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Towards Generalizing Classification
Based Speech Separation

Kun Han, Student Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—Monaural speech separation is a well-recognized chal-
lenge. Recent studies utilize supervised classificationmethods to es-
timate the ideal binarymask (IBM) to address the problem. In a su-
pervised learning framework, the issue of generalization to condi-
tions different from those in training is very important. This paper
presents methods that require only a small training corpus and can
generalize to unseen conditions. The system utilizes support vector
machines to learn classification cues and then employs a rethresh-
olding technique to estimate the IBM. A distribution fittingmethod
is used to generalize to unseen signal-to-noise ratio conditions and
voice activity detection based adaptation is used to generalize to un-
seen noise conditions. Systematic evaluation and comparison show
that the proposed approach produces high quality IBM estimates
under unseen conditions.

Index Terms—Generalization, rethresholding, speech separa-
tion, support vector machine (SVM).

I. INTRODUCTION

S PEECH communication usually takes place in complex
acoustic environments. The human auditory system is

adept in separating target sound from background interference.
Despite decades of effort, monaural speech separation remains
one of the most difficult problems in speech processing. Various
approaches have been proposed for monaural speech separa-
tion. Speech enhancement approaches [8], [11], [16] utilize
the statistical properties of the signal to enhance speech that
has been degraded by additive non-speech noise. Model based
approaches [25], [26], [31], [43] use trained models to capture
the characteristics of individual signals for separation. On the
other hand, computational auditory scene analysis (CASA) [38]
aims to separate a sound mixture based on perceptual principles
[5].
For sound separation, the ideal binary mask (IBM) has been

recently proposed as a main goal of CASA [37]. The IBM can
be constructed from premixed target and interference. Specif-
ically, with a time-frequency (T-F) representation of a sound
mixture, the IBM is a binary T-F matrix where 1 indicates that
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the signal-to-noise ratio (SNR) within the corresponding T-F
unit is greater than a local SNR criterion (LC) and 0 otherwise.
In this work, we are concerned with monaural speech separation
from nonspeech interference and we use 5 dB as LC in all ex-
periments. A series of perceptual studies have shown that IBM
separation produces large speech intelligibility improvements
in noise for both normal-hearing and hearing-impaired listeners
[1], [6], [21], [39].
Adopting the IBM as the computational goal, we can for-

mulate sound separation as binary classification. Roman et al.
[29] proposed an early supervised classification method for
IBM estimation although the method used binaural features
for speech separation. Several studies employ binary classi-
fication for IBM estimation in the monaural domain. Seltzer
et al. [32] treated the identification of noise components in a
spectrogram as a Bayesian classification problem for robust
automatic speech recognition. Weiss and Ellis [42] utilized
relevant vector machines to classify T-F units. Jin and Wang
[17] trained multilayer perceptrons (MLP) to classify T-F units
using pitch-based features. Their system obtains good sepa-
ration results in reverberant conditions. Kim et al. [20] used
Gaussian mixture models (GMM) to learn the distribution of
amplitude modulation spectrum (AMS) features for target-dom-
inant and interference-dominant units and then classified T-F
units by Bayesian classification. Their classifier led to speech
intelligibility improvements for normal-hearing listeners. Kim
and Loizou [19] further proposed an incremental training
procedure to improve speech intelligibility, which starts from a
small initial model and updates the model parameters as more
data become available. In [10], we proposed a support vector
machine (SVM) based system and utilized both pitch-based
and AMS features to classify T-F units. Comparisons show that
the SVM system yields more accurate classification than the
GMM classifier by Kim et al.
For supervised learning to be effective, the distribution of the

training set needs to match that of the test set. For speech sep-
aration, if input SNRs or background noises in test mixtures
are not seen in the training set, the trained classifier will un-
likely achieve good classification results. Previous systems have
avoided this issue by testing on SNR and noise conditions sim-
ilar to those in training. Hence, it is important to investigate the
generalization capability of such classifiers.
In this study, we propose an approach to estimate the IBM

under unseen SNR or noise conditions. The proposed approach
consists of an SVM training stage followed by a rethresholding
step. SVM is a state-of-the-art learning machine which is
widely used for classification problems [36]. SVM maximizes
the margin of separation between different classes of training
data, and as a result it shows good generalization. We utilize
SVMs to produce initial classification boundaries and then
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Fig. 1. Diagram of the proposed system.

derive new thresholds to classify T-F units in unseen acoustic
environments. The new thresholds are adaptively computed
based on the characteristics of test mixtures, and they are
expected to generalize to new SNR or noise conditions. For
unseen SNRs, by analyzing statistical properties, we determine
the new thresholds by fitting the distribution of SVM outputs.
For unseen noises, a voice activity detector is incorporated to
construct a development set and then derive the thresholds.
Although our study treats the separation problem as binary

masking, soft masking is also a common approach to separa-
tion (e.g. [41], [16]). The paper is organized as follows. In the
next section, we present an overview of the proposed system.
Sections III and IV describe how to generalize the SVM system
to unseen SNR and noise conditions, respectively. Systematic
evaluation and comparison are given in Section V. We discuss
related issues and conclude the paper in Section VI.

II. SYSTEM OVERVIEW

Fig. 1 shows the diagram of the proposed system, which con-
sists of a training phase and a test phase. In the training phase,
the speech and the noise are used to create the IBM, which pro-
vides the desired output for training. The features in each T-F
unit are extracted from the mixture and then used to train an
SVM model in each frequency channel. In the test phase, we
first use the trained SVM to initially classify T-F units, and then
utilize a rethresholding technique to generalize the system under
different test conditions. Auditory segmentation is used to im-
prove the estimated mask and separated speech is finally resyn-
thesized by using the estimated IBM.

A. Feature Extraction

An input mixture is first fed into a 64-channel gam-
matone filterbank whose center frequencies are distributed
from 50 Hz to 8000 Hz [38]. This filterbank is derived from
psychophysical studies of auditory periphery and is a standard
model of cochlear filtering [27]. In each channel, the output is
windowed into 20-ms time frames with 10-ms frame shift. This
processing decomposes the input signal into a two-dimensional
T-F representation called a cochleagram [38]. We use to
denote a T-F unit in the cochleagram, which corresponds to
frequency channel and time frame .
Given the cochleagram of the mixture, we extract acoustic

features from each T-F unit. In [10], a combination of pitch-
based features and amplitude modulation spectrum (AMS) fea-
tures [35] is used to effectively classify T-F units under the noise
matched condition. For SNR generalization, since we only con-
sider the matched noises, it is reasonable to adopt the same com-
bined features into our system.

For noise generalization, AMS features may not be an ap-
propriate choice, because they do not show good performance
under unseen noise conditions [10], [40]. According to a re-
cent comparison of features [40], we use relative spectral trans-
form-perceptual linear prediction (RASTA-PLP) features [12]
to perform classification under unseen noise. With the pitch
based features, the combined features are expected to perform
good discriminative capacity on various noises.
Delta features are found to be helpful in speech separation

as they encode feature variations [10], [20]. We concatenate the
original features with their time delta features and frequency
delta features into a combined feature vector for classification.
In Section V, we discuss feature extraction in details.

B. SVM and Rethresholding

With the extracted features, we use SVM to classify T-F
units to target-dominant or interference-dominant classes.
We use probabilistic SVMs to model the posterior proba-
bility that a T-F unit label is assigned 1 given the feature
vector, denoted as . A separate SVM is trained
for each frequency channel because the characteristics of the
speech signal in different channels can be very different. In
the training phase, we use the radial basis function kernel,

and the parameters are
chosen by 5-fold cross-validation. To obtain a probabilistic
representation, we use a sigmoid function to map an SVM
decision value to a number between 0 and 1, which is then
interpreted as the posterior probability of the target [28]. With
this compact representation, one can derive new thresholds
within [0,1] instead of . The SVM library LIBSVM
[7] is used in our experiments.
In the test phase, the decision value for each T-F unit is cal-

culated from the discriminant function as follow:

(1)

where SV denotes the set of support vector indices in training
data and is the label corresponding to . is a Lagrange
multiplier and is the bias, both of which can be determined
in the training phase. The decision value is a real number
between , which is then mapped to a number within
[0, 1] representing the posterior probability of the unit being
target-dominant [28]:

(2)

where the parameters and denote the shape of the sigmoid
function, which are fixed in the training phase. Note that (2) is a
monotonic bijective function but the original threshold
does not necessarily correspond to .
Generally speaking, standard probabilistic SVMs use
as the threshold to perform classification. In this study we

train with a fixed input SNR or using a small number of noise
types and wish to generalize to a variety of unseen conditions.
In this case, we do not expect the trained SVMs to produce good
classification results in unseen conditions.
In [10], we proposed a rethresholding technique to improve

SVM classification results, which has been successfully used for
text classification [4], [34]. One reason for the use of rethresh-
olding is that there exists a mismatch between the training set
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and the test set. Under unmatched conditions, the optimal hyper-
plane for the training set likely deviates from the optimal hyper-
plane for the test set. In this study, we propose to use rethresh-
olding to adjust trained hyperplanes in order to generalize to
unseen SNR or noise conditions.
Specifically, we first need to find a channel-specific threshold
that maximizes the classification accuracy in channel , and

then use the new threshold to binarize :

if
otherwise

(3)

Our experiments show that with properly chosen thresholds,
the system can significantly improve classification. For SNR
generalization, the system is trained on 0 dB. Therefore, the
key problem is how to determine the new threshold for each
channel . In [10], a small validation set is used to determine
the thresholds. But this strategy cannot be used in this study,
because the statistical properties of the test set are very different
from those of the training set and unknown. Thus, we need to
develop new strategies for rethresholding under unseen SNR or
noise conditions, which are described in detail in Section III and
Section IV, respectively.

C. Auditory Segmentation

The rethresholdedmask gives a good estimate of the IBM, but
it still misses some target-dominant units and contains some in-
terference-dominant units. To further improve the rethresholded
mask we utilize auditory segmentation which takes into consid-
eration contextual information beyond individual T-F units. The
goal of auditory segmentation is to form contiguous T-F seg-
ments and each segment is supposed to primarily originate from
the same sound source [38]. In this study, we adopt the same seg-
mentation method as in [10], [17]. Specifically, for voiced inter-
vals, we compute cross-channel correlation of filter response in
low frequency channels (below 2000Hz) and cross-channel cor-
relation of envelope response in high frequency channels (above
2000 Hz).
To perform segmentation, only those units with sufficiently

high ( 0.95) cross-channel or envelope cross-channel corre-
lation are selected. Selected neighboring units are iteratively
merged into segments across frequency channels and time
frames. For unvoiced intervals, segments are formed by
matching pairs of onset and offset fronts and a multiscale
analysis is applied to integrate segments at several scales [15].
With the rethresholded mask, we label all units in a segment as
the target if the energy included in the target-dominant units is
greater than the energy included in the interference-dominant
units. Then, we treat all the segments shorter than 50 ms as the
interference and obtain the final estimated IBM.
To summarize, given a noisy speech signal, we first extract

features in the T-F domain and then use SVM to produce ini-
tial classification for each T-F unit. Then, we use rethretholding
to adapt SVM output under different conditions. Finally, audi-
tory segmentation is used to improve the estimated IBM. The
following sections describe how to apply rethresholding under
different conditions.

III. GENERALIZATION TO DIFFERENT INPUT SNRS

For SNR generalization, the training set contains mixtures at
a single input SNR and the system will be tested on mixtures

Fig. 2. Histograms of the SVM outputs in the 18th channel with different input
SNRs. The solid curve denotes the half-Cauchy distribution used to fit the SVM
outputs. A vertical line indicates the optimal threshold and a dashed vertical line
the estimated optimal threshold by using distribution fitting.

at different input SNRs. In this case, if we directly use
as the threshold, the system does not generalize well to unseen
SNRs. We refer to the threshold that maximizes some classi-
fication accuracy as the optimal threshold. We observe that in
unmatched SNR conditions, the use of the optimal threshold in
each channel can substantially improve the classification result
relative to the default threshold of 0.5. In other words, if we can
find thresholds close to the optimal one, the system is expected
to generalize well under unseen SNR conditions.
Furthermore, we observe that, although the optimal threshold

varies in different SNR conditions, SVM outputs have similar
distribution shapes and the optimal thresholds are located at
similar positions relative to the distribution shapes. As a typ-
ical example, Fig. 2 shows the histograms of the SVM out-
puts in the 18th channel for a female utterance, “A man in a
blue sweater sat at the desk,” from the IEEE corpus [30] mixed
with speech-shaped noise. The system is trained on 100 IEEE
sentences mixed with speech-shaped noise, factory noise and
babble noise at 0 dB and SVM outputs are generated at 10,
5, 0, 5 and 10 dB input SNRs. The figure shows that there

exists a peak on the left side of each histogram.
Also, the SVM ouputs on the left side for different SNRs have
similar distribution shapes which gradually become sharper as
the input SNR increases. Further, the optimal threshold shown
as the solid vertical line in each histogram is increasingly close
to the peak as the distribution becomes sharper. If we only
consider the SVM outputs on the left side of the histogram, the
optimal threshold always occurs at the tail end of the distribu-
tion under each input SNR condition. This motivates us to use
the same distribution function to fit SVM outputs at different
SNRs with different parameter values.
One can perform distribution fitting in two ways: fit all SVM

outputs less than 0.6 or SVM outputs between and 0.6. We
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Fig. 3. Kolmogorov-Smirnov statistics for three distributions.

have explored several reasonable distributions as the candidates
to fit SVM outputs and use the Kolmogorov-Smirnov (K-S) sta-
tistics [3] to test the goodness of fit. Three distributions are
tested: the generalized extreme value distribution (GEV) is used
to fit all SVM outputs less than 0.6, whereas the half-Cauchy
and the half-Laplace distributions are used to fit the SVM out-
puts within . The probability density functions are:

(4)

if

otherwise
(5)

if
otherwise

(6)

where, are parameters determined by maximal likelihood
estimation.
Fig. 3 shows the K-S statistic test results in each channel, av-

eraging over 10 IEEE sentences mixed with the three noises at
five SNR levels. From the figure, all three distributions achieve
relatively low K-S statistics, meaning that the candidate dis-
tributions fit the data well. The best one is the half-Cauchy
distribution which has the lowest K-S statistics in most chan-
nels. Consequently, we use the half-Cauchy distribution in our
method. As shown in Fig. 2, under each SNR condition, the solid
curve denotes the probability density function of a half-Cauchy
distribution, which well fits the SVM outputs between and
0.6.
Therefore, given SVM outputs in one channel, we estimate

parameters of a half-Cauchy distribution to fit the outputs by
maximal likelihood estimation. Based on the fitted distribution
function and the observation that the optimal threshold is
located at the tail end of the distribution, the corresponding cu-
mulative probability should be close to 1. This turns
optimal threshold estimation to another problem: given with
unknown parameters and a predetermined cumula-
tive probability , we can first estimate based on SVM outputs
and then approximate the optimal threshold by calculating the
inverse cumulative distribution function . Here,

is set to 0.9, which is chosen from a validation set. Inciden-
tally, we choose 0.6 instead of 0.5 as the upper bound of the
SVM outputs to fit the distribution because we want to include
more samples for the fitting. The number of SVM outputs less
than 0.6 is very unlikely too small (i.e., less than 5% of the total
SVM outputs) to well fit a distribution function, because human
speech contains pauses which should produce sufficient inter-
ference-dominant units (i.e., SVM outputs less than 0.6) in the
mixture. In the case that few SVM outputs can be used to fit the
distribution, we simply set the threshold to the original value
0.5. Note that, although we only use those SVM outputs less
than 0.6 to fit a distribution function, it does not mean that the
estimated optimal threshold is less than 0.6. The threshold only
depends on the parameters of the fitted distribution function and
can be any value in [0, 1].
To summarize, we use the following algorithm to estimate the

optimal threshold in each channel:
1) Given the SVM outputs, we uniformly divide [0, 1] into
100 bins and derive the histogram of SVM outputs. For
those bins less than 0.6, we choose the bin with the highest
frequency as the peak .

2) We use the half-Cauchy distribution with unknown pa-
rameters to fit the SVM outputs within and use
maximal likelihood to estimate ;

3) We estimate the optimal threshold using inverse cumula-
tive distribution function .

The dashed line shown for each histogram in Fig. 2 denotes
the estimated optimal threshold based on distribution fitting,
which is close to the optimal threshold. Finally, we use the
threshold calculated from the algorithm to binarize the SVM
outputs in each channel and obtain a rethresholded mask. This
mask is further improved by an auditory segmentation proce-
dure and form an estimated IBM. It is worth emphasizing that
this method estimates optimal thresholds only based on SVM
outputs of the mixture without the knowledge of the input SNR.

IV. GENERALIZATION TO DIFFERENT NOISES

Another important issue is generalization to unseen noises.
We also use rethresholding to generalize the system to unseen
noises as we have observed that optimal thresholds significantly
improve the classification results.
Although distribution fitting is able to generalize the trained

models to unseen SNR conditions, it does not work well for un-
seen noise conditions because the characteristics of noises can
be very different and no pattern of the histograms appears to
fit all noises. Fig. 4 shows histograms of SVM outputs in the
18th channel corresponding to four female utterances mixed at
0 dB with (a) speech-shaped noise and (b) rock music. Both
noises are not seen in the trained SVM model (see Section V-B
for more details). The solid vertical line indicates the optimal
threshold in each histogram. We can compare the histograms
in (a) and (b) in each row. Although the same sentence is used
to generate the SVM outputs, they have very different distribu-
tions as the noises are different. On the other hand, for those
mixtures with the same type of noise, the optimal thresholds
have close values: around 0.5 for speech-shaped noise and 0.8
for rock music. The histograms for speech-shaped noise in this
figure are quite different from those in Fig. 2 for two reasons:
(1) speech-shaped noise is contained in the training set in Fig. 2
but not in the training set in Fig. 4; (2) the system in Fig. 2 uses
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Fig. 4. Histograms of the SVM outputs in the 18th channel. Four different utterances mixed with (a) speech-shaped noise and (b) rock music. The solid vertical
line in each panel denotes the optimal threshold.

Fig. 5. Diagram of VAD based rethresholding for generalization to unseen
noises.

AMS and pitch-based features for SNR generalization but the
system in Fig. 4 uses RASTA-PLP and pitch-based features for
noise generalization.
The above analysis suggests that, if mixtures come from the

same kind of noise, it is reasonable to apply the same threshold
to all these mixtures in each channel. In other words, although
it is impossible to directly obtain the optimal thresholds for a
test mixture as the IBM is not accessible, if we can somehow
access part of the noise, we can use the noise part to construct
a development set including a reference mixture and the corre-
sponding IBM to calculate the optimal thresholds. The optimal
thresholds obtained from the development set are expected to
perform well on the test mixture because the same type of noise
is used in both mixtures. Obviously, to construct the develop-
ment set clean speech is needed, which can be an arbitrary ut-
terance.We randomly choose a single utterance, “Shake the dust
from your shoes, stranger,” from the IEEE corpus and use this
one to construct the development sets for all test mixtures.
To obtain noise portions from a test mixture, we propose

to apply voice activity detection (VAD) in an adaptation stage
to perform rethresholding. VAD is used to identify noise-only
frames which are then mixed with the above clean speech to
construct a development set. The thresholds chosen from the
development set are used to produce a binary mask. Fig. 5 illus-
trates the computational flow.
As shown in the figure, given a test mixture, we use the

trained SVMs to output the posterior probability of speech

dominance for each T-F unit. In parallel, we use Sohn et al.’s
VAD algorithm [33] to detect noise frames. This standard VAD
algorithm uses a statistical model-based method to produce the
likelihood of speech presence for each frame. In our corpus,
speech pause accounts for around 30% of frames, so we select
30% of the frames with the lowest likelihoods as the candidates
of noise frames. To avoid spurious noise frames caused by VAD
errors, we further use detected pitch in the feature extraction
stage in Section II-A to improve the VAD results: a candidate
of noise frame is removed if a pitch is detected in this frame.
In addition, since very short noise sections are not useful for
constructing a development set, we exclude those noise sections
whose lengths are shorter than 50 ms (or 5 frames).
With detected noise frames and the one clean utterance, we

mix them into a reference mixture. This mixing, however, re-
quires that the noise frames and the clean utterance have the
same length. In this study, both the test mixture and the clean
utterance last around 2 seconds, and as a result the total length
of detected noise frames is usually significantly shorter than the
length of the clean utterance. To match the utterance length, we
first concatenate detected noise frames to a noise section and
then repeatedly duplicate the noise section until the total length
is equal to that of the utterance. The resulting noise section and
the clean utterance are used to construct a development set. We
find that, although a longer test mixture ( 10 seconds) can pro-
vide more noise frames without duplication, it does not give
better results than a 2-second mixture.
After we construct a development set containing a single mix-

ture, we calculate optimal thresholds based on the reference
mixture and its IBM. That is, we apply our trained models to
the reference mixture to calculate SVM outputs and use the cor-
responding IBM to choose the optimal threshold in terms of
accuracy in each frequency channel. With the obtained and
SVM outputs of the test mixture, it is straightforward to use (3)
to produce a rethresholded mask. Finally, we employ a segmen-
tation step to further improve IBM estimation.
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V. EVALUATION AND COMPARISON

A. Generalization Results for Unseen SNRs

We first evaluate the capacity of our system to generalize to
unseen SNRs. As we mentioned above, we utilize pitch-based
features, AMS features and their delta features for SNR gener-
alization. For pitch-based features, we calculate the normalized
autocorrelation function at pitch period . For
voiced speech, measures how well the unit re-
sponse is consistent with the target pitch, which has been proven
to be an effective feature for speech separation [14], [17]. To re-
move the influence of pitch errors in the training phase, we use
Praat [2] to extract the ground-truth pitch from the premixed
speech in the training phase, and use the pitch tracker in [18] to
extract the estimated pitch from the mixture in the test phase.
Similarly, we also compute autocorrelation from the envelope
of the response to obtain as a feature to cap-
ture amplitude modulation information.
We calculate delta features in the following manner: in

the time dimension, for , the time delta feature
;

is simply set to
for convenience. We compute the frequency delta feature

in the same way. Therefore, between
response and envelope autocorrelation we get a 6-dimensional
pitch-based features .
We use the same method as in [10] to extract AMS features.

Specifically, the envelope from the filter response within each
T-F unit is extracted. The envelope is Hanning windowed and
zero-padded for a 256-point FFT. The resulting FFTmagnitudes
are integrated by 15 triangular windows, generating a 15-di-
mensional AMS feature. Similarly, we calculate delta features
across time frames and frequency channels. In each T-F unit,
the pitch-based feature vector and the AMS feature vector
are combined into a feature vector and used for the classifi-

cation under different SNR conditions.
The features are extracted from the IEEE corpus [30]. Similar

to Kim et al. [20], the training set consists of 100 female utter-
ances mixed with three types of noise: speech-shape noise, fac-
tory noise and babble noise at 0 dB. For the test set, we choose
10 new utterances mixed with the same three types of noise at
10, 5, 0, 5 and 10 dB.
In order to quantify the performance of our system, we com-

pute the HIT rate which is the percent of the target-dominant
units in the IBM correctly classified, and the false-alarm (FA)
rate which is the percent of the interference-dominant units in
the IBM wrongly classified. We use the difference between HIT
and FA, HIT-FA, as an evaluation criterion since it has been
shown to be correlated to human speech intelligibility [20], [21]
and has been adopted in earlier studies [10], [20].
Fig. 6 shows the average HIT-FA results over the three noises

under each input SNR condition. The triangle line indicates the
original HIT-FA rates without rethresholding. With the optimal
thresholds, the HIT-FA rates are boosted by 10% absolute on av-
erage, which clearly shows the advantage of rethresholding. By
using distribution fitting based rethresholding, we improve the
HIT-FA results by 9% for low input SNR conditions ( 10 and
5 dB) and 10% for high SNR conditions (5 and 10 dB). The

Fig. 6. Distribution fitting based SNR generalization results in terms of
HIT-FA. The line with triangles denotes the original SVM results, the line with
circles the distribution fitting based rethresholding results, and the line with
squares the results using optimal thresholds.

result in the matched SNR condition is also improved, probably
because the ground-truth pitch is used in the training phase but
the estimated pitch is used in the test phase. This pitch discrep-
ancy would lead to an optimal threshold different from the orig-
inal threshold 0.5 (as shown in Fig. 2), so the HIT-FA rate could
be improved by rethresholding even under matched SNR con-
ditions. No segmentation is used in this comparison. It is inter-
esting to note that, the distribution fitting based rethresholding
outperforms the optimal rethresholding under the 10 dB con-
dition. This is because the optimal threshold is chosen to maxi-
mize the accuracy in each channel, which does not necessarily
maximize the corresponding HIT-FA rate for the whole mask
(see [10]).
The above results show the advantage of rethresholding in our

system. We now compare our system with three recent speech
separation systems. The first one is an IBM estimation system
proposed by Kim et al. [20]. As mentioned in Section I, this
system extracts AMS features and utilizes GMM classifiers to
estimate the IBM, and it has been demonstrated to improve
speech intelligibility in human listening tests. Their system is
trained on the same 100 utterances mixed with the same three
noises, but three SNR levels of at 5, 0 and 5 dB SNR as re-
ported in [20].We train a 256-component GMM for each class in
each channel. The second one is a state-of-art speech enhance-
ment system based on noise tracking proposed byHendriks et al.
[11]. This system assumes that both the speech and noise DFT
coefficients have a complex-Gaussian distribution and utilizes
a minimum mean-squared error (MMSE) estimator of the noise
magnitude-squared DFT coefficients to estimate noise power
spectral density. The clean speech DFT coefficients are esti-
mated from a magnitude-DFT MMSE estimator presented in
[9]. With these estimates, one can calculate the speech and noise
energy within a time-frequency unit in the linear DFT domain.
Since our IBM is defined in the gammatone filterbank domain,
we need to convert the speech and noise energy in the linear
DFT domain to the corresponding energy estimates in the gam-
matone filterbank domain [23]. Without loss of generality, we
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Fig. 7. HIT-FA rates with respect to input SNR levels. The error bars indicate
95% confidence intervals of the means.

consider the energy of a T-F unit in the gammatone fil-
terbank domain:

(7)

where denotes a filtered time domain signal in frequency
channel and frame , and are the DFT coefficients of

, where is set to 512 in our experiments. The second
equation is due to Parseval’s theorem [24]. is the frequency
response function of the gammatone filter in channel . is
a DFT coefficient of the original signal, which can be estimated
by Hendriks et al.’s system. For each T-F unit in the gamma-
tone filterbank domain, we use (7) to calculate the speech and
noise energy respectively, and then compute the local SNR to
generate the binary mask. The third method is a model-based
system using a general framework proposed by Ozerov et al.
[26]. This method utilizes nonnegative matrix factorization
(NMF) to perform separation. We use 10 IEEE sentences to
train a 64-component speaker NMF model and the same three
noises to train a 16-component noise NMF models. Since the
NMF-based method produces the separated speech signal and
noise signal in the time domain directly, we decompose these
two signals to the T-F domain and calculate local SNRs to form
a binary mask for comparison.
As shown in Fig. 7, the proposed system slightly outperforms

the NMF-based method (by around 4% on average) in terms
of HIT-FA rates. The other two systems perform considerably
worse. To indicate statistical significance, we also show 95%
confidence intervals in the figure, which are calculated from a
normal distribution fitted by obtained results. Note that, Kim et
al.’s system is trained on 5, 0 and 5 dB input SNRs, and it is
supposed to achieve good performance at the three trained input
SNRs.
We should point out that Hendriks et al.’s system is not de-

signed to estimate the IBM. We have also implemented a bi-
nary masking system proposed by Jensen and Hendriks [16] for
comparison. Their system derives a gain function based on the

same spectral magnitude MMSE as in Hendriks et al. but gen-
erates an optimal binary mask in the MMSE sense, which is a
binarization based on gain thresholds. We first calculate a gain
threshold for each T-F unit and convert it to an energy threshold
in the DFT domain. Eq. (7) is then used to calculate the cor-
responding energy threshold for each T-F unit in the gamma-
tone filterbank domain. With the cochleagram of the mixture
and the calculated energy thresholds, we can generate an op-
timal binary mask in the gammatone filterbank domain. How-
ever, their system achieves lower HIT-FA rates than the one
based on Hendriks et al. described above. One important reason
is that Jensen and Hendriks aim to obtain the optimal binary
mask in the MMSE sense rather than the ideal binary mask used
in our study. This suggests that there are differences between
an optimal-binary-mask estimator and an ideal-binary-mask es-
timator. Even though Jensen and Hendriks [16] reported that
estimated optimal binary masks do not lead to significant im-
provements of speech intelligibility, the same cannot be said of
estimated IBMs [20].
The comparisons above focus on unit classification accuracy,

where we need to convert the energy estimates from Hendriks
et al. in the DFT domain and the separated signals from the
NMF-based method in the time domain to the gammatone fil-
terbank domain. To eliminate the effects of conversion, we use
inverse FFT to resynthesize estimated speech energy in the DFT
domain to the waveform. We also resynthesize from the esti-
mated IBMs of Kim et al. and the proposed system to waveform
[38]. With the resynthesized signal, we measure the output SNR
of the separated speech as follows [14]:

(8)

For Kim et al. and the proposed system, and
indicate the signals resynthesized using the IBM and the esti-
mated IBM, respectively. For Hendriks et al.’s system,
and indicate the clean speech and the signal resynthe-
sized using the estimated speech energy, respectively. For the
NMF-based method, and indicate the clean speech
and the separated speech signal, respectively. To quantitatively
evaluate the performance, an SNR gain is computed by sub-
tracting the output SNR of separated speech by the input SNR
before separation. Fig. 8 shows the SNR gains. The proposed
system achieves considerable SNR gains at all input SNRs. Al-
though the SNR gains of all systems decrease gradually as the
input SNR increases, the other three systems have more signif-
icant degradation at higher input SNRs.

B. Generalization Results for Unseen Noises

We utilize pitch-based features, RASTA-PLP features and
their delta features for SNR generalization. To get RASTA-PLP
features, after the power spectrum is warped to the Bark scale,
we log-compress the resulting auditory spectrum, filter it by the
RASTA filter, and expand it by an exponential function. Sub-
sequently, PLP analysis is taken on this filtered spectrum. The
original RASTA-PLP feature is a 13-dimensional vector and we
also calculate the delta features for RASTA-PLP across time
frames and frequency channels to generate a 39-dimensional
RASTA-PLP feature vector . The pitch-based feature vector
and the RASTA-PLP feature vector are finally combined
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Fig. 8. SNR gains with respect to input SNR levels. The error bars indicate
95% confidence intervals of the means.

and a 45-dimensional feature vector for each T-F unit is used as
the input to the classifier for noise generalization.
To evaluate generalization to unseen noises, we choose 30

female utterances from the IEEE corpus mixed with 5 types of
noise out of a 100 nonspeech noise set [13] at 0 dB SNR to train
the system. To construct a representative training set, we use
a clustering based noise selection scheme to choose training
noises. Intuitively, we want to include the most diverse noises
as the training set, i.e., the distribution of features extracted
from the training noises should cover the feature space as much
as possible. For noise selection, we only consider RASTA-PLP
features since pitch-based features do not exist in unvoiced
speech. We first pass each noise waveform through a gamma-
tone filterbank and then extract RASTA-PLP features from
each T-F unit. Then, the mean of the RASTA-PLP features is
calculated over all units for each type of noise. Therefore, each
noise is represented by a 13-dimensional feature vector. We
then apply the K-means ( in this experiment) clustering
to these 100 feature vectors and thus 100 noises are divided
into 5 clusters. For each cluster, we select one noise that has
the shortest distance to the cluster center as the representative.
Therefore, 5 representative noises are used in the training set.
Compared with random noise selection, this clustering-based
noise selection produces 3% improvement in terms of HIT-FA.
To test our system, we use 10 new female utterances mixed

with the 10 types of noise—N1: speech-shape noise, N2: fac-
tory noise, N3: fan noise, N4: bird chirp, N5: white noise, N6:
cocktail party noise, N7: rain noise, N8: rock music, N9: wind
noise, N10: clock alarm—at 0 dB. The test noises cover both
stationary and nonstationary noises and have very different fre-
quency characteristics, and none of them are in the training set.
Fig. 9 shows the HIT-FA results of the proposed system. For

each noise, the left two bars show the original SVM results
using a threshold of 0.5 and the rethresholding results using
the optimal thresholds, respectively. The figure shows that the
optimal rethresholding substantially improves HIT-FA and
achieves an average improvement of 7.3%, which suggests
the utility of rethresholding for generalization. The VAD
based rethresholding improves HIT-FA rates under all unseen
noise conditions and the average improvement is 5.9%. With

Fig. 9. Noise generalization in terms of HIT-FA. “Original” denotes the orig-
inal SVM results without rethresholding, “Optimal” the rethresholding results
using optimal thresholds, and VAD denotes the VAD based rethresholding re-
sults. VAD+Seg denotes the results using VAD based rethresholding followed
by segmentation.

Fig. 10. Noise generalization comparisons in terms of HIT-FA. The proposed
method denotes VAD based rethresholding followed by segmentation. The error
bars indicate two-side 95% confidence intervals of the means, with only one side
shown for clarity.

segmentation, the proposed system further improves IBM
estimation, and it outperforms the original one by 7.4% making
it comparable to the optimal rethresholding results. These
results demonstrate that, with a little adaptation, our system
generalizes well to different noise conditions.
Since our system utilizes nonspeech intervals detected by the

VAD algorithm to adapt the thresholds, we also adopt a sim-
ilar strategy in Ozerov et al. [25] for the model-based system
where the noise model is adapted by the detected nonspeech in-
tervals. In our experiment, we first train a 64-component speaker
NMF model using 10 IEEE sentences (see Section V-A). In the
test phase, we use the same VAD algorithm as in the proposed
system to extract noise frames from the mixture, and then use
these noise frames to train a 16-component noise NMF model.
Finally, we use the obtained speaker model and noise model as
priors to separate speech. In addition, we compare with the sys-
tems described in Section V-A. Fig. 10 shows the comparative
results in terms of HIT-FA rates. As shown in the figure, the pro-
posed system achieves the highest HIT-FA rates except for N1,
N5 and N9 where NMF-based system performs slightly better.
On average, the proposed system outperforms the NMF-based
method by around 5%, which is statistically significant from
confidence intervals.
As described in Section V-A, we can resynthesize waveform

signals for the four systems and calculate SNR gains. Fig. 11
shows such results. Our system improves SNRs by 5 dB to
12 dB, depending on noise type, and it performs better than Kim
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Fig. 11. Noise generalization comparisons in terms of SNR gain.

et al. by 3.7 dB, Hendriks et al. by 3.4 dB, and NMF-based
system by 2.1 dB on average.

VI. DISCUSSION

Monaural speech separation is a fundamental problem in
speech processing. Supervised learning algorithms have been
shown to be effective for speech separation, but a major issue
for supervised learning is the capacity of generalization to
unseen conditions, as the training set and the test set can
have dissimilar properties. If this issue is not addressed, one
cannot expect the trained model to perform well in unmatched
conditions.
This study builds on SVM classification. An SVM outputs bi-

nary labels according to decision values, which in essence give
a distance measure to the decision hyperplane, corresponding to
the confidence of classification. Under many unseen conditions,
the trained SVMmodel does not completely fail, but the optimal
hyperplane just skews from the trained hyperplane to some ex-
tent. Our analysis suggests that it is possible to improve classifi-
cation results by adjusting the hyperplane, which is equivalent to
using a new threshold to binarize output values. Therefore, the
key idea of generalization in this study is to use rethresholding
to adapt the trained model to unseen conditions and the gen-
eralization issue becomes how to find appropriate thresholds.
Recent research on dataset shift in classification deals with the
mismatch problem between the training data and the test data
[22]. In our study, shifted data lead to changes of , re-
sulting in a shift of the optimal decision boundary. In this case,
rethresholding is equivalent to adjusting SVM outputs .
It would be interesting to explore the formulation of rethresh-
olding as dataset shift in future work.
In this study, we convert decision values to posterior proba-

bilities. With the probabilistic interpretation of SVM outputs, a
straightforward idea to deal with generalization is to perform
probabilistic inference using prior knowledge. However, too
many unpredictable variables affect the probabilistic inference,
and it is very difficult to directly use the Bayesian formula
to derive an appropriate threshold. Instead, we use probabili-
ties to provide initial classification and incorporate statistical
properties of the test mixture to classify T-F units. Here, we
prefer probabilities to decision values because the proba-
bilistic representation provides a uniform range of [0, 1] for
rethresholding. We should state that rethresholding is not able

to completely resolve the generalization issue, because even
optimal thresholds may not be good enough, e.g., to achieve
greater than 80% HIT-FA rates. However, as rethresholding
directly focuses on the outputs of the trained model and does
not require extra training, it is easy to incorporate into existing
systems for improved generalization.
Under unseen SNR conditions, although the trained hyper-

planes cannot be directly used to classify T-F units, the statis-
tical properties of SVM outputs exhibit similarity at different
SNRs, which provides a basis to adjust the hyperplanes. The
distribution fitting based rethresholding determines the thresh-
olds based on the test mixture and does not require any input
SNR estimation.
This distribution fitting method does not work under unseen

noise conditions, as no distribution is able to characterize the
SVM outputs of various noises. Indeed, we tried a function ap-
proximation approach that learns a mapping from SVM out-
puts to optimal thresholds. However, such a mapping is not
applicable to all noise types. Instead, we use VAD to detect a
small amount of noise and construct a development set to choose
thresholds. Obviously, the performance of our system depends
on the VAD algorithm. To improve VAD results, we utilize de-
tected pitch to remove spurious noise frames. This strategy pro-
vides a reliable set of noise frames. This is confirmed in our ex-
periments where clean speech, rather than noisy speech, is used
to produce ideal VAD results. The experiments do not show sig-
nificantly better performance by using the ideal VAD results.
Therefore, our pitch-improved VAD method is not a bottleneck
of the proposed system.
Obviously, features play a crucial role in classification. We

use pitch-based features and AMS features for unseen SNR
generalization, as this combination has proven to be effective
under matched noise conditions. For noise generalization, we
use pitch-based features and RASTA-PLP features, both of
which capture speech information and are robust to different
noise conditions. Other features may also show robust perfor-
mance under different noisy conditions, but here we are only
concerned with generalization based on trained classifiers and
do not focus on the selection of robust features (see [40]). We
point out that, since AMS features and RASTA-PLP features
are not able to distinguish different voices and the VAD algo-
rithm can only detect nonspeech intervals in a noisy mixture,
our system cannot be applied to separate multiple talkers.
In this study, we address the generalization problems to dif-

ferent SNRs and different noises separately. In practice, both sit-
uations may need to be considered simultaneously. In such sit-
uations, rethresholding may still be applicable. Future research
is required to address this more challenging case, and may in-
volve some form of SNR detection to jump start the separation
process.
To conclude, we aim to design a speech separation system that

requires minimal training but is generalizable to unseen condi-
tions. The proposed system trains SVMs to provide initial clas-
sification and then uses the rethresholding technique to estimate
the IBM. To determine the thresholds under unseen SNR condi-
tions, we use a distribution fitting method. For unseen noise con-
ditions, we use a VAD algorithm to produce noise-only frames
and determine the thresholds from a small development set.
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Auditory segmentation is incorporated to further improve the
rethresholded mask. The experiments and comparisons show
that the proposed approach achieves good generalization in un-
matched conditions.
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