŝu2

m; fð Þ and was trained to predict a

temporal organization vector A per frame. Specifically,

A ¼ 1; 0½ � indicated that Ŝu1
and Ŝu2

correctly represent

frames for talker 1 and talker 2, respectively, whereas

A ¼ 0; 1½ � meant that the frames need to be reversed.

Separated frames Ŝu1
and Ŝu2

will be optimally organized

over the sentence if A is optimally predicted. To predict A,

the network generated an embedding vector VðcÞ 2 Rd for

each time frame c, where d is the size of the embedding vec-

tor, which was then optimized with the loss function

(Hershey et al., 2016; Liu and Wang, 2019),

JDC ¼ kVVT � AATk2
F; (5)

in which k:kF denotes the Frobenius norm.

At inference time, the network generated the embed-

dings VðcÞ, and a K-means algorithm clustered these vectors

into two groups, labeled as Â mð Þ ¼ 0; 1f g, which were used

to organize Ŝu1
m; fð Þ and Ŝu2

m; fð Þ. Finally, these spectro-

grams were converted to time-domain signals ŝ1 tð Þ and ŝ2 tð Þ
via inverse STFT, which are the estimated anechoic talker

signals. The simultaneous and sequential grouping stages

were trained separately, and the training was stopped when

no further improvement in the cross-validation set was

achieved.

Figure 2 displays spectrogram images for an example

stimulus. Figure 2(a) displays two Mandarin sentences

mixed at –5 dB TIR and reverberated using a T60 value of

0.9 s. Figures 2(b) and 2(c) display the individual sentences

prior to mixing and reverberation. Figures 2(d) and 2(e) dis-

play these Mandarin sentences separated from the reverber-

ant two-talker mixture, Fig. 2(a), using the current deep

CASA algorithm, trained using English-language speech

materials.

D. Procedure

Listeners heard sentence pairs in unprocessed condi-

tions (pairs of sentences mixed and reverberated) and in

processed conditions (pairs of reverberant sentences proc-

essed by the deep CASA algorithm to isolate the target

talker and remove reverberation). There were a total of eight

conditions heard by each listener (2 unprocessed/processed

� 2 TIRs � 2 T60s). Each listener heard 80 sentence pairs,

with ten sentences in each condition. The critical compari-

son is between unprocessed and processed in each condition,

so these unprocessed/processed conditions were heard in

juxtaposed order within each TIR-T60 block. The order of

the four TIR-T60 blocks was randomized for each listener,

and the order of unprocessed/processed was randomized for

each listener in each TIR-T60 block. The sentence materials

were presented in a single fixed order for all listeners to

yield a random correspondence between sentence pairs and

condition for each listener.

The stimuli were played back from a Windows PC

using an RME Fireface UCX digital-to-analog converter

(Haimhausen, Germany), routed through a Mackie 1202-

VLZ mixer (Woodinville, WA), and delivered diotically

using Sennheiser HD 280 Pro headphones (Wedemark,

Germany). Each stimulus was scaled to the same total root

mean square level and set to play back at 65 dBA in each

ear, as measured by an ANSI type I sound-level meter and

flat-plate headphone coupler (Larson Davis models 824 and
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AEC 101, Depew, NY). Signal calibration was conducted

prior to testing each listener.

In a brief familiarization immediately preceding formal

testing, listeners heard the 20 practice sentences arranged

into five blocks, with four sentence pairs (or clean MSP sen-

tences) in each block. The practice conditions were: (1)

interference-free, reverberation-free speech spoken by the

target talker, (2) algorithm processed sentence pairs in

the most favorable TIR-T60 condition (–5 dB, 0.6 s), (3)

algorithm processed sentence pairs in the least favorable

condition (–8 dB, 0.9 s), (4) unprocessed sentence pairs in

the most favorable TIR-T60 condition, and (5) unprocessed

sentence pairs in the least favorable TIR-T60 condition.

These sentence pairs were distinct from those used for test-

ing. Listeners were instructed to attend to the female voice,

repeat back each sentence as best they could, and to guess if

unsure of what was said.

Following familiarization, listeners heard the eight

blocks of experimental conditions, receiving the same

instructions as for practice. They were seated alone in a

double-walled audiometric booth. The experimenter con-

trolled the presentation of each stimulus from a position just

outside the booth, with the listener in view through a large

window. Each stimulus was presented only once to each lis-

tener, and no feedback was provided during testing.

Listener responses were recorded digitally using a

Shure SM11 microphone (Niles, IL) positioned inside the

audiometric booth. These responses were scored off-line by

two native speakers of Mandarin, who were blind to the con-

dition under test and to one-another’s scoring. Scorers lis-

tened to each recorded response as many times as needed

and documented how many words were correctly reported

for each target sentence.

III. RESULTS AND DISCUSSION

A. Human performance

Inter-rater reliability between the two scorers was

assessed using a two-way mixed, absolute agreement,

average-measures interclass correlation (ICC; McGraw and

Wong, 1996) on rationalized arcsine units (RAUs,

Studebaker, 1985). The resulting ICC of 0.997 was in the

excellent range (Cicchetti, 1994), indicating that the two

scorers had a high degree of agreement. The excellent ICC

suggests that the statistical power of subsequent analyses

was not substantially reduced by measurement error.

Accordingly, sentence intelligibility was defined as the per-

centage of words correctly reported by each listener in each

condition, using values averaged across the two scorers. The

seven words per sentence and ten sentences per condition

yielded a total of 70 words in each condition for each

listener.

Figure 3 displays intelligibility for each individual lis-

tener in each condition: The two TIRs employed are plotted

in separate panels. In each panel, the unprocessed and proc-

essed conditions for a given T60 are represented by adjacent

columns. Each T60 is grouped into a pair of columns for

each listener, with 0.9 s on the left (white solid and white

hatched columns) and 0.6 s on the right (black solid and

gray hatched columns). Algorithm benefit for each listener

in a given condition corresponds to the difference between a

solid column (unprocessed) and the hatched column directly

to the right (processed). Note that NH9 was unable to cor-

rectly report any words in one condition, so that column is

absent (TIR ¼ –8 dB, T60 ¼ 0.6 s, unprocessed).

As Fig. 3 shows, every listener received algorithm ben-

efit in every condition, except for one case where the

FIG. 2. (Color online) Panel (a) displays a spectrogram image of two competing Mandarin-language sentences (target and interferer) having a large amount

of room reverberation (T60 ¼ 0.9 s). Panels (b) and (c) display the individual non-reverberant sentences prior to mixing. Panels (d) and (e) display the target

and interfering Mandarin sentences dereverberated and extracted from the mixture (a) by the deep CASA algorithm, which was trained using English-

language speech. Compare the output (d) to the desired signal (b) and the output (e) to the desired signal (c).

J. Acoust. Soc. Am. 150 (4), October 2021 Healy et al. 2531

https://doi.org/10.1121/10.0006565

https://doi.org/10.1121/10.0006565


unprocessed score was already high at 88.6% correct (NH6,

TIR ¼ –8 dB, T60 ¼ 0.6 s). Algorithm benefit is in part a

function of unprocessed score, and accordingly, was corre-

lated with unprocessed scores (jrj ¼ 0.75, p < 0.0001,

across all conditions), where lower unprocessed scores

tended to be associated with greater benefit. Across all lis-

teners and conditions (40 cases), benefit was 20% points or

greater in 88% of cases, 40% points or greater in 53% of

cases, and 60% points or greater in 23% of cases.

Figure 3 also displays group-mean intelligibility scores

and standard errors (SEs) for each condition. The top panel

again represents the less favorable TIR of –8 dB. At this

TIR, the less favorable T60 produced the lowest mean unpro-

cessed score (23.8% correct) and a mean benefit of 43.5%

points. The more favorable T60 at this TIR produced a mean

unprocessed score of 44.0% correct and the largest mean

benefit of any condition (50.3% points). At the more favor-

able TIR of –5 dB (bottom panel), the less favorable T60 pro-

duced a mean unprocessed score of 42.1% correct and a

benefit of 45.0% points. The more favorable T60 at this TIR

produced the highest group-mean unprocessed score (61.2%

correct) and the correspondingly smallest algorithm benefit

(35.1% points). The grand-mean algorithm benefit across

conditions was 43.5% points.

It is notable that group-mean algorithm-processed

scores approached the ceiling at 100% correct in both of the

more favorable T60 conditions (94.3% and 96.4% correct,

see Fig. 3 rightmost column in each panel). Because near-

ceiling intelligibility values were observed, benefit was

examined in RAUs, which counteract the compression of

percent correct against the floor or ceiling. The RAU bene-

fits for the four conditions were as follows: TIR –8 dB, T60

0.9 s ¼ 43.2 points; TIR –8 dB, T60 0.6 s ¼ 58.7 points; TIR

–5 dB, T60 0.9 s ¼ 46.5 points; TIR –5 dB, T60 0.6 s ¼ 44.5

points. The grand-mean algorithm benefit across conditions

was 48.2 RAU points.

The primary analysis consisted of planned comparisons,

which were uncorrected, two-sided, paired, t-tests on RAUs,

performed to examine algorithm benefit in each condition.

Scores were treated as independent samples when calculat-

ing effect sizes (Cohen’s d). Scores for algorithm-processed

conditions were significantly higher than the corresponding

unprocessed scores in all four conditions:

TIR �8 dB, T60 0.9 s: t(9) ¼ 8.1, p < 0.0001, Cohen’s

d ¼ 2.54;

TIR �8 dB, T60 0.6 s: t(9) ¼ 5.5, p < 0.001, Cohen’s

d ¼ 2.58;

TIR �5 dB, T60 0.9 s: t(9) ¼ 14.5, p < 0.000001, Cohen’s

d ¼ 4.23;

TIR �5 dB, T60 0.6 s: t(9) ¼ 5.1, p < 0.001, Cohen’s

d ¼ 2.87.

These results all survive Bonferroni correction for mul-

tiple comparisons.

A supplementary statistical analysis was performed

using a linear mixed-effects model. The outcome variable

FIG. 3. Intelligibility of Mandarin sen-

tences in each condition. Shown are

scores for individual NH listeners as

well as group means (and SEs).

Unprocessed scores result from the

mixture of a target and interfering

Mandarin sentence, both having a sub-

stantial amount of room reverberation.

Processed scores result from this signal

following processing by the deep

CASA algorithm, trained using

English-language speech, to dereverb-

erate and isolate the target talker. The

target-to-interferer ratios of –8 and

–5 dB are displayed in separate panels,

and the T60 times of 0.9 and 0.6 s are

displayed in each panel using different

columns. Algorithm benefit is obtained

by comparing each unprocessed col-

umn (unhatched) to the immediately

adjacent processed column (hatched).
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was the RAU-transformed percent-correct scores for each

listener in each condition (80 data points). The fixed effects

were processing condition, TIR, and T60, in addition to each

of the two- and three-way interactions between the first-

order effects. The model also included random intercepts for

listener. Deviation coding was used to represent the varia-

bles of processing condition (unprocessed coded as �0.5,

processed as 0.5), TIR (–8 dB coded as �0.5, –5 dB as 0.5),

and T60 (0.9 s coded as �0.5, 0.6 s as 0.5). Visual inspection

of residual plots did not reveal any apparent violations of

homoscedasticity or normality. The analysis was performed

using R 4.0.3 (R Core Team, 2020) and the lme4 package

(Bates et al., 2015). Degrees of freedom for the t distribution

(two-sided) were based on Satterthwaite’s approximation

using the lmerTest package (Satterthwaite, 1941; Kuznetsova

et al., 2020).

Most notably, the fixed effect of algorithm processing

was large and significant, reflecting that the algorithm

was successful in increasing listeners’ overall intelligibility

[b ¼ 48.4 RAU points, SE ¼ 3.27, t(63)¼ 14.8, p
< 0.0001]. The fixed effect of TIR was also significant,

simply reflecting overall higher intelligibility at the higher

(more favorable) TIR [b ¼ 15.6 RAU points, SE ¼ 3.27,

t(63)¼ 4.8, p < 0.0001]. Finally, the fixed effect of T60

was also significant, simply reflecting overall higher intelli-

gibility at the lower (more favorable) reverberation time

[b ¼ 21.8 RAU points, SE ¼ 3.27, t(63)¼ 6.7, p < 0.0001].

None of the two- or three-way interactions were significant,

indicating no significant interdependency between any of

these effects [each t(63)< 1.4, each p > 0.15].2

Figure 4 displays group-mean intelligibility for the

Mandarin sentences observed currently, along with the intel-

ligibility of English-language sentences from Healy et al.
(2020), in the common conditions of TIR ¼ –5 dB. Across

studies, the preparation of two-talker reverberant sentences

was identical (except that different speech corpora were

used), and the test apparatus and procedures were largely

identical. Also, recall that the design and training of the

deep CASA algorithm using English-language speech was

identical across studies. The only notable difference across

studies involved the speech materials used for testing—

Mandarin currently and English by Healy et al. (2020).

Accordingly, the current study involved cross-language gen-

eralization whereas the former did not. Intelligibility for the

T60 value of 0.9 s is displayed on the left half of the figure

whereas scores for the T60 value of 0.6 s are on the right. As

in the previous figures, unprocessed scores are represented

by solid columns, whereas processed scores are represented

by hatched columns, allowing benefit to be determined as

the difference between each pair of adjacent columns. The

labels at the top of the figure distinguish the current data

(“Language: Across”—trained on English/tested on

Mandarin) from those of the previous study (“Language:

Within”—trained and tested on English).

As can be seen in Fig. 4, the benefit observed currently

is comparable to that observed previously, despite the cur-

rent addition of generalization to a language having no

shared ancestry. Averaged across the two T60 conditions, the

difference in benefit across studies is 6.2 raw percentage

points, with the current benefit being slightly lower (differ-

ence is 2.4% points at T60 ¼ 0.9 s and 10.1% points at T60

¼ 0.6 s). When intelligibility is converted to RAUs, which is

needed to account for the one near-ceiling mean value in

Fig. 4, the overall average benefit difference across studies

becomes 1.7 points (difference remains similar at 2.0 points

at T60 ¼ 0.9 s, but is reduced to 1.3 points at T60 ¼ 0.6 s,

where the ceiling algorithm-processed mean of 96.4% is

observed).

This across-language versus within-language compari-

son was assessed using a linear mixed-effects model. The

outcome variable was the RAU-transformed percent-correct

score for each listener (ten native Mandarin, ten native

English), at the common TIR of –5 dB, in two algorithm-

processing conditions, at two T60s, amounting to 80 scores.

The fixed effects for this model were processing condition,

T60, and language, as well as each of the two- and three-way

interactions. Again, the model included random intercepts

for listener (n ¼ 20), and deviation coding was used for

each independent variable, with the baseline condition

coded as �0.5 and the comparison condition coded as 0.5.

The unprocessed algorithm condition was coded as the base-

line, and the algorithm-processed condition was coded as

FIG. 4. A comparison between across-language and within-language algo-

rithm performance. Displayed are group-mean sentence intelligibilities (and

SEs) in unprocessed and algorithm-processed conditions at a TIR of –5 dB.

The two reverberation T60 times are on the left and right sides of the panel.

The columns labeled “Language: Across” are from the current Fig. 3, where

training was performed using English-language speech materials, and test-

ing was performed using Mandarin-language speech materials. The col-

umns labeled “Language: Within” are from Healy et al. (2020), who

employed an identical algorithm and identical training stimuli but instead

tested using English-language speech materials.
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the comparison. The less favorable TIR of 0.9 s was coded

as the baseline, and the more favorable TIR of 0.6 s was

coded as the comparison. English was arbitrarily assigned as

the baseline language, and Mandarin was designated as the

comparison language. No violations of homoscedasticity or

normality were apparent in the residual plots. The analysis

was performed using the same software and Satterthwaite’s

approximation described above.

The important comparison involves the benefit of algo-

rithm processing in across- versus within-language condi-

tions. No significant interaction was observed between

algorithm processing and language [b ¼ –1.6 RAU points,

SE ¼ 4.82, t(54) ¼ –0.33, p ¼ 0.74], thus providing no evi-

dence that the algorithm was significantly more effective at

improving intelligibility when trained in English and tested

in Mandarin versus when trained and tested both in English.

The large and significant effect of processing [b ¼ 46.4

RAU points, SE ¼ 2.41, t(54)¼ 19.3, p < 0.0001] reflected

that the algorithm increased intelligibility across T60s and

languages. The large and significant effect of T60 [b ¼ 22.2

RAU points, SE ¼ 2.41, t(54)¼ 9.2, p < 0.0001] simply

reflected the detrimental effect of increased reverberation on

intelligibility. This detrimental effect was stronger in

English than in Mandarin, as indicated by a significant inter-

action between T60 and language [b ¼ –9.7 RAU points,

SE¼4.82, t(54) ¼ –2.0, p ¼ 0.05]. Intelligibility was also

higher overall for the Mandarin-language target talker than

the English-language target talker, as indicated by the

significant effect of language [b ¼ 25.0 RAU points, SE
¼ 3.04, t(18)¼ 8.2, p < 0.0001]. This effect is likely due to

the Chinese talker’s experience as a professional radio pre-

senter and the tendency for these individuals to produce

clear speech. Also, the MSP test employed common every-

day vocabulary, whereas the English utterances were less

commonplace (see Sec. IV). Neither the interaction between

processing condition and T60 nor the three-way interaction

were significant [each jbj < 2.3 RAU points, each SE > 4.8,

each jt(54)j < 0.47, each p > 0.64].

B. Objective measures

Objective measures are based on measurement of the

acoustic stimuli themselves and can be beneficial for com-

paring performance across studies involving stimulus proc-

essing because the variability associated with human

subjects is absent. In the current study, two objective mea-

sures of speech intelligibility, one measure of speech qual-

ity, and one measure of TIR improvement were calculated.

All are commonly employed measures and were based on

the 80 Mandarin sentence pairs used for testing.

The objective measures of intelligibility included

ESTOI (extended short-time objective intelligibility; Jensen

and Taal, 2016), and STOI (short-time objective intelligibil-

ity; Taal et al., 2011). Both are essentially correlations

between the amplitude envelopes of (a) the original

interference-free, reverberation-free speech and (b) the same

speech utterance following corruption (here, by interference

and reverberation) then algorithm processing to remove the

corruption. The use of amplitude envelopes reflects their

perceived importance to human speech recognition (e.g.,

Rosen, 1992; Healy and Warren, 2003; Apoux and Healy,

2013), and higher values indicate that the algorithm output

more veridically matches the desired clean speech. Because

it is a correlation, the scale typically ranges from 0 to 100%

(or 0.0 to 1.0). As Table I shows, benefit (processed minus

unprocessed) reflected by ESTOI scores ranged from 32.4%

to 44.3% points, with a mean across conditions of 40.0%

points. STOI benefit ranged from 24.0% to 33.2% points,

with a mean of 29.9% points. These objective values tend to

underestimate the actual human-subjects benefit observed

currently.

The sound-quality prediction was PESQ (Rix et al.,
2001). It also reflects a comparison between clean and proc-

essed speech and has a scale ranging from �0.5 to 4.5.

Increases in PESQ ranged from 0.8 to 1.4, with a mean ben-

efit of 1.1. Although sound quality was not assessed cur-

rently by human listeners, this substantial increase in PESQ

score suggests that human listeners should consider the cur-

rent cross-language algorithm-processed speech to have

improved sound quality.

Finally, source-to-distortion improvement (DSDR;

Vincent et al., 2006) reflects the SNR improvement (TIR cur-

rently) in dB resulting from processing. The current values

range from 11.0 to 13.0 dB, reflecting the substantial ability

of the cross-language algorithm to isolate the target signal.

These objective measures may be compared to those

from Table I in Healy et al. (2020), which provides a direct

comparison to a within-language model. This comparison is

presented in Table II, where values are expressed as algo-

rithm benefit. ESTOI benefit was within 1.8% points at both

T60 values. STOI benefit was within 2.9 and 4.9% points at

T60 values of 0.6 and 0.9 s. DSDR was within 1.5 and 1.8 dB

TABLE I. Average ESTOI, STOI, PESQ, and DSDR values in different

room reverberation (T60) and target-to-interferer ratio (TIR) conditions for

the target talker in reverberant two-talker mixtures prior to and following

processing by deep CASA. The deep learning algorithm was trained on

English-language speech materials and tested on Mandarin-language speech

materials. Comparable values for the same algorithm trained on English-

language speech materials and tested on English-language speech materials

are available in Healy et al. (2020) (see their Table I).

0.6

T60 (s)

0.9

T60 (s)

TIR (dB) �8 �5 �8 �5 Average

ESTOI (%) Unprocessed 20.30 24.60 15.20 17.70 19.45

Processed 61.50 68.90 47.60 59.70 59.43

Benefit (% pts) 41.2 44.3 32.4 42.0 40.0

STOI (%) Unprocessed 44.50 48.50 42.10 44.80 44.98

Processed 76.30 81.70 66.10 75.20 74.83

Benefit (% pts) 31.8 33.2 24.0 30.4 29.9

PESQ Unprocessed 0.35 0.40 0.34 0.38 0.37

Processed 1.53 1.81 1.16 1.52 1.51

Benefit 1.2 1.4 0.8 1.1 1.1

DSDR (dB) Proc-Unp 13.00 12.48 11.03 11.65 12.04
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at these T60 values. In each of these cases, the current cross-

language benefits were lower than the previous within-

language benefits. With regard to PESQ, benefit values were

within 0.2 and 0.1 for the two T60 values, with the current

cross-language benefits being slightly higher.

IV. GENERAL DISCUSSION

The current study was designed to demonstrate the abil-

ity of a well-designed and trained deep learning algorithm to

generalize across extremely different acoustic environments.

But more direct practical implications may also exist. The

languages chosen currently are the world’s most common,

with over a billion speakers each. English has the largest

number of total speakers in the world, with Mandarin close

behind, and Mandarin has the world’s largest number of

native speakers (Eberhard et al., 2020). These are therefore

important global languages with a substantial need for

speech technology.

Speaker-separation or noise-reduction that operates

optimally on a single primary language is still of substantial

value. However, the ability of a system to operate across

languages, as demonstrated currently, substantially increases

its value. This is an important consideration because of the

challenge associated with training on each of the world’s

7000-plus currently spoken languages, or even on the 200

most widely spoken languages, which represent the native

languages of 88% of the world population (Eberhard et al.,
2020). The current results suggest that people speaking lan-

guages for which resources to collect and train models are

lacking might nevertheless benefit directly from the vast

speech and language data that have been collected in other

languages, such as English and Mandarin. These current

results are also relevant to the related issue involving the

varied regional dialects that a given language possesses,

which even a single-language algorithm would need to be

robust to.

The current differences across training and test were

vast and represent a highly challenging generalization.

Further, the listening conditions were highly complex and

challenging, both for a processing algorithm and for NH lis-

teners, with the latter often able to tolerate challenging

acoustic conditions. The room reverberation applied to the

concurrent talker conditions was substantial. The T60 value

of 0.6 s corresponds to the upper limit for acceptable rever-

beration in classrooms (ANSI, 2010b), whereas the value of

0.9 exceeds that limit. Despite these challenges, significant

benefit was observed in all conditions. It is also notable that,

with one exception (1 of 40 cases), the algorithm did not

produce any decrement in performance. This is an important

consideration because the possibility exists that the substan-

tial processing could distort the signal and decrease perfor-

mance when baseline scores are high and benefit is not

needed. In the one instance of decrement (NH6, TIR –8 dB,

T60 0.6 s), the unprocessed score of 88.6% was reduced by

one keyword (1.4% correct).

The use of an identical algorithm and training allowed

an exact comparison to be made between traditional within-

language conditions, in which the network is trained and

tested both on the same language (Healy et al., 2020), and

the current cross-language examination (see Fig. 4).

Objective measures showed that benefit was similar across

these language conditions, with ESTOI and STOI benefit

values both within a few percentage points. The linear

mixed model failed to reveal a significant interaction

between algorithm processing and language. Finally, the

actual intelligibility benefit demonstrated by the current NH

listeners hearing across-language conditions was highly

comparable to that observed previously for within-language

conditions, particularly following RAU transform.

RAU values are essentially equal to percent-correct val-

ues in the region free from floor and ceiling effects, from

approximately 15% to 85% correct. The relationship

between RAUs and percent correct diverges outside of this

range, with 1% point corresponding to increasingly greater

than 1 RAU. This expansion of RAU values counteracts the

compression of percent-correct values against the floor or

ceiling. Accordingly, they are a preferred comparison met-

ric, particularly when floor or ceiling values are observed.

This influence can be clearly observed currently. The data

displayed in the left half of Fig. 4 are free of strong floor or

ceiling effects, and the benefit difference across studies is

approximately 2 points when expressed as raw percent cor-

rect or RAUs. In contrast, the data displayed in the right half

of that figure contain a strong ceiling effect. This benefit dif-

ference across studies of 10 points (raw percent correct)

becomes 1 point (RAU) when the compression of percent

correct against the ceiling is addressed via the transform.

TABLE II. Average ESTOI, STOI, and PESQ benefit (processed�unprocessed scores), along with DSDR values, for across-language versus within-

language conditions. The across-language conditions involved training on English-language speech materials and testing on Mandarin-language speech

materials. The within-language conditions involved training on English-language speech materials and testing on English-language speech materials. The

T60 values of 0.6 and 0.9 s and the target-to-interferer ratio of�5 dB common across studies were considered.

T60 ¼ 0.6 s T60 ¼ 0.9 s

Across language Within language

Difference

(across-within) Across language Within language

Difference

(across-within)

ESTOI Benefit (% points) 44.30 46.07 �1.8 42.00 43.80 �1.8

STOI Benefit (% points) 33.20 36.10 �2.9 30.40 35.29 �4.9

PESQ Benefit 1.41 1.22 0.2 1.14 1.00 0.1

DSDR (dB) 12.48 13.95 �1.5 11.65 13.42 �1.8
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Also notable is that overall intelligibility of the target

talker is higher in the current study relative to that of the

within-language study of Healy et al. (2020). This is likely

due to the fact that the Mandarin MSP test used a clear pro-

fessional talker and contained sentences of fixed length con-

taining familiar everyday monosyllabic words. In contrast,

the target English-language materials employed previously

(the Institute of Electrical and Electronics Engineers senten-

ces, IEEE, 1969) are generally considered to be somewhat

challenging. The IEEE sentences vary in length and contain

words having relatively low frequency of occurrence.

Further, they were produced by a typical nonprofessional

talker, and so articulation was likely less toward clear

speech. Benefit is correlated with unprocessed scores, which

is expected because benefit values are derived in part from

unprocessed scores. The current relationship (jrj ¼ 0.75, p
< 0.0001) was typical, and associated higher unprocessed

scores with less benefit. Accordingly, higher baseline unpro-

cessed scores worked against the current across-language

benefit, and the observation of benefit comparable to that

within a single language occurred despite this effect.

The current model is talker-independent and so

employed different talkers for network training versus test-

ing. Because these talkers were selected somewhat arbi-

trarily, and because the training versus test languages were

selected to be maximally different, the current algorithm

should be expected to generalize broadly across talkers and

languages. To help confirm this, the current results were

repeated using additional test talkers speaking another lan-

guage. Four talkers (two female, two male) speaking

Columbian Spanish from Guevara-Rukoz et al. (2020) were

arbitrarily selected and formed into female-male pairs with

the female arbitrarily assigned as the target in one pair and

the male arbitrarily assigned as the target in the other pair.

The mixing of equal-duration sentences at a TIR of –8 dB

and the addition of room reverberation at T60 ¼ 0.6 s was

performed as described in Sec. II. Twenty sentence pairs

were prepared for each talker pair, with all 80 sentences dis-

tinct from one another. The algorithm was trained using

English-language materials as described in Sec. II. ESTOI

averaged across talker pairs increased from 16.7% to 50.4%

(unprocessed to processed), STOI increased from 37.3% to

67.2%, and PESQ increased from 0.77 to 1.73. The English-

Spanish benefit (processed score minus unprocessed score)

for each of these metrics was substantial but below those for

English-Mandarin (ESTOI: English-Spanish benefit 33.7%

points versus English-Mandarin benefit 41.2% points; STOI:

29.9 versus 31.8% points; PESQ: 0.96 versus 1.18; and

DSDR: 12.4 versus 13.0 dB). It can therefore be concluded

that the current cross-language generalization is not

restricted to the selection of Mandarin as the generalization

language or to the particular talkers who produced it.

Although the current study was performed using listen-

ers with NH, listeners with typical sensorineural hearing

loss represent a population of particular need for speaker

separation/noise reduction/dereverberation. Prior deep learn-

ing algorithm studies from our laboratory that employed

identical conditions for both hearing-impaired (HI) and NH

listeners make it possible to compare benefit across these

groups. Benefit observed for HI listeners was on average 4.5

times that observed for NH listeners, and in no study was

that factor below 1.9 (Healy et al., 2013; Healy et al., 2017;

Zhao et al., 2018; Healy et al., 2019; Healy et al., 2020). So

additional benefit is clearly anticipated in the current across-

language conditions for HI listeners having typical hearing

loss and who wear hearing aids.3

The two primary languages employed currently are

among the most different known, with large etymological,

orthographic, phonemic, and phonetic differences.

However, because current performance was comparable to

that observed within a single language, it must be consid-

ered that the learning accomplished by the neural network

transcended these various aspects of language. It is therefore

of potential interest to consider what commonalities exist

across training and test that allowed the network to accom-

plish the current task.

At the root of all acoustic commonalities in speech is

the human physiological speech-production mechanism.

There are a limited number of ways that humans can manip-

ulate their vocal folds and the resonances or constrictions of

the oral and nasal cavities. Accordingly, there is a relatively

limited array of buzzes, pops, and hisses that a human vocal

tract can produce. So although the differences between lan-

guages with independent ancestry are vast, the acoustic sig-

nals themselves are apparently not sufficiently different to

impede the deep neural network much at all. Further, the

network was trained using English-language materials with

no anticipation of the future need to generalize to an entirely

different language. Despite this, the learning that took place

appears to have been centered on attributes of human speech

that transcend language.

V. CONCLUSIONS

The ability of a deep learning based speaker separation

and dereverberation system to generalize to conditions

vastly different from those experienced during network

training was assessed. The current network was deep CASA,

which employed Dense-UNet to separate talkers in each

time frame, then a TCN to organize those frames over time

(Fig. 1). Complex time-frequency masking allowed both the

magnitude and phase of the target speech to be estimated.

The challenging listening conditions involved two concur-

rent talkers and large amounts of room reverberation, and

the network was tasked with isolating the target talker and

removing reverberation (Fig. 2).

The generalizations required across training and test

included: different utterances, TIRs, reverberation RIRs,

speech corpora/recording channels, and talkers. Further, a

perhaps ultimate generalization was introduced involving a

different language, as training was conducted using English-

language speech materials and testing was conducted using

Mandarin-language materials. These languages are the

world’s two most commonly spoken and the lack of known
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common ancestry causes them to possess extensive linguis-

tic differences.

Significant intelligibility increases resulting from algo-

rithm processing were observed for the NH listeners in

every condition, which averaged 43.5 raw percentage points

and 48.2 RAU points (Fig. 3). This across-language algo-

rithm benefit was highly comparable to within-language

benefit observed in conditions that were otherwise identical

(overall difference across studies of 6.2 raw percentage

points or 1.7 RAU points, Fig. 4). Substantially greater ben-

efit than that observed currently is expected for listeners

with hearing loss, who are especially intolerant of interfer-

ing sounds and room reverberation.

The current results suggest that a well-designed and

trained deep learning algorithm is capable of vast general-

izations across highly different acoustic conditions. Given

the talker-independent nature of the current model and the

use of two very different languages, the current algorithm

should, in theory, be able to increase intelligibility by sepa-

rating any two voices in any language.
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