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Despite considerable effort, monaural (single-microphone) algorithms capable of increasing

the intelligibility of speech in noise have remained elusive. Successful development of such an

algorithm is especially important for hearing-impaired (HI) listeners, given their particular

difficulty in noisy backgrounds. In the current study, an algorithm based on binary masking

was developed to separate speech from noise. Unlike the ideal binary mask, which requires prior

knowledge of the premixed signals, the masks used to segregate speech from noise in the current

study were estimated by training the algorithm on speech not used during testing. Sentences were

mixed with speech-shaped noise and with babble at various signal-to-noise ratios (SNRs). Testing

using normal-hearing and HI listeners indicated that intelligibility increased following processing

in all conditions. These increases were larger for HI listeners, for the modulated background, and

for the least-favorable SNRs. They were also often substantial, allowing several HI listeners to

improve intelligibility from scores near zero to values above 70%.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4820893]
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I. INTRODUCTION

A primary complaint of hearing-impaired (HI) listeners

is poor speech recognition in background noise. This issue

can be quite debilitating and persists despite considerable

efforts to improve hearing technology. The primary limita-

tion resulting from sensorineural hearing impairment of

cochlear origin involves elevated audiometric thresholds and

resulting limited audibility. Because intense sounds are often

perceived at normal loudness, these listeners often have

reduced dynamic range and display a steep growth of loud-

ness as signal intensity is increased (for a review, see Bacon

et al., 2004). But reduced audibility forms only a portion of

HI listeners’ collection of limitations.

Hearing loss of 40 dB hearing level (HL) or greater is

often accompanied by broad auditory tuning (for a review,

see Moore, 2007). The resulting reductions in frequency

resolution and spectral smearing can impair speech percep-

tion in noise (e.g., Baer and Moore, 1993; ter Keurs et al.,
1992). Further, HI listeners often lack the ability displayed

by normal-hearing (NH) listeners to “listen in the dips” of a

fluctuating masker. As a result, masking release is often

reduced in HI listeners (e.g., Wilson and Carhart, 1969;

Festen and Plomp, 1990; Bacon et al., 1998; Bernstein and

Grant, 2009), and it can be eliminated when broad tuning is

simulated (ter Keurs et al., 1993). It has been suggested that,

in addition to a smearing of acoustic speech cues, broad

tuning reduces speech recognition in complex noises by lim-

iting opportunities to isolate spectro-temporal regions con-

taining relatively undisturbed representations of the speech

(e.g., Apoux and Healy, 2009, 2010).

Hearing-impaired listeners also display other deficits.

Performance on tasks of temporal resolution is often poorer

than normal. Although cochlear hearing loss may not impair

temporal resolution per se, the effective resolution displayed

by these listeners is often reduced due to limited audible

bandwidth (e.g., Bacon and Gleitman, 1992; Moore et al.,
1992) or reduced sensation level (e.g., Fitzgibbons and

Wightman, 1982; Glasberg et al., 1987; Nelson and Thomas,

1997). It has also been suggested that an across-frequency

deficit exists, in which HI listeners have particular difficulty

integrating speech patterns at different spectral loci—a task

presumably required to reassemble the auditory representa-

tion of a signal once decomposed by the auditory periphery

(e.g., Turner et al., 1999; Healy and Bacon, 2002; Souza and

Boike, 2006; Grant et al., 2007; Healy and Carson, 2010).

Finally, and most recently, it has been suggested that HI lis-

teners benefit less than normal from the temporal fine struc-

ture of speech (e.g., Lorenzi et al., 2006).

Modern hearing aids do quite well amplifying sounds in

a fashion that is appropriate for individual ears, and as a

result, speech recognition in quiet can be reasonably good

for many HI listeners. However, modern devices are limited

in their ability to address limitations other than audibility.

These limitations combine to make speech perception in

noise difficult for HI listeners and the remediation of this

issue equally difficult.
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One technique incorporated into modern hearing tech-

nology to improve speech perception in noise involves

microphone arrays. Spatial filtering, or beamforming, boosts

the sound originating from a specific direction and attenuates

sounds originating from other directions. The simplest

implementation (delay-and-sum) assumes that the signal

of interest is at zero azimuth and noise originates from

elsewhere. Adaptive beamforming attempts to cancel a noise

source picked up by a microphone by subtracting it from a

main microphone that picks up both the target speech and

the noise.

While microphone arrays can produce substantial

improvements in speech-in-noise intelligibility, they are not

free from limitations. First, improvement in signal-to-noise

ratio (SNR) requires that target speech and interfering

sounds come from different spatial locations, a rule that is

often violated in natural environments. Another limitation is

that of configuration stationarity: All spatial filtering meth-

ods operate on the premise of a fixed-source configuration

(Wang, 2005). As a result, they have difficulty when sources

change location or when the sound of interest switches from

one source to another. These limitations together restrict sit-

uations in which hearing aids employing spatial techniques

can provide benefit.

A longstanding goal in signal processing is the develop-

ment of processing algorithms capable of monaural (i.e.,

speech and noise picked up by the same single microphone)

segregation of speech from noise. Many such enhancement

techniques have been proposed to perform segregation using

monaural input (see Loizou, 2007). They are generally based

on statistical analysis of speech and noise, followed by

estimation of clean speech from noisy speech. Classic

approaches include spectral subtraction, Wiener filtering,

and mean-square error estimation. Spectral subtraction sub-

tracts the power spectral density of the estimated interfer-

ence from that of the mixture. The Wiener filter estimates

clean speech from the ratios of speech spectrum and mixture

spectrum. Mean-square error estimation models speech and

noise spectra as statistically independent Gaussian random

variables and estimates clean speech accordingly.

These speech-enhancement techniques can result in

significant SNR increases and improved performance of

automatic speech-recognition systems. However, increases

in speech intelligibility for human listeners have remained

elusive for decades (e.g., Levitt, 2001; Hu and Loizou,

2007). One possible reason for this lack of intelligibility

improvement involves the fact that speech following separa-

tion from noise is often distorted. These processing artifacts

include the well-known “musical noise” caused by spectral

subtraction. Another possibility involves the removal of low-

intensity speech sounds, e.g., unvoiced consonants, which

are important for intelligibility. This persistent lack of suc-

cess in obtaining intelligibility improvement has led some to

question whether one-microphone solutions are ever possi-

ble. For example, Levitt stated that, “Our understanding of

this problem is so limited that we have not only been unsuc-

cessful in finding a solution, but we do not even know

whether it is possible to improve the intelligibility of speech

in noise by any significant amount.” (Levitt, 1997, p. xvii).

In computational auditory scene analysis (CASA), it has

been suggested that a target goal for the segregation of

speech from noise is provided by the ideal binary time-

frequency mask (Hu and Wang, 2001; Wang, 2005). The

idea underlying the ideal binary mask (IBM) is to retain

the time-frequency (T-F) regions of a mixture in which the

target speech is relatively strong, and to discard the remain-

ing regions. Specifically, the IBM is a binary matrix having

a value of 1 for each T-F unit in which the SNR exceeds a

threshold [or local criterion (LC)], and 0 otherwise. It is

“ideal” because the mask is defined in terms of the premixed

target and interference, i.e., prior knowledge of the target

speech and noise is required. The term also reflects the fact

that the IBM provides the optimal SNR gain of all binary

T-F masks under certain conditions (Li and Wang, 2009).

A series of experiments have shown that the IBM can

substantially improve intelligibility. Brungart et al. (2006)

found that NH listeners could achieve near-perfect intelligi-

bility in one- to three-talker interference. Anzalone et al.
(2006) observed substantial speech reception threshold

(SRT) improvements for both NH and HI listeners. Li and

Loizou (2008) found NH-intelligibility results broadly con-

sistent with those of Brungart et al. (2006). Wang et al.
(2009) observed considerable SRT improvements for both

NH and HI listeners in speech-shaped noise (SSN) and in

cafeteria noise. The larger improvements in the latter com-

plex background suggest that ideal masking is more effective

for modulated than for stationary noise. Further, Wang et al.
(2009) found that ideal masking was capable of raising the

intelligibility of HI listeners to levels comparable to that of

NH listeners. Finally, Cao et al. (2011) showed that adding

background noise to fill in 0-valued T-F units in the IBM can

further improve intelligibility.

Although binary masking is clearly capable of produc-

ing large intelligibility gains, to be useful, a separation algo-

rithm must be able to estimate the IBM directly from a noisy

mixture, i.e., without prior knowledge of the individual

target and noise signals. To our knowledge, the only such

demonstration of intelligibility improvement from a monau-

ral algorithm is provided by Kim et al. (2009). The authors

proposed an algorithm that uses a Gaussian mixture model

(GMM) classifier to decide whether each T-F unit is domi-

nated by speech or by noise. Unlike the IBM, the binary

mask employed by Kim et al. (2009) was estimated by train-

ing the GMM classifier. Sentences from the IEEE database

(IEEE, 1969) were separated in this way from one of three

noises (20-talker babble, factory noise, or SSN) at �5 or

0 dB SNR. Results from NH listeners indicated improve-

ments in intelligibility in all conditions and substantial

improvements when unprocessed scores were low. An

adapted version of this algorithm was later shown to improve

speech intelligibility of cochlear implant (CI) users (Hu and

Loizou, 2010). Recently, Fink et al. (2012) tested a different

binary-masking algorithm tailored specifically for white

noise, and found a clear intelligibility benefit for CI users,

but not for NH listeners or hearing-aid users.

The results of Kim et al. (2009) are impressive, but they

are restricted to NH listeners or CI users. For an algorithm to

be useful to the largest population of hearing-impaired
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listeners—those who need hearing aids—it must be capable

of improving intelligibility for such listeners. Further, from

the algorithmic standpoint, GMM classifiers tend to overfit

the training set. As a result, the Kim et al. algorithm likely

has difficulty handling even small noise variations between

training and test conditions (Han and Wang, 2012; Wang

and Wang, 2013). The goal of the current study is to evaluate

a new binary-masking algorithm designed to improve intelli-

gibility for both NH and HI listeners. Sentences from the

Hearing in Noise Test (HINT) (Nilsson et al., 1994) were

presented in steady noise and in babble at various SNRs,

prior to and after processing, to both types of listeners.

II. ALGORITHM DESCRIPTION

Due to the success of the IBM in improving speech

intelligibility for both NH and HI listeners, we approach the

segregation of speech from noise through IBM estimation. In

other words, speech segregation is treated as a binary-

classification problem in which each T-F unit needs to be

labeled as speech-dominant (1) or noise-dominant (0). In the

current study, the IBM is estimated by training using senten-

ces not used for testing. Figure 1 shows a schematic diagram

of the current system. Noisy signals were first passed

through a 64-channel gammatone filterbank with center fre-

quencies ranging from 50 to 8000 Hz. The output from each

filter channel was divided into 20-ms frames with 10-ms

overlap. This formed a T-F representation known as a coch-

leagram (Wang and Brown, 2006), from which acoustic

features were extracted. During the training stage, the IBM

provided binary labels reflecting speech or noise dominance

in each T-F unit. Using the standard training procedure of

backpropagation, the estimated IBM was obtained by mini-

mizing the difference between it and the IBM. In supervised

learning, both feature extraction and classifier training are

important, and they are discussed separately below.

It was also important to set a proper value for the LC,

which again is the SNR criterion used to label a particular

T-F unit as speech-dominated or noise-dominated. In the

current study, the following values for LC were used: �6 dB

for input SNRs of 0 and �2 dB, �10 dB for SNR of �5 dB,

and �12 dB for SNR of �8 dB.

A. Feature extraction

Since a binary decision needed to be made for each

T-F unit, acoustic features were extracted from each T-F

unit. Wang et al. (2013) conducted a systematic evaluation

of different unit-level features and identified a set of

complementary features. In the current study, this comple-

mentary feature set was employed, which consisted of (1)

the amplitude modulation spectrogram (AMS), (2) relative

spectral transform and perceptual linear prediction (RASTA-

PLP), and (3) mel-frequency cepstral coefficients (MFCCs).

Although each of these three feature types can be used to

discriminate speech from noise to some degree, the use of all

three adds discriminative power (Wang et al., 2013).

The procedure of Kim et al. (2009) was employed to

extract the 15-dimensional (15-D) AMS feature, which is

composed of 15 modulation-frequency bins. Briefly, the

envelope within each spectral-frequency channel was

extracted using full-wave rectification followed by decima-

tion. The modulation spectrum was then obtained by passing

the Hanning-windowed decimated envelope to a 256-point

FFT. Finally, the 256 FFT modulation magnitudes were

reduced to 15 values using 15 triangular averaging windows.

The extraction of RASTA-PLP and MFCC features fol-

lowed common practice. To extract the 13-D RASTA-PLP

feature, the power spectrum was first warped to the Bark

scale, which was then log compressed. This auditory spec-

trum was then filtered by the RASTA filter and expanded

again by an exponential function. Finally, the PLP analysis

was performed on this filtered spectrum. To extract the 31-D

MFCC feature, the signal was first preemphasized, then a

512-point FFT with a 20-ms Hamming window was used to

obtain its power spectrum. The power spectra were then

warped to the mel scale followed by the standard log opera-

tion and discrete cosine transform.

Incorporating D features has been found to provide sig-

nificant improvements in classification. These features are

simply difference values between neighboring T-F units,

which capture the temporal variation of a feature. To balance

performance with computational overhead, first- and second-

order D features were used only for RASTA-PLP. In total,

these features together resulted in an 85-D feature vector for

each T-F unit.

B. Classifier training

Previous classification-based segregation systems have

employed GMM (Kim et al., 2009) or support vector machines

(SVM, Han and Wang, 2012). Wang and Wang (2013)

showed that deep neural networks (DNNs) outperform both of

these. DNNs were therefore employed as classifiers in the cur-

rent study. Because they operate within each frequency chan-

nel, they are referred to as subband DNN classifiers in Fig. 1.

DNNs generally refer to neural networks having more

than one hidden layer. They can be viewed as hierarchical

FIG. 1. Schematic diagram of the current speech-segregation system. DNN¼ deep neural network, IBM¼ ideal binary mask.
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feature detectors that increasingly untangle factors of varia-

tion as the number of hidden layers increases. However,

training with more than one hidden layer was previously

considered difficult due to problems such as vanishing gra-

dients. The resulting models either had high training errors

or they overfit a particular training set. To address these

problems, Hinton et al. (2006) proposed to first pre-train the

network, and then use supervised training to fine tune

the network. Specifically, they proposed to use a stack of

restricted Boltzmann machines (RBMs), trained in an unsu-

pervised layerwise fashion for pre-training. An RBM is a

two-layer network trained to model its input data. After RBM

pre-training, the resulting weights (the tunable parameters)

were used as initial values for standard backpropagation

training. The main advantage of DNNs lies in unsupervised

RBM pre-training, which aims to represent the input data in

increasingly more abstract ways to effectively encode stable

(robust) features in the data and enable improved discrimina-

tive training via backpropagation.

In the current study, the 85-D acoustic features described

above were used as raw inputs to DNNs. We found that using

two hidden layers with RBM pre-training significantly

improved classification performance, with more layers pro-

viding diminished performance gain. A Gaussian–Bernoulli

RBM was used for the first hidden layer to deal with real-

valued inputs, and a Bernoulli–Bernoulli RBM was used for

the second hidden layer. Both hidden layers had 200 units,

each of which used a logistic sigmoid transfer function. One

iteration of contrastive divergence (Hinton, 2002) was used

to approximate the gradient in RBM, and learning rates of

0.01 and 0.1 were used for training the Gaussian–Bernoulli

and Bernoulli–Bernoulli RBM, respectively.

Following this pre-training, fine tuning of the DNNs

took place using the backpropagation procedure, in which

the cross entropy objective function was used to measure the

error with respect to the IBM. In both RBM pre-training and

backpropagation learning, mini-batch gradient descent with

a batch size of 512 was used. The interested reader is

referred to Hinton et al. (2006) and Wang and Wang (2013)

for more technical discussions of the learning algorithms.

C. Incorporating contextual information

As described above, the labeling of each T-F unit was

based on its acoustic features. However, speech typically

exhibits highly structured spectro-temporal patterns that

result from the human speech-production mechanism.

Because that mechanism possesses constraints and mechani-

cal inertias, and because languages introduce additional

constraints due to various rules, these patterns tend to be

structured. Therefore, taking into consideration acoustic

features from neighboring T-F units is expected to benefit

decision making in the current T-F unit. However, direct con-

catenation of raw features results in very high-dimensional

feature vectors, which may render training impractical. To al-

leviate this concern, a first DNN was trained as described

above, which output a posterior probability of target-

dominance for each T-F unit (posterior mask in Fig. 1). Then,

a second DNN was trained, in which a window of posterior

probabilities was concatenated as the representation for the

center T-F unit. A window spanning both five time frames

and 17 (of the 64) frequency channels was used. Such a rep-

resentation was both discriminative and parsimonious, and

we have found significant improvements in classification by

incorporating this contextual information.

Figure 2 illustrates the segregation of a HINT utterance

from SSN at �5 dB SNR. Panels (a) and (b) show the coch-

leagrams of the clean speech and speech-plus-noise, respec-

tively. The IBM, estimated IBM and cochleagram of the

segregated speech are shown in panels (c), (d), and (e),

respectively.

III. HUMAN SUBJECTS TESTING

A. Method

1. Subjects

Twelve listeners diagnosed with a bilateral sensorineu-

ral hearing loss of cochlear origin participated. These indi-

viduals were selected to represent typical HI listeners seen at

The Ohio State University Speech-Language-Hearing Clinic.

All were bilateral hearing aid users recruited from this clinic.

The prior diagnoses were confirmed on day of test using

pure-tone audiometry (ANSI, 2004) and tympanometry

(ANSI, 1987). Audiograms generated on day of test are dis-

played in Fig. 3. Although the hearing losses may be charac-

terized, on average, as sloping and moderate, they ranged

from flat to sloping and from mild to severe. Also displayed

in Fig. 3 are pure-tone averages (PTAs) based on 0.5, 1,

and 2 kHz and pooled across ears (range¼ 33–54 dB HL,

mean¼ 42.8), genders (seven females), and subject ages

(range¼ 32–72 yr, mean¼ 61.8).

In addition to this group, 12 NH listeners were recruited

from undergraduate courses at The Ohio State University.

All had pure-tone audiometric thresholds of 20 dB HL or

better at octave frequencies from 250 to 8000 Hz (ANSI,

2004). They were aged 19 to 28 yr (mean¼ 21.1), and all

were female. All subjects received a monetary incentive or

course credit for participating.

2. Stimuli and procedure

The original male-talker, 20 161-Hz, 16-bit digital

recordings of the HINT sentences described in Nilsson et al.
(1994) were employed. Prior to processing, the signals were

downsampled to 16 kHz and each sentence was scaled to

equate total RMS energy. The algorithm was trained using

100 sentences (sentences 1–70 and 251–280) and subjects

were tested using 160 different sentences (sentences 71–230).

The two noise backgrounds included SSN and multi-

talker babble. The SSN was that from the commercial

version of the HINT and was 10 s in duration. The multi-

talker babble was created by mixing at equal amplitudes

sentences from the TIMIT database (Garofolo et al., 1993)

spoken by eight different talkers (four male and four female

talkers, two sentences each). The sentences were mixed with

SSN at �2, �5, or �8 dB SNR and with babble at 0, �2, or

�5 dB SNR, where SNR was calculated over the duration of

a HINT sentence. Each training and test sentence was mixed
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with a sample of SSN or babble having a randomly deter-

mined start point within the looped noise. The noise began

approximately 140 ms prior to the beginning of each sen-

tence and ended approximately 140 ms after the end of each

sentence.

Testing began with audiometric evaluation followed by

a brief familiarization. This familiarization consisted of

five HINT sentences in each of the following conditions in

the following order: (1) unprocessed in quiet, (2) unpro-

cessed in SSN, (3) processed in SSN, (4) unprocessed in

babble, and (5) processed in babble. Unprocessed refers to

the original speech or speech-noise mixture and processed

refers to this same mixture following processing by the

current algorithm. Five sentences used for training were

presented during stage (1), and sentences not used for train-

ing or test were used for stages (2–5). SNR was set to 0 dB

during familiarization. Following this familiarization, each

listener heard 20 HINT sentences in each of eight condi-

tions (2 processed/unprocessed� 2 SSN/babble� 2 SNRs).

Each subject group (NH or HI) heard two of the three SNRs

for each noise type. The sentence list-to-condition corre-

spondence was pseudorandomized for each subject. The

presentation order of conditions was also pseudorandom-

ized for each subject, with the restriction that unprocessed/

processed conditions appeared successively in random

order (i.e., either unprocessed first or processed first) for a

given SNR and noise type.

The signals were presented diotically over Sennheiser

HD 280 headphones (Wedemark, Germany) using a personal

computer equipped with Echo Digital Audio (Santa Barbara,

CA) Gina 3G digital-to-analog converters. Presentation

levels were set using a Larson Davis (Depew, NY) sound

level meter and flat-plate coupler (models 824 and AEC

101). The average RMS level of continuous speech or

speech-plus-noise was set to 65 dBA for the NH listeners.

The presentation level for the HI listeners (tested with hear-

ing aids removed) was set initially to 85 dBA. Following the

first five unprocessed familiarization sentences, HI subjects

were asked if the presentation level was adequate and com-

fortable and, “if they would turn it up or down if they could.”

All but one subject reported that the initial presentation level

was adequate and comfortable. For the one subject who

desired an increase in level (HI3), the presentation level was

increased to 90 dBA, which was judged to be adequate and

FIG. 2. Segregation of a HINT utterance from speech-shaped noise at �5 dB SNR. (a) Cochleagram of the utterance in quiet. (b) Cochleagram of the speech-

plus-noise. (c) IBM. (d) Estimated IBM. (e) Cochleagram of the utterance following noise removal using the estimated IBM.
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comfortable when the initial five familiarization sentences

were repeated.

Subjects were seated with the experimenter in a double-

walled audiometric booth. They repeated back as much of

each sentence as they could, and the experimenter recorded

the number of words correctly reported. Scoring was based

on percentage of component words correctly recalled.

B. Results and discussion

The mean intelligibility for each subject in each condi-

tion is displayed in Fig. 4. The upper panels display data for

sentences in SSN and the lower panels display data for sen-

tences in babble. For each listener, the unprocessed score is

represented by a circle and the processed score is represented

by a triangle. The benefit of processing is therefore repre-

sented by the height of the bar connecting the two symbols.

It is clear from Fig. 4 that both NH and HI subjects demon-

strated improvements in intelligibility following processing.

Individual HI listeners demonstrated the largest gains. In

SSN at �5 dB, the HI subject who displayed single-digit

intelligibility scores in the unprocessed condition increased

to 77% when processed. In babble at �2 dB, three HI sub-

jects displayed single-digit scores in the unprocessed

condition and recognition of 71–85 % when processed. Two

more HI subjects displayed unprocessed scores below 15%

and recognition of 81–86 % when processed.

Figure 5 displays group mean performance for each

noise type, SNR, and listener group. Intelligibility for the

NH listeners increased from 36.7 to 80.1 % in the least-

favorable SSN and from 42.3 to 77.8 % in the least-favorable

babble. Intelligibility for the HI listeners increased from 35.9

to 81.7 % in the least-favorable SSN and from 28.6 to 83.6 %

in the least-favorable babble. A series of planned compari-

sons (uncorrected paired t tests) confirmed the reliability of

the processing benefit in each condition shown in Fig. 5

[t(11)� 4.9, p< 0.001].1

The benefit displayed by the HI listeners was generally

larger than that displayed by the NH listeners. This difference

between listeners is larger in the babble background and is

most apparent at the common SNR of �2 dB (bottom center

panel of Fig. 5). The benefit advantage for the HI listeners

remains when benefit is compared across SNRs that produced

comparable unprocessed scores: In babble, unprocessed scores

averaging 42 and 40 % (at �5 dB for NH and 0 dB for HI,

respectively) rose to 78 and 90 % when processed, resulting in

mean benefits of 35% for NH versus 50% for HI [t(22)¼ 2.1,

p< 0.05]. The HI benefit advantage is also apparent in SSN at

FIG. 3. Pure-tone air-conduction audiometric thresholds for the listeners with sensorineural hearing impairment. Thresholds in right ears are represented by

circles and those in left ears are represented by �’s. Also displayed are listener ages in years and genders, as well as PTAs (in dB HL based on thresholds at

0.5, 1, and 2 kHz and pooled across ears). Listeners are numbered and arranged according to increasing PTA.
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the common SNR of �5 dB (top center panel of Fig. 5). It

remains, to a more modest degree than for babble, when con-

ditions that produced comparable unprocessed scores are

compared. Comparison between the two right-most pairs of

columns in the upper panels of Fig. 5 (SNR’s of �5 versus

�8 dB), or comparison between the two left-most pairs of col-

umns (SNR’s of �2 versus �5 dB), indicates that benefit was

slightly larger for HI than for NH listeners.

Another comparison of interest involves performance of

the NH listeners prior to processing versus that of the HI lis-

teners following processing, in conditions of common SNR

(Fig. 5, center panels). It was found that the HI listeners

hearing processed stimuli significantly outperformed the NH

listeners hearing unprocessed stimuli in SSN [81.7 versus

66.4 %, t(22)¼ 4.8, p< 0.001], and in babble [83.6 versus

64.7 %, t(22)¼ 4.7, p< 0.001].

IV. GENERAL DISCUSSION

Figure 4 shows that intelligibility in the processed

conditions was relatively homogeneous across individual HI

listeners, whereas intelligibility in the corresponding unpro-

cessed conditions was far more heterogeneous. Thus, benefit

was determined largely by performance in the unprocessed

conditions. The heterogeneity in unprocessed scores is to be

expected. However, the homogeneously high individual

scores in the processed conditions, despite large differences

in unprocessed scores, indicate that the current algorithm is

capable of outputting speech that is intelligible for HI

listeners who vary widely in speech-in-noise performance, at

least for these speech materials.

Figure 5 shows that group-mean intelligibility scores in

the unprocessed conditions were markedly reduced as SNR

was reduced, as expected. However, mean intelligibility

across processed conditions was quite stable. The homoge-

neously high mean scores across the processed conditions

indicate that the current algorithm is capable of outputting

speech that is intelligible for NH and HI listeners across a

range of SNR values.

Relationships between various subject variables and

benefit were examined in an attempt to identify HI-subject

characteristics related to maximum benefit. No correlations

were observed between subject age and benefit (or age and

raw unprocessed or processed scores). Instead, listeners

displayed considerable benefit across the range of ages

tested. In contrast, relationships were observed between

benefit and amount of hearing loss. The HI listeners in Fig.

4 are arranged in order of increasing PTA. Thus, the mildest

hearing impairments in the center panels are juxtaposed

with the NH data. As should be expected, unprocessed

scores tended to be higher for listeners having lower (better)

PTAs. Benefit tended to be related to PTA as a consequence

of this systematic relationship between unprocessed scores

and PTA. However, all listeners tended to produce high

intelligibility in the processed conditions, regardless of

degree of hearing loss. Thus, the current algorithm produced

the maximum benefit for the listeners who needed it most—

those who performed most poorly in background noise.

While this trend is evident in each set of HI data in Fig. 4,

FIG. 4. Mean HINT sentence component-word recognition scores for each listener. Normal-hearing listeners are represented by open symbols and hearing-

impaired listeners are represented by filled symbols. Unprocessed conditions are represented by circles, and algorithm-processed conditions are represented by

triangles. The upper panels display recognition in speech-shaped noise at three SNRs indicated, and the lower panels display recognition in multi-talker babble

at three SNRs. The hearing-impaired listeners are numbered and plotted in order of increasing pure-tone average.
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the correlation values did not reach statistical significance,

perhaps due to the limited number of samples and limited

power of the tests.

The current study, along with Kim et al. (2009), clearly

confirms the utility of binary classification for improving

speech intelligibility in noise. In addition to increasing intelli-

gibility for NH listeners, the current study demonstrates that

our algorithm is capable of outputting speech information

that is sufficient for an impaired auditory system, which typi-

cally has reduced dynamic range, poor frequency resolution,

and effectively reduced temporal resolution, as well as other

potential limitations. Since the speech material and noises

used in the current study are different from those used in Kim

et al., the amounts of improvement should not be directly

compared. Perhaps a more meaningful comparison can be

drawn in terms of the quality of IBM estimation, which is the

goal of both their algorithm and ours. By analyzing the corre-

lation between objective classification results and speech-

intelligibility scores, Kim et al. suggest the HIT-FA rate for

quantifying the performance of speech-segregation algo-

rithms, where HIT is the percent of target-dominant T-F units

(i.e., 1’s in the IBM) correctly classified and FA (false alarm)

is the percent of noise-dominant units incorrectly classified.

By this metric, the current DNN-based algorithm obtains an

average HIT-FA rate of 79.3% for SSN in the �5 dB SNR

condition while their GMM-based algorithm yields 64.2 and

76.1% for the three-noise and one-noise training conditions,

respectively (see male-speaker data in Table I of Kim et al.,
2009). Although the eight-talker babble in the current study

is expected to be a more difficult interference than the 20-

talker babble in Kim et al., our algorithm obtains an 80.9%

HIT-FA rate at �5 dB SNR while their corresponding rates

are 59.4 and 72.4 % for the three-noise and one-noise

conditions, respectively. This comparison shows that the

current DNN-based classification produces better IBM esti-

mation than the GMM-based classification of Kim et al. (see

also Wang and Wang, 2013).

From the standpoint of improving the SNR of segre-

gated speech, the optimal LC choice should be 0 dB (Li and

Wang, 2009), which is different from the negative LC values

used in this study. Indeed, our informal listening tests indi-

cate that the choice of LC¼ 0 dB leads to significantly less

intelligible speech. Part of the reason is that, with negative

overall input SNRs, the resulting binary masks become

sparse, having fewer 1’s and losing more speech signal. This

is consistent with previous intelligibility studies on binary

masking suggesting that negative LC values are more appro-

priate for improving speech intelligibility (Brungart et al.,
2006; Li and Loizou, 2008; Wang et al., 2009; Kim et al.,
2009). This also indicates that maximizing SNR may be

counterproductive if the objective is to improve human

speech intelligibility in background noise (see also, Wang

et al., 2009). Since SNR maximization is tantamount to pro-

ducing an output signal as close as possible to the target

speech, which is the implicit goal of speech-enhancement

methods, this may be an important reason why such methods

have failed to elevate speech intelligibility (see Sec. I).

The comparison between performance of NH listeners

prior to processing and that of HI listeners following proc-

essing, in conditions of common SNR, is analogous to exam-

ining these listeners in similar acoustic environments, should

the HI listeners have access to an algorithm like the one

described here. The results of this comparison suggest the

potential for the current algorithm to improve performance

for HI listeners: The fact that HI listeners significantly

outperformed NH listeners indicates that impaired listeners

FIG. 5. Group mean component-word

recognition scores and standard errors

for HINT sentences presented in

speech-shaped noise (upper panels)

and multi-talker babble (lower panels),

at the SNRs indicated, for normal-

hearing and hearing-impaired listeners,

both prior to and following algorithm

processing.
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have the potential to perform as well as, if not better than,

their NH counterparts in challenging environments, given

the current processing.

The fact that the current algorithm is capable of produc-

ing intelligibility by HI listeners that exceeds that achieved

when their NH counterparts are presented with noisy stimuli

is quite encouraging and suggests that the current algorithm

may potentially be simplified in various ways (e.g., without

using two future frames described in Sec. II C) to reduce

processing demand, while still providing adequate levels of

benefit. This may be important, given an eventual goal of

implementation into hearing technology, including hearing

aids and cochlear implants. We stress that this goal is long

term and that the current algorithm is far from ready to

implement. On the other hand, the current algorithm pos-

sesses attributes suggesting that its eventual implementation

may be possible. First, the monaural nature of the algorithm

provides inherent convenience in implementation relative

to microphone-array techniques. Second, the classification-

based framework shifts much of the workload to a training

stage. During the operational (test) stage, the algorithm

involves only feature extraction and binary labeling using

trained classifiers, both of which could be performed effi-

ciently. As an indication of processing time, the current algo-

rithm takes approximately 123 ms (107 for feature extraction

and 16 for DNN classification) per frequency channel to sep-

arate a 3-s noisy utterance using a single Intel 2.8 GHz Xeon

processor. We should mention that no attempt was made to

optimize processing speed as this was not an objective of the

current study; e.g., a significant increase in speed could be

achieved by replacing the current MATLAB implementation of

feature extraction with a C implementation.

An inherent issue in supervised learning is generaliza-

tion—typically a trained classifier is not expected to general-

ize well to completely new acoustic conditions. Like Kim

et al. (2009), talker, SNR level, and noise types were

matched across training and test stages in the current study,

while speech utterances (sentence content) were varied

across the two stages. As demonstrated by Kim et al., talker

mismatch is not a major issue. This is because classifiers are

trained to distinguish between speech- and noise-dominant

T-F units, and the acoustic characteristics of speech-

dominant units are generally different from those of noise-

dominant units, even when that noise is babble. We consider

SNR mismatch to be of less concern than noise mismatch

because SNR estimation can be performed with reasonable

accuracy (Kim and Stern, 2008; Narayanan and Wang,

2012). Regarding noise mismatch, recent effort has been

made to address this issue. In Han and Wang (2013), an

adaptation technique based on voice-activity detection has

been suggested to obtain glimpses of background noise dur-

ing speech-absent frames. In Wang and Wang (2013), it was

proposed that classifiers be trained on a large number of

noises (and talkers) in order to cover a variety of background

interferences during training. Although these techniques

help to alleviate the generalization issue, their effectiveness

in improving speech intelligibility in arbitrary environments

remains to be tested. Clearly, generalization will be an

important issue for future research.

To summarize, the current results indicate substantial

increases in sentence component-word intelligibility result-

ing from a monaural speech-segregation algorithm. The

increase is apparent for both NH and for HI listeners, and is

largest in modulated backgrounds and for HI listeners. To

our knowledge, this is the first monaural algorithm that

provides demonstrated speech intelligibility improvements

for HI listeners in background noise.
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