
A classification based approach to speech segregation

Kun Hana) and DeLiang Wang
Department of Computer Science and Engineering and Center for Cognitive Science, The Ohio State
University, Columbus, Ohio 43210

(Received 24 November 2010; revised 14 August 2012; accepted 4 September 2012)

A key problem in computational auditory scene analysis (CASA) is monaural speech segregation,

which has proven to be very challenging. For monaural mixtures, one can only utilize the intrinsic

properties of speech or interference to segregate target speech from background noise. Ideal binary

mask (IBM) has been proposed as a main goal of sound segregation in CASA and has led to sub-

stantial improvements of human speech intelligibility in noise. This study proposes a classification

approach to estimate the IBM and employs support vector machines to classify time-frequency

units as either target- or interference-dominant. A re-thresholding method is incorporated to

improve classification results and maximize hit minus false alarm rates. An auditory segmentation

stage is utilized to further improve estimated masks. Systematic evaluations show that the proposed

approach produces high quality estimated IBMs and outperforms a recent system in terms of classi-

fication accuracy. VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4754541]

PACS number(s): 43.72.Dv [CYE] Pages: 3475–3483

I. INTRODUCTION

Monaural speech segregation is the task of segregating a

speech signal from its background interference from a mon-

aural recording. For this task, the information regarding

sound directions is not available; and one can only make use

of the intrinsic acoustic properties of speech and interference.

The task has proven to be extremely challenging (Wang and

Brown, 2006). In this work, we are concerned with monaural

segregation of speech from non-speech interference.

Psychoacoustic research in auditory scene analysis
(ASA) (Bregman, 1990) has inspired considerable work in

developing computational auditory scene analysis (CASA)

systems for speech segregation (Wang and Brown, 2006).

The ideal binary mask (IBM) has been suggested as a main

goal for CASA systems (Wang, 2005). The IBM is defined

in terms of premixed target and interference. Specifically,

with a time-frequency (T-F) representation of a sound mix-

ture, the IBM is a binary matrix along time and frequency

where a matrix element is 1 if the signal-to-noise ratio

(SNR) within the corresponding T-F unit is greater than a

local SNR criterion (LC) and is 0 otherwise. A series of

recent studies shows that IBM segregation produces substan-

tial speech intelligibility improvements in noise for both

normal-hearing and hearing-impaired listeners (Anzalone

et al., 2006; Brungart et al., 2006; Li and Loizou, 2008;

Wang et al., 2009).

Because the IBM is a matrix of binary values, IBM

estimation is a form of binary classification. To our knowl-

edge, the first attempt to treat speech segregation as binary

classification was made in the binaural domain (Roman

et al., 2003). Recently, several studies have utilized super-

vised classification to deal with monaural speech segregation

(Jin and Wang, 2009; Kim et al., 2009). More specifically,

Jin and Wang (2009) employed multilayer perceptron

(MLP) based classifiers and trained these classifiers to clas-

sify T-F units using pitch-based features. Their system

obtains promising separation results in various reverberant

conditions and generalizes well to new utterances and new

speakers. Kim et al. (2009) used Gaussian mixture models

(GMMs) to learn the distribution of amplitude modulation

spectrum (AMS) features for target- and interference-

dominant classes and then classified T-F units by Bayesian

classification. Their system represents the first monaural seg-

regation algorithm with demonstrated speech intelligibility

improvement.

From the classification point of view, the first issue to

address is feature extraction. The features used should distin-

guish target-dominant units from interference-dominant

units. Pitch, or harmonic structure, is a prominent feature in

voiced speech. Some previous studies show that pitch-based

features are very effective for IBM estimation and robust to

various forms of signal corruption (Hu and Wang, 2004; Jin

and Wang, 2009). However, pitch-based features cannot

address unvoiced speech segregation because unvoiced

speech lacks harmonic structure. On the other hand, AMS

contains information for discriminating both voiced and

unvoiced speech from nonspeech intrusions (Tchorz and

Kollmeier, 2003; Kim et al., 2009). We propose to combine

these two types of features and construct a larger feature set

for classification that is expected to be discriminative in both

voiced and unvoiced speech and generalize to different noise

types.

Another important issue for classification is classifier

design. Previously, MLPs (Hu and Wang, 2008; Jin and

Wang, 2009) and GMMs (Kim et al., 2009) have been

explored. In this study, we propose using support vector

machines (SVMs), which find an optimal (i.e., largest mar-

gin) hyperplane to classify data (Vapnik, 2000). Typically,

the output of the discriminant function of an SVM is a real

number, the absolute value of which indicates the distance
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from the optimal hyperplane. The threshold of 0 is com-

monly used to binarize the output to calculate the label of

each datum. In this study, we introduce a re-thresholding

technique to improve classification results and maximize the

hit rates minus false-alarm rates. In addition, we incorporate

an auditory segmentation method to group more target-

dominant units and remove interference-dominant units (Jin

and Wang, 2009).

The paper is organized as follows. In the next section,

we present an overview of the proposed system. Section III

describes how to extract auditory features. A detailed

description of SVM classification is presented in Sec. IV.

Section V describes the auditory segmentation stage. The

systematic evaluation results and comparison are given in

Sec. VI. We discuss related issues and conclude the paper in

Sec. VII.

II. SYSTEM OVERVIEW

Figure 1 shows the diagram of the proposed system,

which consists of several stages. The first stage of the

system is auditory peripheral analysis. An input mixture

signal x(t) is resampled to 16 000 Hz and analyzed by a 64-

channel gammatone filterbank with their center frequen-

cies distributed from 50 to 8000 Hz (Wang and Brown,

2006). This filterbank is a standard model of cochlear

filtering and is derived from psychophysical studies of

the auditory periphery (Patterson et al., 1988). In each

channel, the output is divided into 20-ms time frames with

10-ms overlapping between consecutive frames. This

processing produces a decomposition of the input signal

into a two-dimensional T-F representation or cochleagram
(Wang and Brown, 2006). Each T-F unit in the cochlea-

gram corresponds to a frequency channel and a time

frame.

The next stage, feature extraction, extracts two types

of features from each T-F unit: Pitch-based features and

AMS features. After the feature extraction stage, we train

SVMs to classify T-F units as either target-dominant or

interference-dominant. Due to frequency specific charac-

teristics of the input signal, one SVM is trained for each

channel independently. Finally, in the auditory segmenta-

tion stage, we perform cross-channel correlation and

onset/offset analysis to generate T-F segments. The T-F

units in a segment primarily originate from the same sound

source, and therefore we group them into either the target

or interference stream based on unit classification results.

The final binary mask represents an estimate of the IBM

and is used to resynthesize segregated target speech. The

resynthesis is basically performed by summing the filter

responses in target-dominant units and compensating for

phase shifts across the filterbank (Wang and Brown,

2006).

III. FEATURE EXTRACTION

A. Pitch-based features

Let uc,m denote a T-F unit for channel c and frame m
and x(c, t) denote the filter response for channel c at time t.
To extract pitch-based features for uc,m, the normalized auto-

correlation function (ACF), A(c, m, s), is computed at each

lag s (Wang and Brown, 2006):

A c;m;sð Þ

¼

X
n

x c;mTm�nTnð Þx c;mTm�nTn�sTnð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n

x2 c;mTm�nTnð Þ
X

n

x2 c;mTm�nTn�sTnð Þ
r : (1)

Here n denotes discrete time, Tm¼ 10 ms is the frame shift,

and Tn is the sampling time. We use input mixtures sampled

at 16 kHz in this study; this gives Tn¼ 0.0625 ms. The pre-

ceding summation is over 20 ms, the length of a time frame.

We also compute envelope ACF, AE(c, m, s), similar to Eq.

(1), which captures amplitude modulation information in

high frequency channels.

For voiced speech, uc,m is considered target-dominant if

the corresponding response or response envelope has a pe-

riod close to that of the target speech, i.e., pitch period sS(m)

(Hu and Wang, 2004). In this case, A(c, m, s) will have a

peak close to sS(m). Therefore we can use the ACF and the

envelope ACF at the pitch lag, A(c, m, sS(m)) and AE(c, m,
sS(m)), to construct pitch-based features. These two features

have been demonstrated to be effective for discriminating

voiced speech (Hu and Wang, 2010).

As commonly done in automatic speech recognition,

we calculate delta features to encode feature variations.

Specifically, for m� 2, time delta feature DAM(c, m, sS(m))

is simply set to A(c, m, sS(m)) – A(c, m – 1, sS(m)); and

DAM(c, 1, sS(m)) is set to DAM(c, 2, sS(m)) for convenience.

We compute frequency delta feature DAC(c, m, sS(m)) in

the same way. The pitch-based feature vector is then given

by

FIG. 1. Diagram of the proposed speech segregation system.
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xACF c;mð Þ ¼

A c;m; sS mð Þð Þ
AE c;m; sS mð Þð Þ

DAT c;m; sS mð Þð Þ
DAT

E c;m; sS mð Þð Þ
DAC c;m; sS mð Þð Þ
DAC

E c;m; sS mð Þð Þ

0
BBBBBBB@

1
CCCCCCCA
: (2)

When we extract the pitch-based features, the pitch period

sS(m) needs to be specified. To remove the influence of pitch

errors on the speech segregation system, we use PRAAT

(Boersma and Weenink, 2007) to extract the ground-truth

pitch from the premixed speech in the training phase.

In the test phase, we extract pitch from mixtures by a

pitch tracker. Specifically, we use the recently proposed tan-

dem algorithm (Hu and Wang, 2010), which iteratively esti-

mates pitch and computes a binary mask. To further improve

pitch tracking results, we generate the initial pitch estimate

for the tandem algorithm by utilizing the multipitch tracker of

Jin and Wang (2010) that works well when more than one

voiced sound is present. The tandem algorithm produces

accurate pitch estimation results under most conditions, but

for some mixtures, the generated pitch contours overlap in the

time domain. So we need to further group pitch contours into

the target track. We first remove those pitch contours shorter

than 50 ms or out of the plausible pitch range for the specific

speaker; the plausible ranges of the female and male speakers

are set to [150, 400 Hz] and [80, 300 Hz], respectively. For

two overlapping pitch contours, we retain the one closer to

the average pitch frequency (250 Hz for the female speaker

and 130 Hz for the male speaker). To exclude residual inter-

ference pitch contours, we first employ a simple energy-based

method to detect voiced frames. Specifically, we label a frame

as strongly voiced if the normalized log energy of the frame

is greater than 0.6, voiced if the energy is between 0.4 and

0.6, and unvoiced otherwise. Then a pitch contour is selected

if more than 15% frames of this contour are strongly voiced

or 35% frames are either voiced or strongly voiced. This sim-

ple selection method eliminates most interference pitch con-

tours and produces the final pitch estimation result.

Note that because unvoiced frames lack harmonic struc-

ture, we simply put 0 as the values of the corresponding vec-

tor. In this way, the pitch-based features will not play a role

in unvoiced frames, and classification in those frames will

instead rely on AMS features.

B. AMS features

AMS features exist in both voiced and unvoiced speech,

which contain information on both center frequencies and

modulation frequencies within each analysis frame (Tchorz

and Kollmeier, 2003). We use the same method of AMS

extraction described in Kim et al. (2009). Specifically, we

first extract the envelope from the filter response within each

T-F unit. The envelopes are computed by full-wave rectifica-

tion and then decimated by a factor of 4. The decimated

envelope is then Hanning windowed with zero-padding, and

a 256-point fast Fourier transform (FFT) is computed. The

FFT computes the modulation spectrum in each T-F unit

with a frequency resolution of 15.6 Hz. Next, the FFT mag-

nitudes are multiplied by 15 triangular-shaped windows

spaced uniformly across the 15.6-400 Hz range and summed

to produce 15 modulation spectrum amplitudes, which

represent the AMS feature vector. We denote them by

M1(c, m),…, M15(c, m). Similarly, we calculate delta features

DMT and DMC across frames and channels respectively, as in

Kim et al. (2009).

The AMS feature vector is given by:

xAMS c;mð Þ ¼

M1 c;mð Þ
� � �

M15 c;mð Þ
DMT

1 c;mð Þ
� � �

DMT
15 c;mð Þ

DMC
1 c;mð Þ
� � �

DMC
15 c;mð Þ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

: (3)

The total dimensionality of the AMS feature vector xAMS(c, m)

is 3� 15¼ 45. Finally, the pitch-based feature vector and the

AMS feature vector are combined into a 51-dimensional fea-

ture vector for each T-F unit. The combined features are used

as the input to the classifier.

IV. SVM CLASSIFICATION

Given the extracted features, the task now is to classify

T-F units to either target-dominant or interference-dominant.

As mentioned earlier, one SVM is trained for each filter

channel. By applying a kernel trick, an SVM maps a feature

vector xi into a higher dimensional feature space where a

hyperplane is derived to maximize the margin of class sepa-

ration. In this study, we choose the radial basis function ker-

nel, K(xi, xj)¼ exp(�c||xi � xj||
2).

In the training phase, given a set of pairs (xi, yi), where

xi is a feature vector and yi is the corresponding binary label,

the SVM requires a solution to the following optimization

problem:

minw;n
1

2
kwk2 þ C

X
i

ni

subject to yi wT/ xið Þ þ bð Þ � 1� ni;

ni � 0

(4)

where w is the weight vector of the hyperplane. n is a non-

negative variable measuring the deviation of a data point

from the hyperplane. C controls the trade-off between com-

plexity of the SVM and the number of nonseparable points.

/ is the vector of a set of nonlinear functions that transform

the input space to a feature space of higher dimensionality. b
is the bias. The parameters C and c must be specified, and

we choose them using fivefold cross-validation in each chan-

nel separately. The SVM library LIBSVM (Chang and Lin,

2001) is used in our experiments.

Once the SVM training is completed, we use the trained

models to classify T-F units. The discriminant function for

classification is given as follow:
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f xð Þ ¼ wT/ xð Þ þ b ¼
X
i2SV

aiyiK x; xið Þ þ b; (5)

where SV denotes the set of support vector indices in train-

ing data. ai is a Lagrange multiplier that can be determined

in the training phase. For a textbook treatment of SVM, the

reader is referred to Haykin (2009).

The output of the discriminant function is a real number

and the binary label of each datum is typically given by the

sign of this output. We find that this standard method tends

to under-label target-dominant units for several reasons.

First, with unbalanced training samples, the SVM hyper-

plane is often skewed to the minority, i.e., the class with

fewer data (Akbani et al. 2004; Wu and Chang, 2005). For

typical IBM estimation, the input SNR is around 0 dB and

the interference is broadband noise. In this situation, target-

dominant units are much fewer than interference-dominant

units because the speech energy is more concentrated in the

cochleagram than that of noise. The unbalanced data likely

cause the trained SVMs to misclassify some 1 s to 0 s. The

second reason is that we use different pitch trackers to

extract pitch-based features in the training and test phases,

which makes the hyperplane obtained from the training data

not exactly match that of the test data. More discussion on

this point will be given in Sec. VII. Additionally, the stand-

ard SVM aims to minimize the classification error, but one

of the goals of this study is to maximize the hit rate (HIT)

minus false-alarm rate (FA), or HIT-FA.

For the preceding reasons, we propose to apply re-

thresholding as a post-training strategy, which is used in

the decision phase without affecting the training phase. This

technique has been successfully used in some other applica-

tions (Brank et al., 2003; Sun et al., 2009). Given a feature

vector x, the discriminant function gives an algebraic dis-

tance from x to the optimal hyperplane (Haykin, 2009):

r ¼ f xð Þ
kwk : (6)

Therefore those data with small j f(x)j are close to the trained

hyperplane and thus easy to be misclassified if the hyper-

plane is skewed. We adopt a channel-specific threshold to

label f(x). Specifically, we select the threshold hc that maxi-

mizes the HIT-FA rate in channel c in a validation set with

10 sentences and then use the new threshold to binarize f(x):

y xð Þ ¼ 1; if f xð Þ > hc

0; otherwise:

�
(7)

Other approaches can be used to adapt the hyperplane. For

example, one can use f(x) to estimate the posteriori probabil-

ity P(y¼ 1j f(x)) and use P(y¼ 1j f(x))¼ 0.5 as a criterion to

classify data (Platt, 1999). Another method is to find the

threshold that makes the percentage of each class matches

the percentage in the training data. We have tried both meth-

ods, but they do not perform better than the simple cross-

validation method.

With SVM classification, our system generates an esti-

mated IBM by combining the classification results in all the

channels. As an example, Fig. 2 illustrates the segregation

results for a noisy speech signal. Figure 2(a) shows the coch-

leagram of a female utterance, “A man in a blue sweater sat

at the desk,” from the IEEE corpus (Rothauser et al., 1969).

Figure 2(b) shows the cochleagram of a factory noise. The

cochleagram of their mixture at 0 dB is shown in Fig. 2(c).

By comparing the energy of each T-F unit in Figs. 2(a) and

2(b), we obtain the IBM shown in Fig. 2(d) where 1 is indi-

cated by white and 0 by black and LC is �5 dB. Figure 2(e)

shows the binary mask generated by the standard SVMs with-

out re-thresholding. The SVMs correctly classify most T-F

units in both voiced and unvoiced speech intervals but miss

some target-dominant units. By applying re-thresholding, the

system recovers many target-dominant units as shown in

Fig. 2(f). This recovery comes at the expense of adding some

scattered interference-dominant units.

V. AUDITORY SEGMENTATION

As shown in Fig. 2, an SVM-generated mask is close to

the IBM but still misses some target-dominant units and con-

tains some interference-dominant units. We further improve

estimated IBMs by auditory segmentation, which refers to a

stage of processing that breaks the auditory scene into con-

tiguous T-F regions each of which contains acoustic energy

mainly from a single sound source (see also Jin and Wang,

2009; Hu and Wang, 2010).

With the voicing of a frame determined as described in

Sec. III A, we utilize cross-channel correlation to segment

T-F units for voiced intervals (Wang and Brown, 2006). The

cross-channel correlation measures the similarity between

the responses of two adjacent filters. The units with high

cross-channel correlation indicate that they are likely from

the same sound source. We calculate the cross-channel cor-

relation of u(c, m) as follows:

C c;mð Þ ¼ 1

L

XL�1

s¼0

Â c;m; sð ÞÂ cþ 1;m; sð Þ; (8)

where Â c;m; sð Þ denotes a normalized autocorrelation func-

tion with zero mean and unit variance, and L is the maximum

delay for the plausible pitch frequency range from 70 to 400

Hz. For low frequency channels (below 2000 Hz), only units

with sufficiently high cross-channel correlation (�0.95) are

iteratively merged into segments. We use a similar way to

calculate the cross-channel correlation of envelope response

CE(c, m) and use it to segment units in high frequency chan-

nels (above 2000 Hz).

Because unvoiced speech lacks harmonic structure, we

utilize onset/offset analysis (Hu and Wang, 2007) to segment

T-F units within unvoiced intervals. Onsets and offsets cor-

respond to sudden acoustic energy increases and decreases,

respectively. Segments are formed by matching pairs of

onset and offset fronts. In addition, a multiscale analysis is

applied to integrate segments at several time-frequency

scales (Hu and Wang, 2007).

With obtained segments, we first treat all the segments

shorter than 50 ms (or five frames) as the interference. We

then label each remaining segment wholly as the target (i.e.,
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mask value 1) if more than half of the segment energy is

included in the classified target units in Sec. IV. If a segment

fails to be labeled as the target in this way, the individually

classified T-F units within the segment are still included in

the target stream. This results in the final estimated IBM,

and the segregated target speech can be resynthesized from

this mask (Wang and Brown, 2006). Figure 2(g) shows a bi-

nary mask after auditory segmentation. We can see that most

isolated interference-dominant units are removed from the

mask and some missed target-dominant units are grouped at

FIG. 2. (Color online) IBM estimation. (a) Cochleagram of a female utterance. (b) Cochleagram of a factory noise. (c) Cochleagram of the mixture at 0 dB. (d)

IBM for the mixture. (e) SVM-generated mask without re-thresholding. (f) SVM-generated mask with re-thresholding. (g) Estimated IBM after auditory seg-

mentation. (h) Cochleagram of the masked mixture by the estimated IBM.
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the same time. The cochleagram of the masked mixture by

the estimated IBM is shown in Fig. 2(h). Note the similarity

of Figs. 2(a) and 2(h).

VI. EVALUATION AND COMPARISON

A. Systematic evaluation

We evaluate the performance of our system by using the

IEEE corpus (Rothauser et al., 1969), which contains 720

sentences spoken by two speakers, one male and one female.

All utterances are downsampled from 25 to 16 kHz. For the

training set, we choose 100 utterances mixed with three

types of noise—N1: Speech-shaped noise, N2: Factory

noise, N3: 20-talker babble noise—at �5, 0, and 5 dB SNR.

The test set consists of 60 utterances mixed with the three

types of noise at �5 and 0 dB. There is no overlap between

the training and the test utterances. Each utterance is mixed

with a noise sample randomly cut out from the original noise

recording. The LC is set to �5 dB for all 64 channels to gen-

erate IBMs. These choices are motivated by those in Kim

et al. (2009) where the same speech corpus and noises were

used.

To quantify the performance of our system, we compute

the HIT rate, which is the percent of the target-dominant

units in the IBM correctly classified, and the FA rate, which

is the percent of the interference-dominant units in the IBM

wrongly classified. It has been shown that HIT-FA is highly

correlated to human speech intelligibility (Li and Loizou,

2008; Kim et al., 2009). We also compute the classification

accuracy, which is the percent of misclassified units.

Tables I and II show the average results for the female

and male utterances, respectively. As shown in the tables,

our system achieves relatively high HIT rates and relatively

low FA rates even at these low input SNRs. Under all condi-

tions, the accuracy results are greater than 75% for the

female utterances and 70% for the male utterances. These

results demonstrate that our system produces high quality

estimated IBMs. Here, the babble noise results are relatively

lower than others, mainly because it is more difficult to

group pitch contours under these conditions. We also

observe that the pitch determination performance of the

male utterances is slightly lower than that of the female

utterances, causing the classification results for the male

utterances not as good as those for the female utterances. We

note that, without auditory segmentation, the average HIT-

FA results in Tables I and II are lower by 2% for the female

utterances and 5% for the male utterances.

To provide an indication of generalizability, we also test

our system on two unseen noises, N4: White noise and N5:

Cocktail-party noise; different from the babble noise, the

cocktail party noise mostly contains nonspeech background

noise. Table III gives the results. From the table, one can see

that our system achieves 58% HIT-FA rate for female

speaker and 48% for male speaker on average; these are

close to those with the noises in Tables I and II. We believe

that the generalizability of our system mainly results from

the use of pitch-based features (see the following discussion

associated with Table VI and Sec. VI B).

The proposed system utilizes pitch-based features and

AMS features to classify T-F units. To investigate the rela-

tive merit of each feature type, we use each type to train a

classifier. The training and the test corpora are the same as

those for combined features. As pitch exists only in voiced

speech intervals, the system with pitch-based features is

trained only during voiced intervals. Similar to the system

with combined features, the ground-truth pitch is used in the

training phase, and the estimated pitch is used in the test

phase. For comparison, we evaluate HIT-FA results in

voiced speech intervals that are determined by ground-truth

pitch. Auditory segmentation is not included in all systems.

Tables IV and V compare the HIT-FA results for individual

feature types. On average, the system with combined fea-

tures achieves the best HIT-FA rate, which outperforms the

AMS features by 3.3% and pitch-based features by 2.2%.

Table VI shows the comparison for new noises. In this case,

the system with AMS features performs lower than that with

combined features by around 20%. In contrast to AMS fea-

tures, pitch-based features are robust to unseen noises and

achieve comparable results with combined features. This

comparison suggests that the capacity of generalization of

the proposed system mainly derives from pitch-based fea-

tures. AMS features capture mixture envelopes that tend to

be sensitive to different noises.

Although our system is trained and tested on the IEEE

corpus containing only one female and one male speaker, the

classification system is expected to be speaker independent

TABLE I. Classification results for female utterances mixed with different

noises at different input SNRs.

Speech-shaped Factory Babble

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

Proposed HIT 60.14 69.89 60.02 70.52 61.43 69.00

FA 4.10 3.89 8.60 7.09 17.58 16.12

HIT-FA 56.04 66.00 51.42 63.43 43.85 52.88

Accuracy 90.33 89.60 86.09 87.02 77.52 78.63

Kim et al. HIT 59.74 61.02 57.39 60.38 53.85 56.30

FA 20.70 16.20 26.71 22.43 27.18 24.60

HIT-FA 39.04 44.82 30.68 37.95 26.67 31.71

Accuracy 76.25 78.15 70.60 73.05 68.40 68.86

TABLE II. Classification results for male utterances mixed with different

noises at different input SNRs.

Speech-shaped Factory Babble

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

Proposed HIT 54.05 67.41 56.07 66.72 58.98 66.01

FA 9.83 8.06 15.31 12.51 23.44 19.17

HIT-FA 44.22 59.34 40.76 54.21 35.54 46.84

Accuracy 85.20 86.34 80.53 82.66 72.85 76.16

Kim et al. HIT 57.34 57.62 54.53 55.76 46.03 49.07

FA 19.48 14.91 24.10 20.36 25.08 22.45

HIT-FA 37.86 42.71 30.43 35.40 20.95 26.61

Accuracy 77.33 78.90 72.80 74.18 68.82 68.56
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as the features used, i.e., AMS and pitch-based features, are

not extracted in a speaker dependent way. To verify this, we

directly use the trained models from the IEEE corpus, with-

out change, to test on a new corpus from the TIMIT corpus

(Garofolo et al., 1993) which contains different speakers.

Specifically, for a system of each gender, the training set

contains only one speaker from the IEEE corpus, but the test

set contains 10 different speakers from the TIMIT corpus,

each of which produces one utterance mixed with the three

noises at �5 and 0 dB SNR. The test results on TIMIT utter-

ances are given in Tables VII and VIII. As shown in the

tables, although the test set uses different speakers, the seg-

regation results are only slightly lower than those shown in

Tables I and II. On average, there is 3.4% degradation for

female speakers and 2.9% for male speakers in terms of

HIT-FA rates, demonstrating that the system can generalize

to different speakers. On the other hand, there is some gen-

der dependency as male and female voices show distinct fea-

ture values (particularly pitch values). Gender dependency,

however, is not a big limitation as one can readily train a

male model and a female model, and gender detection is a

relatively easy task (Wu and Childers, 1991).

B. Comparison with the system of Kim et al.

Kim et al. (2009) proposed a speech segregation system

that obtains high HIT-FA rates for noisy IEEE utterances

and demonstrates improved speech intelligibility in listening

tests. Here we compare our system with theirs in terms of

HIT-FA. To implement their system, we use AMS features

to train a 256-component GMM for each binary label in each

channel and test their system on the same corpus as used in

evaluating our system. The results from their system are

given in Tables I–III.

From Tables I and II, one can see that our system signif-

icantly outperforms theirs in terms of HIT-FA and accuracy.

The average improvements are 17% for the HIT-FA rate and

9% for accuracy. Table III shows that their system does not

generalize well to the two unseen noises, where the HIT-FA

rates obtained are all lower than 40%. We have computed

95% confident intervals of HIT-FA means under all condi-

tions, all of which are less than 2.5% for the proposed system

and 2% for the system of Kim et al. These analyses show

that the performance differences are statistically significant.

As we have seen in the preceding text, these compari-

sons show that our system significantly outperforms the sys-

tem of Kim et al. We should point out that the amount of

training data used in the preceding comparison may be inad-

equate for the GMM classifiers used in Kim et al., which

have more parameters than the SVM classifiers used in our

system. In addition, their system uses a 25-channel frontend

and the preceding comparison uses a 64-channel frontend.

While the reliance on a large amount of training data should

be considered as a limitation, these differences nonetheless

may put the system of Kim et al. in an unfavorable situation.

To rectify this situation, we perform a further comparison

using exactly the same frontend processor, same features,

and same training methodology as in Kim et al., except for

the classifiers. Specifically, we first downsample utterances

from 25 to 12 kHz and then use the 25-channel mel-scale fil-

terbank as in the system of Kim et al. Only AMS features

are extracted from each T-F unit. The training set includes

390 IEEE sentences, each of which is mixed with the three

noises at three input SNRs as described in the previous

TABLE III. Classification results for new noises.

Female speaker Male speaker

White Cocktail party White Cocktail party

�5 dB (%) 0 dB (%) �5 dB (%) 0 dB (%) �5 dB (%) 0 dB (%) �5 dB (%) 0 dB (%)

Proposed HIT 69.44 72.55 54.31 66.29 71.82 77.14 46.02 61.61

FA 7.25 8.32 7.02 6.27 16.69 17.65 14.62 15.21

HIT-FA 62.19 64.23 47.29 60.02 55.13 59.49 31.40 46.39

Accuracy 88.81 87.00 83.34 84.03 81.29 81.09 78.14 77.97

Kim et al. HIT 48.32 56.40 55.43 58.54 46.60 54.24 49.78 53.82

FA 25.80 25.61 29.13 24.36 16.82 14.84 35.58 32.62

HIT-FA 22.52 30.78 26.31 34.17 29.78 39.40 14.20 21.21

Accuracy 69.83 69.99 67.03 69.60 76.75 77.68 61.73 63.40

TABLE IV. Comparison of systems with different features for female

utterances.

Speech-shaped Factory Babble

HIT-FA �5 dB (%) 0 dB (%) �5 dB (%) 0 dB (%) �5 dB (%) 0 dB (%)

Combined 51.83 63.17 50.37 60.28 43.60 46.24

AMS 50.58 59.98 43.30 52.71 41.16 46.22

Pitch-based 51.40 60.69 51.13 60.02 34.13 38.45

TABLE V. Comparison of systems with different features for male

utterances.

Speech-shaped Factory Babble

HIT-FA �5 dB (%) 0 dB (%) �5 dB (%) 0 dB (%) �5 dB (%) 0 dB (%)

Combined 36.87 53.46 37.64 51.14 34.61 43.01

AMS 38.79 44.57 37.29 42.61 36.27 41.24

Pitch-based 34.03 52.56 40.25 57.07 27.42 38.34
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subsection. The test set includes 60 sentences mixed with

three noises at �5 and 0 dB. The LC is set to �8 dB for the

lower 15 frequency channels and �16 for the higher 10 fre-

quency channels. No auditory segmentation is applied in our

system. For a rigorous comparison, we train our SVM-based

system and directly use the program code with trained

GMMs provided by them to estimate the IBM.

Tables IX and X show the comparative results. Our sys-

tem obtains greater than 60% HIT-FA rates for the female

utterances and greater than 50% HIT-FA rates for the male

utterances. Compared to GMMs, SVMs improve HIT-FA

rates under most conditions except for the factory noise at

�5 dB for the male utterances where results are comparable.

Statistically, the 95% confident intervals of the HIT-FA

means for the proposed system are around 61.5%, while

those for the GMM system are 62% on average.

VII. DISCUSSION AND CONCLUSION

In this study, we have proposed SVM-based classifica-

tion for IBM estimation. As a discriminative classifier, the

SVM does not model the distribution of the observed fea-

tures but directly gives a predictive model conditioned on

the observed data. The SVM aims to not only minimize the

classification error but find a hyperplane with the largest

margin; this potentially improves generalizability. In con-

trast, the GMM specifies a joint probability density function

over observed data and labels and tends to make more

assumptions than discriminative classifiers. We also

attempted to use MLPs as classifiers but observed that the

performance is poorer than either that of SVMs or GMMs.

By using re-thresholding, we obtain improved classifica-

tion results. As standard SVMs tend to under-label T-F units,

this method mainly increases HIT rates and hence improves

HIT-FA rates. Although re-thresholding introduces some

scattered interference-dominant units, it is easy to remove

these units by auditory segmentation. Note that the setting of

thresholds is application-dependent. In this study, we find

that a small validation set is sufficient to find appropriate

thresholds and they are robust to the choice of validation set.

Feature extraction plays an important role in classifica-

tion. Pitch offers a major cue to segregate voiced speech

from other sounds. However, determination of pitch in noisy

conditions is a difficult task. Although we can use the

ground-truth pitch to generate pitch-based features in the

training phase, we have to estimate pitch from mixtures in

the test phase. We have tried to use the same pitch tracker to

estimate pitch in both training and test phases, which

TABLE VII. Classification results for female speakers on the TIMIT

utterances.

Speech-shaped Factory Babble

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

TIMIT HIT 63.60 70.00 58.73 72.31 57.85 65.32

FA 12.70 6.55 12.51 11.38 17.34 14.56

HIT-FA 50.89 63.45 46.23 60.93 40.51 50.76

Accuracy 83.51 87.49 82.43 84.52 77.25 78.78

TABLE VIII. Classification results for male speakers on the TIMIT

utterances.

Speech-shaped Factory Babble

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

TIMIT HIT 61.05 67.94 59.40 66.65 57.18 64.07

FA 19.10 10.40 19.53 15.56 24.47 23.43

HIT-FA 41.94 57.55 39.87 51.09 32.71 40.65

Accuracy 77.74 84.12 76.76 79.78 71.34 72.32

TABLE VI. Comparison of systems with different features for new noises.

Female speaker Male speaker

White Cocktail party White Cocktail party

�5 dB (%) 0 dB(%) �5 dB (%) 0 dB (%) �5 dB (%) 0 dB (%) �5 dB (%) 0 dB (%)

Combined 58.99 62.02 46.89 59.07 55.43 63.25 27.80 40.78

AMS 20.57 34.11 31.06 40.80 22.45 36.30 23.29 29.53

Pitch-based 60.33 64.16 38.18 55.20 60.84 67.44 25.84 39.71

TABLE IX. Classification results with AMS features for female utterances.

Speech-shaped Factory Babble

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

SVM HIT 77.51 82.87 74.26 82.25 80.84 83.08

FA 8.43 10.10 12.89 13.89 15.80 16.60

HIT-FA 69.08 72.77 61.37 68.35 65.04 66.48

GMM HIT 80.84 79.64 81.91 81.35 81.36 78.40

FA 13.27 14.70 24.01 21.89 16.57 16.44

HIT-FA 67.57 64.94 57.90 59.46 64.79 61.96

TABLE X. Classification results with AMS features for male utterances.

Speech-shaped Factory Babble

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

�5 dB

(%)

0 dB

(%)

SVM HIT 67.73 74.84 65.24 75.27 76.59 76.78

FA 6.67 7.06 15.18 15.44 18.26 16.31

HIT-FA 61.07 67.79 50.06 59.83 56.33 60.47

GMM HIT 76.00 76.34 76.90 76.99 77.66 75.69

FA 15.75 15.57 26.16 23.44 21.90 19.56

HIT-FA 60.24 60.77 50.75 53.54 55.77 56.13
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generates matched features in the training and test phases.

However, the models trained using the estimated pitch do

not perform better than those using the ground-truth pitch

extracted from clean speech. A pitch tracker has important

influence on classification results. With better pitch estima-

tion, our system should perform even better.

AMS features are easy to extract and exist in both

voiced and unvoiced speech. As indicated in the results of

Sec. VI, the generalizability of AMS features appears not as

good as pitch-based features. Another limitation of AMS

features is that they can only address nonspeech interference.

For mixtures of two voices, AMS features are not able to dis-

tinguish them, but with multipitch tracking, pitch-based fea-

tures are still discriminative even though this paper does not

deal with segregation of two voices. The combination of

two types of features constitutes a complementary feature set,

which performs better than either type alone. In addition, as

the extracted features capture speech characteristics rather

than speaker characteristics, the system is speaker-independent

as shown in the Sec. VI A.

In summary, we approach monaural speech segregation

as binary classification. Our system extracts pitch-based and

AMS features from T-F units and utilizes SVMs to classify

them. An auditory segmentation stage further improves clas-

sification results. Systematic evaluations show that our sys-

tem yields accurate classification results. As demonstrated in

Li and Loizou (2008) and Kim et al. (2009), HIT-FA rates

are correlated with speech intelligibility. Because our system

achieves higher HIT-FA rates than the system of Kim et al.,
it seems reasonable to expect that our system can lead to

improved intelligibility. However, such expectation needs to

be tested with human listeners, and we plan to conduct such

tests in future research.
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