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ABSTRACT

Monaural speech separation is a very challenging task. CASA-
based systems utilize acoustic features to produce a time-frequency
(T-F) mask. In this study, we propose a classification approach to
monaural separation problem. Our feature set consists of pitch-
based features and amplitude modulation spectrum features, which
can discriminate both voiced and unvoiced speech from nonspeech
interference. We employ support vector machines (SVMs) followed
by a re-thresholding method to classify each T-F unit as either target-
dominated or interference-dominated. An auditory segmentation
stage is then utilized to improve SVM-generated results. Systematic
evaluations show that our approach produces high quality binary
masks and outperforms a previous system in terms of classification
accuracy.

Index Terms— Speech separation, IBM, SVM, Re-thresholding,
Segmentation

1. INTRODUCTION

A key problem in speech processing is speech separation from a
monaural recording, that is, to separate a speech signal from its back-
ground interference. In this setting, one can only consider the intrin-
sic properties of speech or interference to distinguish and separate
them. This problem has proven to be very challenging.

Inspired by human auditory perception, CASA (computational
auditory scene analysis) aims to separate a sound mixture into dif-
ferent auditory streams based on perceptual principles [1]. An ideal
binary mask (IBM) has been proposed as a main computational goal
of CASA [2]. The IBM is defined in terms of premixed target and in-
terference. Specifically, for a time-frequency (T-F) unit, if the signal-
to-noise ratio (SNR) within the unit is greater than a local criterion
(LC), it will be labeled as 1 and otherwise it will be labeled as 0.
Previous studies show that IBM separation produces large improve-
ments in human speech intelligibility [3, 4, 5]. Therefore, one way
to approach monaural speech separation is to estimate the IBM.

IBM estimation can be viewed as binary classification. To our
knowledge, the first attempt to treat speech separation as binary clas-
sification was made in the binaural domain [6]. Supervised classifi-
cation has also been recently studied for monaural speech separation
[7, 8].

From the classification point of view, the first issue to address
is feature extraction. Pitch, or harmonic structure, is a prominent
characteristic of speech signals and has been proven to be effective
for separating voiced speech from other sounds. Pitch-based fea-
tures are robust to various forms of signal corruption but they cannot

address separation of unvoiced speech which lacks harmonic struc-
ture. On the other hand, amplitude modulation spectrum (AMS) has
been used as a feature for discriminating both voiced and unvoiced
speech from nonspeech intrusions [8]. In this study, we propose to
combine these two types of features and construct a larger feature set
for classification.

Obviously, classifier design is also important for successful clas-
sification. The task here is to classify T-F units in terms of ex-
tracted features. In this study, we propose to employ support vector
machines (SVMs), which are largest-margin classifiers with good
generalizability. A typical output from the discriminant function of
an SVM is a real number indicating the distance from the decision
boundary, and the threshold of 0 is commonly used to binarize the
output for classification. In this study, we introduce a re-thresholding
strategy in order to maximize the hit rate minus false-alarm (FA) rate.
In addition, we employ an auditory segmentation method to further
improve the classification results.

The paper is organized as follows. In the next section, we
present the proposed system in detail. The experimental results and
comparisons are given in Section 3. The last section concludes the
paper.

2. SYSTEM DESCRIPTION

As shown in Fig.1 the proposed system consists of four stages. The
first stage is the auditory peripheral analysis. An input mixture
x(t) is analyzed by a bank of 64 gammatone filters from 50 Hz to
8000 Hz [1]. In each channel, the output is divided into 20-ms time
frames with 10-ms overlapping between consecutive frames. This
processing produces a two-dimensional time-frequency representa-
tion, called cochleagram. In the next stage, features are extracted
from each unit in the cochleagram. Then, a trained SVM classifies
T-F units to 1 or 0 in each channel. By combining these classifica-
tion results we obtain an estimated IBM. An auditory segmentation
stage utilizes cross-channel correlation and onset/offset information
to improve the mask. Details are presented as follows.

2.1. Feature Extraction

For pitch-based features, the autocorrelation function (ACF)
A(c,m, τm) for channel c and frame m is computed at the pitch lag
τm [1]. The range for time delays in ACF corresponds to the plausi-
ble pitch range of 80 to 500 Hz. Similarly, we compute the envelope
ACF, AE(c,m, τm), which captures the amplitude modulation in-
formation in high frequency channels. In order to encode variations,
we also calculate delta features. Specifically, for m ≥ 2, time delta
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Fig. 1. Diagram of the proposed system

feature ΔAT (c,m, τm) is the difference between A(c,m, τm) and
A(c,m − 1, τm), and ΔAT (c, 1, τm) is set to ΔAT (c, 2, τm). We
compute frequency delta feature ΔAC(c,m, τm) in the same way.
The pitch-based feature vector is then given by:

xA(c,m) =

⎛
⎜⎜⎜⎜⎜⎜⎝

A(c,m, τm)
AE(c,m, τm)
ΔAT (c,m, τm)
ΔAT

E(c,m, τm)
ΔAC(c,m, τm)
ΔAC

E(c,m, τm)

⎞
⎟⎟⎟⎟⎟⎟⎠

Here, the pitch period τm needs to be specified during the calcula-
tion. In the training stage, we use Praat [9] to extract the ground-
truth pitch. In the test stage, we use a pitch detector [10] to es-
timate pitch from the mixture. Note that, unvoiced frames do not
include pitch information, so we simply put 0 as the value of the cor-
responding feature. Classification in unvoiced intervals mainly relies
on AMS features.

To extract AMS features, the envelope extracted from each T-F
unit is Hanning windowed with zero-padding, and a 256-point fast
Fourier transform (FFT) is computed. Then, the FFT magnitudes are
multiplied by 15 triangular-shaped windows and summed to produce
15 modulation spectrum amplitudes, which represent the AMS fea-
ture vector [8]. We denote them by M1(c,m), ...,M15(c,m). Simi-
larly, we calculate delta features ΔMT and ΔMC across frames and
channels, respectively, and the overall AMS feature vector is given
by:

xM (c,m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1(c,m)
· · ·

M15(c,m)
ΔMT

1 (c,m)
· · ·

ΔMT
15(c,m)

ΔMC
1 (c,m)
· · ·

ΔMC
15(c,m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The total dimension of the AMS feature vector xM (c,m) is 3×
15 = 45. Finally, we combine the pitch-based feature vector and
AMS feature vector into a 51-dimensional feature vector for each
T-F unit.

2.2. SVMs Classification

SVMs are used to estimate the IBM in each channel. We choose
the radial basis function K(xi,xj) = exp(−γ||xi − xj ||2) as the
kernel and the parameters are tuned by 5-fold cross-validation. The
SVM library LIBSVM [11] is used in our experiments.

In the test stage, the binary label of each datum is typically given
by the sign of the real number computed from the discriminant func-
tion:

f(x) =
∑
i∈sv

αiyiK(x,xi) + β (1)

where SV denotes the set of support vector indices in training data.
xi are support vectors and yi are the corresponding labels. αi are La-
grange multipliers and β is the bias, both of which can be determined
in the training stage. The absolute value of f(x) is proportional to
the distance to the decision hyperplane.

We find that the trained SVMs tend to under-label target-
dominated units for several reasons. The first reason is that, with
unbalanced training samples, the SVM hyperplane is often skewed
to the minority [12]. For IBM estimation, due to the concentration
of speech energy, when the input SNR is around 0 dB and the in-
terference is a nonspeech noise, target-dominated units are much
fewer than interference-dominated units. Second, we use different
pitch trackers in the training and test stages, which introduces some
mismatch. In addition, standard SVM is designed to maximize the
classification accuracy, and if we focus on other measurements, for
example, the hit rate minus false-alarm rate (HIT-FA), we need to
adapt the decision function in the test stage.

To rectify the under-labeling problem, we first choose a vali-
dation set with 10 sentences, and then find a new threshold θc that
maximizes HIT-FA in channel c. The new thresholds are used to
binarize f(x):

y(x) =

{
1, if f(x) > θc

0, otherwise
(2)

2.3. Auditory Segmentation

In the segmentation stage, we utilize cross-channel correlation to
segment units in voiced intervals [1]. Specifically, we compute
cross-channel correlation C(c,m) for each unit in low frequency
channels and envelope cross-channel correlation CE(c,m) for each
unit in high frequency channels [7]. Only those units with suffi-
ciently high cross-channel correlation or envelope cross-channel
correlation will be iteratively merged into segments. For unvoiced
intervals, a multiscale onset/offset analysis [13] is applied to form
segments, which detects sudden intensity increases (onsets) and
decreases (offsets). This analysis is appropriate for segmenting un-
voiced speech. Then, we group each segment into the target stream
if the energy corresponding to the T-F units with the target label
is greater than the energy corresponding to the T-F units with the
interference label. Finally, those segments whose length is less than
50 ms are removed. By applying auditory segmentation, we obtain
the final binary mask, and the separated speech can be resynthesized
from this mask [1].
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3. EVALUATION AND COMPARISON

Fig. 2 illustrates the results generated by our system for a 0 dB
mixture of speech and factory noise. The LC is -5 dB. Fig. 2(a)
shows the ideal binary mask where 1 is indicated by white and 0 by
black. Fig. 2(b) shows the binary mask generated by the SVMs.
Comparing it with Fig. 2(a), the SVMs correctly label most target-
dominated units in both voiced and unvoiced speech intervals, but
at the expense of adding a small amount of interference. As shown
in Fig. 2(c), by incorporating segmentation, our the system is able
to recover more target-dominated units and remove most isolated
interference-dominated units.
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Fig. 2. Binary Masks Illustration. (a) IBM for a female utterance

mixed with a factory noise. (b) SVM-generated mask. (c) Estimated

IBM after auditory segmentation

To systematically evaluate the performance of our system, we
choose for the training set 100 female utterances from the IEEE cor-
pus [14] mixed with 3 types of noise (speech-shaped, factory, 20-
talker babble noise) at -5, 0 and 5 dB SNR. The test set consists of
60 female IEEE sentences which do not appear in the training set.
Each test utterance is mixed with the 3 types of noise at -5 and 0 dB.
The LC is set to -5 dB for all channels. These choices were motivated
by those in [8]. In order to quantify the performance of our system,
we compute the HIT rate (the percent of the target-dominated units
in the IBM correctly classified) and the FA rate (the percent of the
interference-dominated units in the IBM wrongly classified). We
also give the difference HIT-FA as it has been shown to be highly
correlated to human speech intelligibility [8]. In addition, we show
classification accuracy: the percent of misclassified units with re-
spect to the IBM.

As shown in Table 1, even with low input SNRs our system
achieves relatively high HIT rates and relatively low FA rates. That
HIT rates at -5 dB are lower than those at 0 dB is partly caused by
more unbalanced data at the lower SNR condition. Under most con-
ditions, HIT-FA rates are greater than 50% at -5 dB and 60% at 0 dB.
Here, the babble noise results are not as good as others because it is
difficult to group pitch contours under this noise condition.

Table 1 also shows a comparison with Kim et al.’s system [8]
which utilizes Gaussian mixture models (GMMs) to learn the distri-
bution of AMS features and uses a Bayesian classifier to label T-F
units. Their system is chosen for comparison because it obtains good
HIT-FA results and demonstrates improved speech intelligibility in
listening tests. In addition, the AMS feature is used in both systems.
For comparison, we train a 256-mixture Gaussian for each binary
label and each channel. The training and test sets are the same as
in our system. We can see from Table 1 that our system performs
consistently better than theirs. On average, the proposed system is
about 20% better than Kim et al.’s system in terms of HIT-FA and
more than 10% better in terms of accuracy.

We also test our system on two unseen noises (white and cock-
tail party noise) to assess its generalizability, and the results are
shown in Table 2. From Table 2, the average HIT-FA rate is about
59% which is close to those of trained noises. These results indicate
good generalizability of our system to different types of noise. Table
2 also shows the corresponding results of Kim et al.’s system, which
does not generalize well. We believe that the generalizability of our
system mainly results from the use of pitch-based features.

The results in Tables 1 and 2 indicate that our system signifi-
cantly ourperforms Kim et al.’s system. Since both the features and
the classifiers used are different, it is not clear what contributes to
the better performance of our system. To isolate different factors,
we perform a further comparison using exactly the same frontend
processor, same features, and same training methodology. Specif-
ically, we evaluate both systems on the 25-channel mel-scale fil-
terbank used in [8]. The training set includes 390 IEEE sentences
mixed with the 3 types of noise at 3 input SNRs as in the previous
experiment. The test set still includes 60 sentences mixed with the
3 noises at -5 and 0 dB. The LC is set to -8 dB for low frequency
channels and -16 dB for high frequency channels. The auditory seg-
mentation stage is excluded from our system in this experiment. In
other words, the only difference is the classifier used. We should
point out that we directly use the program code with trained GMMs
provided by them. The comparative results are given in Table 3. As
shown in the table, our system obtains HIT rates higher than 74%
and FA rates lower than 17% under all conditions. Compared to
Kim et al., our system improves HIT-FA rates by about 3.5% at -5
dB and 8.9% at 0 dB. These improvements clearly demonstrate the
advantage of SVM classification.

The above experiments show that the proposed system produces
better estimated IBMs. Since we achieve higher HIT-FA rates than
Kim et al.’s system, it is reasonable to project that our separation
results will lead to significantly improved speech intelligibility in
these noisy conditions for human listeners.

4. CONCLUSION

In this study, we treat speech separation as binary classification. We
utilize SVMs to classify T-F units using pitch-based and AMS fea-
tures. An auditory segmentation method further improves classifi-
cation results. Systematic evaluations show the effectiveness of the
proposed system for IBM estimation. Comparing with Kim et al.’s
recent study [8], there is a strong prospect that speech separation by
our system can lead to improved speech intelligibility in noise.
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Table 1. Classification results for different noises
Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB
HIT 60.14% 69.89% 60.02% 70.52% 61.43% 69.00%

Proposed FA 4.10% 3.89% 8.60% 7.09% 17.58% 16.12%

HIT-FA 56.04% 66.00% 51.42% 63.43% 43.85% 52.88%

Accuracy 90.33% 89.60% 86.09% 87.02% 77.52% 78.63%

HIT 59.74% 61.02% 57.39% 60.38% 53.85% 56.30%

Kim et al. FA 20.70% 16.20% 26.71% 22.43% 27.18% 24.60%

HIT-FA 39.04% 44.82% 30.68% 37.95% 26.67% 31.71%

Accuracy 76.25% 78.15% 70.60% 73.05% 68.40% 68.86%

Table 2. Classification results for new noises
White Cocktail-party

-5 dB 0 dB -5 dB 0 dB
HIT 69.44% 72.55% 54.31% 66.29%

Proposed FA 7.25% 8.32% 7.02% 6.27%

HIT-FA 62.19% 64.23% 47.29% 60.02%

Accuracy 88.81% 87.00% 83.34% 84.03%

HIT 48.32% 56.40% 55.43% 58.54%

Kim et al. FA 25.80% 25.61% 29.13% 24.36%

HIT-FA 22.52% 30.78% 26.31% 34.17%

Accuracy 69.83% 69.99% 67.03% 69.60%

Table 3. Classification results with AMS features
Speech-shaped Factory Babble

-5 dB 0 dB -5 dB 0 dB -5 dB 0 dB
HIT 77.51% 82.87% 74.26% 82.25% 80.84% 83.08%

SVM FA 8.43% 10.10% 12.89% 13.89% 15.80% 16.60%

HIT-FA 69.08% 72.77% 61.37% 68.35% 65.04% 66.48%

HIT 80.84% 79.64% 81.91% 81.35% 81.36% 78.40%

GMM FA 13.27% 14.70% 24.01% 21.89% 16.57% 16.44%

HIT-FA 67.57% 64.94% 57.90% 59.46% 64.79% 61.96%
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