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Neural Network Based Pitch Tracking
in Very Noisy Speech
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Abstract—Pitch determination is a fundamental problem in
speech processing, which has been studied for decades. However,
it is challenging to determinate pitch in strong noise because the
harmonic structure is corrupted. In this paper, we estimate pitch
using supervised learning, where the probabilistic pitch states are
directly learned from noisy speech data. We investigate two al-
ternative neural networks modeling pitch state distribution given
observations. The first one is a feedforward deep neural network
(DNN), which is trained on static frame-level acoustic features.
The second one is a recurrent deep neural network (RNN) which is
trained on sequential frame-level features and capable of learning
temporal dynamics. Both DNNs and RNNs produce accurate
probabilistic outputs of pitch states, which are then connected into
pitch contours by Viterbi decoding. Our systematic evaluation
shows that the proposed pitch tracking algorithms are robust to
different noise conditions and can even be applied to reverberant
speech. The proposed approach also significantly outperforms
other state-of-the-art pitch tracking algorithms.

Index Terms—Deep neural networks (DNNs), pitch estimation,
recurrent neural networks (RNNs), supervised learning, viterbi
decoding.

I. INTRODUCTION

P ITCH, or fundamental frequency ( ), is one of the
most important characteristics of speech signals. A pitch

tracking algorithm robust to background interference is crit-
ical to many applications, including speaker identification [1]
and speech separation [14]. Although pitch tracking has been
studied for decades, it is still challenging to estimate pitch from
speech in the presence of strong noise, where the harmonic
structure of speech is severely corrupted.
A typical pitch determination algorithm consists of two

stages. The first stage determines pitch candidates or computes
the pitch probability for each time frequency unit. To deal
with noise, previous studies either utilize signal processing to
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attenuate noise [6], [11] or employ statistical methods to model
the harmonic structure [42], [5], [22]. However, the selection of
pitch candidates is often ad hoc, and it may be less optimal to
make a hard decision for pitch candidate selection. Statistical
modeling usually relies on strong assumptions, which make the
algorithms difficult to generalize to complex acoustic environ-
ments. In the second stage, the pitch candidates or probabilities
are connected into pitch contours using dynamic programming
[5], [11] or hidden Markov models (HMMs) [25], [42].
It is sensible to formulate the pitch determination problem as

an HMM decoding problem, where a hidden state corresponds
to a pitch frequency and an observation corresponds to acoustic
features. This way, pitch determination is equivalent to finding
the optimal sequence of hidden states given an observation se-
quence. In an HMM, a key problem is to estimate the posterior
probability given the observation in each time step. In this study,
we propose to supervisedly learn the posterior probability that
a frequency bin is pitched given the observation.
A deep neural network (DNN) is a feed-forward neural net-

work with more than one hidden layer [17], which has been suc-
cessfully used in signal processing applications [32], [40]. In
automatic speech recognition, the posterior probability of each
phoneme state is modeled by a DNN. We adopt this idea for
pitch tracking, i.e., we use a DNN to model the posterior prob-
ability of each pitch state given the observation in each frame.
The DNN is expected to generate accurate probabilistic outputs
due to its powerful learning capacity.
Further, speech has prominent temporal dependency which

provides rich information for speech processing. A straight-
forward method to capture temporal information is to include
neighboring frames into an expanded feature vector. However,
this technique can only capture the temporal information within
a limited span, because the dimensionality of the feature is
proportional to the number of the frames and it is difficult to
train a model with very high dimensional features. To utilize
temporal dynamics, a more systematic approach is to directly
encode temporal information into learning machines. A recur-
rent neural network (RNN) is an extension of the feedforward
neural network, where the hidden units have delayed self-con-
nections. These recurrent connections allow the network to
encode temporal information suitable for modeling nonlinear
dynamics. Recent studies have shown promising results using
RNNs to model sequential data [30], [39]. Given that speech is
inherently a sequential signal and temporal dynamics is crucial
to pitch tracking, we consider RNNs to model the probability
distribution of pitch states.
To recapitulate, we investigate DNN and RNN based super-

vised methods for pitch tracking in very noisy speech. With
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proper training, both DNN and RNN are expected to produce
reasonably accurate probabilistic outputs for pitch states. With
the pitch state probability in each frame, a Viterbi decoding al-
gorithm will be utilized to form continuous pitch contours (see
also [42]).
This paper is organized as follows. The next section relates

our work to previous studies. Section III discusses the feature
extraction part. The details of the proposed pitch tracking ap-
proach are presented in Section IV. The experimental results
and comparisons are presented in Section V. We discuss related
issues and conclude the paper in Section VI.

II. RELATED PRIOR WORK

Recent studies on robust pitch tracking have explored either
harmonic structure in the frequency domain, periodicity in the
time domain, or the periodicity of individual frequency sub-
bands in the time-frequency domain.
In the frequency domain, harmonic structure exhibits rich in-

formation about pitch. Previous studies extract pitch from the
spectrum of speech, by assuming that each peak in the spec-
trum corresponding to a potential harmonic [35], [16]. SAFE [5]
utilizes prominent signal-to-noise ratio (SNR) peaks in speech
spectra to model the distribution of pitch using a probabilistic
framework. PEFAC [11] combines nonlinear amplitude com-
pression to attenuate narrowband noise and chooses pitch can-
didates from the filtered spectrum.
Another type of approaches utilizes the periodicity of speech

in the time domain. RAPT [37] calculates the normalized auto-
correlation function (ACF) and chooses the peaks as the pitch
candidates. The YIN [6] algorithm uses the squared difference
function based on ACF to identify pitch candidates.
An extension of time-domain approaches extracts pitch using

the periodicity of individual subbands in the time-frequency do-
main. Wu et al. [42] model pitch period statistics on top of a
channel selection mechanism and use an HMM for extracting
continuous pitch contours. Jin and Wang [25] use cross-channel
correlation to select reliable channels and derive pitch scores
from resulting summary correlogram. Huang and Lee [22] com-
pute a temporally accumulated peak spectrum to estimate pitch.
Lee and Ellis [28] extract the ACF features and train a multi-
layer perceptron (MLP) classifier on the principal components
of the ACF features for pitch detection.
Different from the above methods, we use spectral domain

features to provide a robust representation for pitch tracking
in noise. Further, our approach utilizes advanced classifiers,
namely deep neural networks and recurrent neural networks,
which generate accurate probabilistic pitch states and boost
the pitch tracking performance. In addition, we believe that a
large dataset with multiple conditions benefits robustness of the
proposed algorithms to noises and reverberation.

III. FEATURE EXTRACTION

The proposed pitch tracking algorithms first extract spectral
domain features in each frame, and then employ neural networks
to compute the posterior probability of the pitch state for each
frequency bin. With probabilistic outputs, we use Viterbi de-
coding to connect pitch states and form final pitch contours.

The features used in this study are extracted from the spec-
tral domain based on [11].We compute the log-frequency power
spectrogram and then normalize to the long-term speech spec-
trum to attenuate noises. A filter is then used to enhance the
harmonicity.
Specifically, a signal is first decomposed to the spectral do-

main using short time Fourier transformation. Let denote
the power spectral density (PSD) of the frame in the frequency
bin . The PSD in the log-frequency domain can be represented
as , where . Then, the normalized PSD can be
computed as:

(1)

where represents the long-term average speech spectrum,
and denotes the smoothed averaged spectrum of speech,
which is calculated by using a 21-point moving average filter
in the log-frequency domain and averaging over the entire sen-
tence ( s duration) in the time domain in this study. With
the normalized spectrum, we further enhance harmonicity for
pitch tracking using a filter with broadened peaks having an im-
pulse response defined as:

(2)
where is chosen so that , and controls the peak
width which is set to 1.8.
The convolution contains peaks cor-

responding to harmonics and their multiples and submultiples.
Only the spectral components in the plausible pitch frequency
range (60 to 400 Hz in this study) are selected as features. So
we have a spectral feature vector in frame :

Gonzalez and Brookes [11] proposed to extract the spectral fea-
ture for pitch tracking in noise. Ideally, the pitch, , can be
found by taking the highest peak in . In [11], several highest
peaks are chosen for each frame as pitch candidates, and a dy-
namic programming algorithm is then used to form pitch con-
tours. Although the feature vector is designed to deal with noisy
speech, rule-based pitch candidate selection may lose useful in-
formation because it simply ignores non-peak spectral informa-
tion. In our study, we treat as the extracted feature and employ
supervised learning to estimate pitch probability, i.e. to learn the
mapping from the features to the pitch frequencies. We expect
supervised learning to yield better results.
Since neighboring frames contain useful information for

pitch tracking, we incorporate the neighboring frames into the
feature vector. Therefore, the final frame-level feature vector is

where is set to 2 in our study.

IV. LEARNING PITCH STATE DISTRIBUTION

Instead of selecting pitch candidates, we employ supervised
training approach to learn the posterior probability distribution



2160 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 22, NO. 12, DECEMBER 2014

given the features in each frame. Neural networks have recently
achieved large progress in speech processing, and we propose
to use two kinds of neural networks to model the probability
distribution.

A. DNN Based Pitch State Estimation

Our first method is to use a feedforward DNN. To simplify
the computation, we quantize the plausible pitch frequency
range into frequency bins, corresponding to pitch states

. We use 24 bins per octave in a logarithmic scale
to quantize the plausible pitch frequency range (60 to 400 Hz)
into 67 bins, i.e., the quantized frequency of the th bin is

Hz. In addition, we incorporate a nonpitch state
corresponding to an unvoiced speech or speech-free state.

So there are totally 68 states [28].
To train the DNN, each training sample is the feature vector
in the time frame (and its neighboring frames), and the

target is an -dimensional vector of the pitch states ,
whose element is 1 if the groundtruth pitch falls into the cor-
responding frequency bin, and 0 otherwise.
In order to learn the probabilistic output, we use cross-entropy

as the objective function.

(3)

where is the desired output and is the
actual output of the th neuron in the output layer. denotes
the parameters we need to learn. The activation function in the
hidden layers is the sigmoid function and the output layer uses
the softmax function for probabilistic outputs.
The DNN in this study includes three hidden layers with 1600

sigmoid units in each layer, and a softmax output layer whose
size is set to the number of the pitch states, i.e., 68 output units.
The number of hidden layers and the hidden units are chosen
from cross validation (see also Section V-B). We use backprop-
agation with mini-batch stochastic gradient descent to train the
DNN model, and the actual cost in each mini-batch is com-
puted from the summation over multiple training samples using
Eq. (3).
The trained DNN produces the posterior probability of each

pitch state : .

B. RNN Based Pitch State Estimation

The DNN based method utilizes frame-level features to com-
pute the posterior probabilities of pitch states. Although it uti-
lizes neighboring frames to incorporate temporal information,
it is not able to capture long-term temporal dynamics due to the
limit of feature dimensionality. As temporal continuity and vari-
ation are important characteristics of pitch, we explore a more
intrinsic method to capture temporal context information.
An RNN is a natural extension of a feedforward network. In

an RNN, the depth comes from not only multiple hidden layers
but also unfolding layers through time. An RNN is capable of
capturing the long-term dependencies through connections be-
tween hidden layers. These attributes have inspired us to use
RNNs to model pitch dynamics. One of the key challenges for

using RNNs is that training with long-term dependencies can
be quite difficult and some new approaches have been proposed
to address the problem [36]. In our study, we use a classic RNN
[8] and learn the model with truncated backpropagation through
time (BPTT) [34], [41].
The RNN has hidden units with delayed connections to them-

selves, and the output of the RNN at the
time step can be represented as:

(4)

where and are the sigmoid function and the softmax func-
tion respectively. denotes the weights matrix from the

th hidden layer to the th hidden layer, and the numbers of
the rows and the columns are equal to the number of the units in
the th layer and the th layer, respectively. is a column
vector corresponding to the activations of the th hidden layer.

denotes the self-connections in the th layer. Note that,
since each unit only has a recurrent connection to itself, is
a diagonal matrix. For a non-recurrent hidden layer, .

specifies the weight matrix between the last hidden layer
and the output layer, and the weight matrix between the
input layer and the first hidden layer. For a recurrent hidden
layer, the state of a neuron is influenced by not only the external
input to the network but also the network activation from the
previous time steps.
With recursion over time on hidden units, an RNN can be

unfolded through time and can be viewed as a very deep net-
work with layers, where is the number of time steps. The
structure of the RNN in our study includes two hidden layers.
Each hidden layer has 256 hidden units and only the units in the
second hidden layer have self-connections. The input and the
output layers are the same as in the DNN.
To use the truncated BPTT to train the RNN, each training

sentence is truncated into multiple segments with a fixed length
of frames. Each segment is treated as a sequential training
sample and fed into the neural network. To train the network, the
RNN is unfolded for time steps, and the backpropagated error

for a neuron in the recurrent layer is computed from both
the next layer and the next time step . Although
the truncated BPTT cannot capture the temporal information
exceeding time steps, the training is relatively easy. In our
experiment, we set and a longer does not significantly
improve the performance.
In the test phase, the output of the RNN is computed sequen-

tially, and the output of the RNN in the th frame is the pos-
terior probability , where the observation is a
sequence from the past to the current frame instead of the fea-
ture in the current frame.

C. Viterbi Decoding

The DNN or the RNN produces the posterior probability dis-
tribution in each time frame. We then use Viterbi decoding [9],
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Fig. 1. (Color online) Neural network based pitch tracking. Noisy speech is a female utterance from the TIMIT corpus “Readiness exercises are almost con-
tinuous”, mixed with factory noise in dB SNR. (a) Spectrogram of clean speech from 0 to 2000 Hz. (b) Spectrogram of noisy speech from 0 to 2000 Hz.
(c) Groundtruth pitch states. In each time frame, the probability of a pitch state is 1 if it corresponds to the groundtruth pitch and 0 otherwise. (d) Probabilistic
outputs from the DNN. (e) Probabilistic outputs from the RNN. (f) DNN based pitch contours. The circles denote the generated pitches, and solid lines denote the
groundtruth pitch. (g) RNN based pitch contours.

[42] to connect those pitch states according to neural network
outputs.
The Viterbi algorithm utilizes the likelihood and the transition

probability to calculate the cost in order to generate an optimal
sequence. The likelihood in each frame is proportional
to the posterior probability divided by the prior :

(5)

where is the output of a neural network. The prior
and the transition matrix are directly computed from

the training data. Note that, since we train the DNN with both
pitched and unpitched frames, the prior of the unpitched state

is usually much larger than that of each individual
pitched state, resulting in the relatively small likelihood of the
unpitched state, and the Viterbi algorithm may bias towards
pitched states. Hence, we introduce a parameter
multiplying the prior of the unpitched state to balance
the ratio between the pitched and unpitched states, which is
chosen from a development set. We should also mention that

the output of the RNN is the posterior probability given an
observation of a sequence rather than a single frame, which
does not exactly satisfy the assumption of the HMM and the
Viterbi algorithm, but we ignore this for simplicity.
The Viterbi algorithm outputs a sequence of pitch states for

a sentence. We convert the sequence of pitch states to the se-
quence of frequencies and then use a 3-point moving average
for smoothing to generate final pitch contours.
Fig. 1 illustrates pitch tracking results using the proposed

methods. The example is a female utterance from the TIMIT
corpus [43], “Readiness exercises are almost continuous”,
mixed with factory noise in dB SNR. Fig. 1(a) and (b) show
the spectrograms of clean speech and noisy speech from 0 to
2000 Hz (for better clarity) respectively. Comparing Fig. 1(b)
with Fig. 1(a), the harmonics are severely corrupted by noise,
leading to a major difficulty in pitch tracking. Fig. 1(c) shows
the groundtruth pitch states extracted from the clean speech
using Praat [4]. As shown in the figure, Praat even makes a
few doubling or halving pitch errors at around 160 ms and
280 ms, but since these errors are not serious, we do not correct
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them and still treat them as the groundtruth. The probabilistic
outputs of the DNN and the RNN are shown in Figs. 1(d) and
(e), respectively. Comparing to Fig. 1(c), the probabilities of
the correct pitch states dominate in most time frames in both
Figs. 1(d) and (e), demonstrating that the neural networks
successfully predict pitch states from noisy speech. In some
time frames (e.g., 100 ms to 120 ms), the RNN yields better
probabilistic outputs than the DNN, because the RNN is able to
better capture the temporal context and its outputs are smoother
than those of the DNN. Figs. 1(f) and Figs. (g) show pitch
contours after Viterbi decoding. In the figures, both the DNN
and the RNN produce accurate pitch contours. A few errors
occur from 260 ms to 280 ms due to severe interference.

V. EXPERIMENTAL RESULTS

A. Corpus

We evaluate the performance for the proposed approach
using the TIMIT database [43], [25]. The training set contains
250 utterances including 50 male speakers and 50 female
speakers. The noises used in the training phase include babble
noise from [19], factory noise, and high frequency radio noise
from NOISEX-92 [38]. Each utterance is mixed with every
noise type in three SNR levels: 5, 0, and 5 dB, therefore the
training set includes noisy sentences.
The test set contains 50 utterances including 25 male speakers
and 25 female speakers. All utterances and speakers are not
seen in the training set. The noise types used in the test set
include the three training noise types and six new noise types:
cocktail-party noise, crowd playground noise, crowd music,
traffic noise, wind noise, and rain noise [20]. We point out that
although the three training noises are included in the test set,
the noise recordings are cut from different segments. Each test
utterance is mixed with each noise in six SNR levels of 10,
5, 0, 5, 10, and 20 dB. We also test pitch tracking for clean

speech. The groundtruth pitch is extracted from clean speech
using Praat [4]. In addition, we test the proposed approach
using 20 utterances in the FDA evaluation database [2] where
the groundtruth pitch contours were derived from laryngograph
data.
We evaluate pitch tracking results in terms of two measure-

ments: detection rate (DR) [21] and voicing decision error
(VDE) [33]. DR is evaluated on voiced frames, where a pitch
estimate is considered correct if the deviation of the estimated

is within 5% of the groundtruth , and VDE indicates the
percentage of frames are misclassified in terms of voicing:

(6)

Here, denotes the number of frames with pitch frequency
deviation smaller 5% of the groundtruth frequency.
and denote the number of frames misclassified as un-
pitched and pitched, respectively. and are the number of
pitched frames in groundtruth and total frames in a sentence,
respectively.

Fig. 2. Pitch detection rates of DNNs with different sizes of training set.

Fig. 3. Pitch detection rates of DNNs with different features. “Log” denotes
PSD in the log-frequency domain, “ ” denotes the normalized
PSD, and “ ” denotes the filtered normalized PSD.

B. Parameter Selection

Since the proposed neural networks involve several parame-
ters, we describe how to choose their values in this subsection.
The size of training set influences on the performance, and we
train four DNN models using different training sets with 450,
1350, 2250, and 3600 noisy sentences, corresponding to 50,
125, 250, 400 clean utterances. We compare the pitch tracking
results in Fig. 2. The training set with 450 noisy sentences
yields the lowest performance, while the other three produce
rather comparable performances. In general, the performance
increases with the increase of training set size, and the im-
provement becomes small when the size of training set reaches
1350 sentences.
Another important factor concerns features. In this study, we

first compute the PSD in the log-frequency domain, and
then generate the normalized PSD . The normalized spec-
tral features are then convolved with a filter with a broadened
impulse response, resulting the final features used in our study

. To reveal feature effects, we train three DNN models
using different features. As shown in Fig. 3, the filtered normal-
ized PSD achieves the best performance, and the normalized
PSD and the original PSD achieve comparable performance.
The average detection rates are boosted by 5.0% by using the
filtered normalized PSD.
We have conducted experiments for both DNN and RNN

using different numbers of hidden layers. As shown in Fig. 4(a),
the DNN with three hidden layers performs better than that with
one hidden layer by 2.6% in detection rate and that with two
hidden layers by 1.3%. As shown in Fig. 4(b), the RNN with
two hidden layers produces comparable performance to that
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Fig. 4. Pitch detection rates with different numbers of hidden layers for (a) DNNs, and (b) RNNs.

Fig. 5. Pitch detection rate comparisons for (a) babble noise, (b) factory noise, (c) high frequency radio noise.

with three hidden layers, but outperforms that with one hidden
layer by 3.4%. We have also evaluated different numbers of
hidden units, learning rates, and the numbers of neighboring
frames. The parameter values used in this study are chosen using
cross-validation from a development set.

C. Results and Comparisons

We compare our approach with four pitch tracking algo-
rithms. PEFAC [11] extracts normalized spectral features to
deal with strong noise and produces competitive pitch tracking
results. The multipitch tracking algorithm of Jin and Wang
[25] computes the autocorrelation function to select reliable
channels and then utilizes an HMM to generate pitch contours
(see also [42]). This algorithm is designed to handle reverberant
noisy conditions. The third algorithm was proposed by Huang
and Lee [22]. They compute a temporally accumulated peak
spectrum as features and apply sparse reconstruction to esti-
mate pitch in noise. The fourth algorithm was proposed by Lee
and Ellis [28]. They extract subband autocorrelation and apply
principal component analysis to reduce dimensionality. They
train an MLP to estimate pitch. Note that, like ours the latter
two algorithms require training and we use the same corpus
(see Section V-A) to train these models for comparison.
Fig. 5 shows the detection rates for three training noises

across a wide range of SNRs from 10 dB to clean (shown as
“Inf” dB). The detection rates gradually increase with the in-
crease of SNR. The DNN and the RNN based methods achieve
substantially higher detection rates than others, especially in
very low SNR conditions. The results of the unsupervised

PEFAC algorithm are also notable, particularly for babble
noise. Although we do not train the models under the SNR of
10 dB, the proposed approach still outperforms the others

in this very low SNR condition. For the untrained high SNR
conditions, the proposed approach also achieves good perfor-
mance, although the relative advantage to others is not as large
as in low SNRs. The proposed approach performs more than
5% better than all others on average and the advantage is more
than 10% when the SNR is below 5 dB. The RNN performs
slightly better than the DNN when the SNRs are greater than
5 dB.
Fig. 6 shows the detection rates for six new noises that are not

seen in the training phase. Similar to Fig. 5, this figure shows
that the proposed approach yields the best performance in these
noise conditions, demonstrating that our supervised learning al-
gorithms generalize well to different noisy environments. The
average detection rates for the DNN and the RNN are 75% and
76% respectively, while the best comparison result is 72% for
Lee and Ellis.
It is desirable for a pitch tracking algorithm to achieve high

detection rates and low voicing detection errors at the same
time. Since Huang and Lee’s algorithm does not produce a
pitched/unpitched decision, we only compare our approach
with PEFAC, Jin and Wang, and Lee and Ellis. Fig. 7 and Fig. 8
show the VDE results for the seen and unseen noises, respec-
tively. As shown in the figures, our algorithms produce lower
voicing detection errors than others. On average, the VDEs of
the DNN and the RNN based methods are both around 16%
across all SNRs and noises, and the VDEs of PEFAC, Jin and
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Fig. 6. Pitch detection rate comparisons for six new noises: (a) cocktail-party noise, (b) crowd playground noise, (c) crowd music, (d) traffic noise, (e) wind noise,
(f) rain noise.

Fig. 7. Voicing detection error comparisons for (a) babble noise, (b) factory noise, (c) high frequency radio noise.

Wang, and Lee and Ellis are 20%, 25%, and 22%, respectively.
The results indicate the superiority of the proposed approach
on both pitch and voicing detection.
In the above experiments, the groundtruth pitch is extracted

from clean speech using Praat, which is prone to some pitch de-
tection errors. We now use the FDA database [2] to evaluate our
approach without any retraining, where the groundtruth pitch
is derived from laryngograph data. Fig. 9 shows the average
pitch tracking results over three training noises and four dif-
ferent SNRs. The average detection rates for the DNN and the
RNN are 51% and 50% respectively, which are higher than the
others by around 6%. These and voicing detection results are
consistent with those using Praat detected pitch as groundtruth.
In Eq. (6), the denominator of the detection rate is the number

of all pitched frames in the groundtruth, so it counts false rejects
as errors. Other studies [42], [33] used gross pitch error (GPE) to
evaluate pitch deviation over 20% in the frames where both the
groundtruth and a pitch estimator produce a pitch. We have also

used GPE to compare the performances of different approaches
in six SNR conditions. The DNN and the RNN achieve GPEs
of 6.6% and 5.7%, respectively. Lee and Ellis also achieve GPE
of 5.7%. All others have GPEs higher than 9%.
VDE aggregates false rejects and false alarms together.

Specifically, false reject is the percent of unpitched frames in
a reference sentence wrongly classified by an estimator, and
false alarm is the percent of pitched frames wrongly classified.
Looking at these two kinds of error separately, the DNN and
the RNN achieve low false reject rates in low SNR levels, that
is, they can correctly detect pitched frames even when noise
is very strong. On average, the false reject rates for the DNN
and the RNN are 12% and 10% respectively, and Jin and Wang
achieve the next best at 15%. The false alarm rates for all
methods are comparable, below 7% under most conditions.
We also conduct a computational complexity comparison

among different approaches. We test 90 sentences with the total
length of 270 s on a machine with Intel Xeon x5650 CPU, 8 GB
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Fig. 8. Voicing detection error comparisons for six new noises: (a) cocktail-party noise, (b) crowd playground noise, (c) crowd music, (d) traffic noise, (e) wind
noise, (f) rain noise.

Fig. 9. Pitch tracking results for the FDA database. (a) Pitch detection rate.
(b) Voicing detection error.

memory and NVIDIA M2070 GPU. Table I shows the average
processing time per one second signal. Most approaches take
less than 2 seconds, except for Jin and Wang which takes
significantly more time.

TABLE I
RUNNING TIME COMPARISON FOR DIFFERENT APPROACHES

D. Extension to Reverberant Conditions

Reverberation smears the characteristics of harmonic struc-
ture and thus makes the task of pitch tracking more difficult. We
apply the proposed approach to reverberant and noisy speech
to evaluate the performance. In voiced speech, the fundamental
frequency is defined as the rate of vibration of the vocal folds
[26]. However, in reverberant conditions, the received speech
is the filtered aggregated signal and the actual periodicity of
the reverberant speech does not necessarily match its anechoic
version. Because some speech processing applications would
prefer a pitch estimate consistent with the harmonic structure of
the reverberant speech [24], we consider the pitch of the rever-
berant speech as the groundtruth (see [25]).
Because the groundtruth of reverberant speech is different

from that of anechoic speech, we need to retrain the models in
reverberant conditions. To simulate room acoustics, we generate
a simulated room corresponding to a specific reverberation time

[13] and randomly create a set of room impulse responses
(RIRs) under this condition. To train the system, we gen-
erate three reverberation times: 0.3, 0.6, and 0.9 s. The training
set includes 250 utterances and three noises, both of which are
the same as in the previous subsection. For each condition,
an utterance and a noise signal are convolved with two different
RIRs respectively, corresponding to different source locations,
and the two reverberant signals are then mixed at 0 dB SNR.
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Fig. 10. Pitch detection rates for reverberant noisy speech: (a) babble noise, (b) factory noise, (c) high frequency radio noise.

Fig. 11. Voicing detection errors for reverberant noisy speech: (a) babble noise, (b) factory noise, (c) high frequency radio noise.

Therefore, there are reverberant sentences
in the training set. The test set includes 450 sentences, con-
sisting of 50 utterances mixed with the three training noises in
three s. Although the three s are used in the training set,
the RIRs in the test set are different from those in the training
set. The groundtruth pitch is extracted from reverberant and
noise-free utterances using Praat.
We compare our approachwith PEFAC and Jin andWang, be-

cause both have been shown to perform well in reverberation.
In Fig. 10 and Fig. 11, we present the DR and the VDE results
for reverberant and noisy speech with three s and anechoic
speech. As shown in the figures, although the performance for
noisy reverberant speech is lower than that in the anechoic con-
dition, the increase of the reverberation time starting from 0.3 s
does not lead to significant performance degradation.We should
point out that the anechoic condition is an unseen condition in
this experiment, because the retrained model only uses rever-
berant speech. The fact that these results are broadly comparable
to those in Fig. 5 and Fig. 7 at 0 dB indicates insensitivity of our
supervised approach to reverberation. The proposed approach
performs substantially better than PEFAC and Jin and Wang in
terms of both detection rates and voicing detection errors. Here,
the RNN outperforms the DNN except for the high condi-
tions in the babble noise.
The above experiments use Praat to extract pitch from re-

verberant, noise-free speech as the groundtruth. As done in the
previous subsection, we evaluate the approaches using another
pitch evaluation corpus [23] where reference pitch contours are
labeled from reverberant speech by an interactive pitch determi-
nation algorithm [31], combining automatic pitch determination
and human intervention. The original sentences in the corpus are

randomly selected from the TIMIT corpus. Each anechoic sen-
tence is convolved with RIRs in s and s,
respectively (see [25] for details). We generate reverberant and
noisy signals using babble, factory, and high frequency radio
noises at 0 dB SNR, and obtain pitch tracking results without
retraining.
Fig. 12 gives the pitch and voicing detection results of our

approach and those of the comparison methods. As shown in
the figure, both the DNN and the RNN based algorithms lead
to significantly higher detection rates for all three noises. On
average, the detection rates for the DNN and the RNN are
66.4% and 66.2%, respectively; while those of the others are all
below 57%. In terms of voicing detection errors, the proposed
approach achieves the lowest error rate on average. Broadly
speaking, these results show similar trends to those in Figs. 10
and 11, and hence suggest that it is reasonable to use Praat to
generate groundtruth pitch for training.

VI. DISCUSSION

In this study, we use the supervised learning approach to learn
the probability distribution of pitch states. Although supervised
learning typically has a generalization issue, our system appears
to exhibit very promising results across multiple unseen con-
ditions, including different speakers, SNRs, noises, and room
impulse responses. Some of previous supervised learning based
pitch tracking algorithms perform well on trained conditions but
need to be retrained in a new acoustic environment [5], [22]. We
incorporate multiple conditions into a larger dataset and train a
DNN or RNN model under different conditions, which poten-
tially benefits the generalization ability of the system (see also
[40]). The success of this multiple condition training is probably
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Fig. 12. Pitch tracking results on an interactively labeled pitch corpus: (a) de-
tection rate, (b) voicing detection error.

due to extracted robust features as well as the learning capacity
of the neural networks. We have tried to train single condition
models for each specific acoustic environment, and found that
single-condition training performs only slightly better than our
multi-conditions training.
Our acoustic features for pitch estimation are computed from

the filtered normalized log-frequency power spectrogram. The
features use signal processing techniques to attenuate interfer-
ence and facilitate subsequent neural network training. We have
attempted to add an ACF based feature [28], but it only yields a
slight improvement. In principle, the DNN is capable of learning
high-level representation from raw data [17], [3] and recent ad-
vances in speech recognition [29], [7] also demonstrate that a
DNN directly trained on the filter-bank features achieves better
performance than trained on mel-frequency cepstral coefficient
(MFCC) features. This suggests that, instead of using signal pro-
cessing to generate features, we may consider raw features for
neural network training in the future.
We have trained both DNN and RNN for pitch state esti-

mation. Since post-processing can correct some pitch estima-
tion errors from neural network outputs, the RNN does not pro-
duce significantly better results than the DNN in some condi-
tions. However, the RNN intrinsically captures temporal dy-
namics, making it well suited for pitch tracking. As an example,
Figs. 1(d) and (e) show the difference in pitch state estimation
by the DNN and the RNN, and we can see that the output of the
RNN is more smooth and continuous. In this study, we use the
truncated BPTT to train the RNN and the longest time step is set
to . A 15-frame truncation is not a long segment for pitch
tracking, as the pitch contours in our study usually have 30 to 50
frames.We have tried to use 20-frame BPTT to train the models,
but the results are similar, probably because training has reached

a saturation point on our training dataset. Another strategy to
train the RNN is to use BPTT on each sequence rather than a
fixed-length segment. With sufficient training data the RNN is
expected to encode longer dynamics, which may lead to per-
formance improvement. In addition, we use a simple RNN in
our study, and it is worth exploring other RNNs in future work,
for example, long short term memory (LSTM) [18], which has
demonstrated better performance than the simple RNN in some
applications [12].
With neural network outputs, we use the Viterbi algorithm to

generate pitch contours in the framework of HMMs. In other
words, we assume that 1) the observation only depends on the
hidden state in the current time step, and 2) the hidden state
in the current time step only depends on the previous hidden
state. To relax these assumptions, some studies use conditional
random fields (CRFs) to model the sequence [27], [10]. We have
attempted to use the CRF to generate the best sequence, but the
performance is only slightly better than Viterbi decoding. It may
be because the neural networks yield adequate information and a
simple post-processing technique can achieve good results. Due
to its complexity, we do not incorporate the CRF in our system,
but it will be interesting to explore better sequence models for
pitch tracking.
To conclude, we have proposed DNN and RNN to estimate

the posterior probabilities of pitch states for pitch tracking in
highly noisy speech. The supervised learning based approach
produces strong pitch tracking results in both seen and unseen
noisy conditions. In addition, the proposed approach can be ex-
tended to reverberant conditions.
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