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Consonant recognition was assessed following extraction of speech from noise using a more efficient

version of the speech-segregation algorithm described in Healy, Yoho, Wang, and Wang [(2013) J.

Acoust. Soc. Am. 134, 3029–3038]. Substantial increases in recognition were observed following

algorithm processing, which were significantly larger for hearing-impaired (HI) than for normal-

hearing (NH) listeners in both speech-shaped noise and babble backgrounds. As observed previously

for sentence recognition, older HI listeners having access to the algorithm performed as well or better

than young NH listeners in conditions of identical noise. It was also found that the binary masks esti-

mated by the algorithm transmitted speech features to listeners in a fashion highly similar to that of

the ideal binary mask (IBM), suggesting that the algorithm is estimating the IBM with substantial ac-

curacy. Further, the speech features associated with voicing, manner of articulation, and place of

articulation were all transmitted with relative uniformity and at relatively high levels, indicating that

the algorithm and the IBM transmit speech cues without obvious deficiency. Because the current

implementation of the algorithm is much more efficient, it should be more amenable to real-time

implementation in devices such as hearing aids and cochlear implants.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4901712]
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I. INTRODUCTION

It is well known that a primary limitation for hearing-

impaired (HI) listeners involves poor speech intelligibility in

background noise (see Moore, 2007). Whereas modern hear-

ing aids generally allow users to perform quite well in quiet,

performance and satisfaction in noise remain low, despite

currently implemented noise-suppression methods. An ulti-

mate goal for remedying this limitation may involve a mon-

aural algorithm to improve intelligibility by extracting

speech from background noise. Because the algorithm, not

the listener, performs the extraction of intelligible speech,

the limitations of the HI listener would be substantially mini-

mized. Numerous such “speech enhancement” or

“segregation” algorithms have been proposed, but substan-

tial increases in intelligibility have remained elusive despite

decades of effort (see Dillon, 2012, p. 232).

Healy et al. (2013) reported substantial gains in intelli-

gibility by HI listeners using a monaural binary-masking

algorithm. Listeners having sensorineural hearing loss were

tested using the Hearing In Noise Test (HINT) sentences

mixed with speech-shaped noise (SSN) and with babble.

Intelligibility was generally greater than 80% following

algorithm processing, despite scores in unprocessed speech

in noise that ranged considerably across listeners and were

often lower than 20%. The benefit from algorithm processing

was larger for HI listeners than for normal-hearing (NH)

control subjects, due primarily to the lower unprocessed

speech-in-noise scores of the former group. Benefit was also

larger for less-favorable signal-to-noise ratios (SNRs), the

nonstationary background, and listeners with the most ele-

vated audiometric thresholds. It was concluded that the algo-

rithm operates to restore speech perception in noise for

listeners who need it most (those with the greatest losses)

and under conditions that they find most troublesome (modu-

lated backgrounds and unfavorable SNRs).

In binary masking, the extraction of speech from noise is

viewed as a classification task. It operates by classifying each

time-frequency (T-F) unit of a speech-plus-noise mixture

according to the SNR within the unit (Hu and Wang, 2001;

Wang, 2005). Units having an SNR greater than a predefined

local criterion (LC) are retained, whereas units having an

SNR less than this value are simply discarded. The binary-

masked speech signal corresponds to the mixture within

retained T-F units only, and represents speech extracted from

noise. In the Ideal Binary Mask (IBM), the premixed speech

and noise signals are known, and the mask corresponds to
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ideal classification. IBM processing produces remarkable

speech-intelligibility improvements in noise for both HI and

NH listeners, even at extremely low SNRs (Anzalone et al.,
2006; Brungart et al., 2006; Li and Loizou, 2008; Wang

et al., 2008, 2009; Cao et al., 2011; Sinex, 2013).

In contrast, the algorithm employed by Healy et al.
(2013) estimates the IBM directly from the speech-noise

mixture. This ability to estimate based only on the mixture is

obviously critical for eventual applicability of such an algo-

rithm. The estimation was done by training deep neural net-

works (DNNs) to classify T-F units as either dominated by

the target speech (SNR>LC) or dominated by the back-

ground noise (SNR�LC). The DNNs received as input

acoustic features extracted from sentences mixed with noise,

and the sentences used for training were not used for testing

human subjects.

Key to the success of the algorithm is its ability to accu-

rately estimate the IBM. This accuracy cannot be simply

inferred from high sentence intelligibility, because it is

known that sentences contain a multitude of redundant cues,

and that they can retain high intelligibility when many of

these cues are distorted or missing (e.g., Shannon et al.,
1995; Warren et al., 1995; Stickney and Assmann, 2001).

One technique that has been used to assess classification ac-

curacy of an estimated mask involves an acoustic analysis of

hit minus false-alarm rate (HIT�FA), where HIT denotes

the percentage of speech-dominant T-F units correctly clas-

sified, and FA denotes the percentage of noise-dominant

units incorrectly classified (Kim et al., 2009). This analysis

therefore involves the acoustic similarity between the esti-

mated and ideal masks. An analysis of the estimated IBMs

in Healy et al. (2013) indicated a HIT�FA rate of approxi-

mately 80%, which was substantially greater than that pro-

duced by the classification algorithm of Kim et al. (2009)

based on Gaussian mixture models.

In the current study, we employ an alternative technique

to assess the accuracy with which the binary mask is esti-

mated. Here, we assess mask accuracy and speech-

segregation effectiveness using a perceptual analysis of

speech cues transmitted to listeners. The rationale is as fol-

lows: If a mask estimated by the algorithm captures and

delivers speech cues in a fashion similar to the IBM, then the

pattern of speech information transmitted to listeners should

be similar. Thus, the current measure is one of “effective” or

perceptual accuracy. This analysis has the additional benefit

of revealing the extent to which various speech features are

preserved during binary masking. Although it is known that

ideal binary masking substantially improves the intelligibil-

ity of speech in noise, little is known about the specific cues

transmitted to HI and to NH listeners following such binary

masking.

In the current study, consonant recognition in noise by

HI and NH listeners was assessed using a more efficient ver-

sion of the algorithm described by Healy et al. (2013; see

also Wang and Wang, 2013). Recognition was assessed for

speech extracted from noise using the algorithm and the

IBM. An information-transmission analysis (Miller and

Nicely, 1955; Wang and Bilger, 1973) was then employed to

determine the features of speech transmitted to listeners. The

goals of the current study are (1) to determine, for both HI

and NH listeners, the ability of the more efficient algorithm

and the IBM to improve recognition of speech that lacks the

substantial redundancy of cues that characterizes sentences

and therefore requires additional accuracy of bottom-up

acoustic cues; (2) to determine the accuracy of the estimated

binary mask relative to the IBM in terms of similarity in

speech features transmitted to listeners; and (3) to determine

the features of speech that are conveyed to HI and NH listen-

ers by the estimated and ideal binary masks.

II. METHOD

A. Subjects

A group of ten listeners having bilateral sensorineural

hearing loss of cochlear origin participated. They were bilat-

eral hearing-aid wearers recruited from The Ohio State

University Speech-Language-Hearing Clinic to represent

typical patients. These listeners ranged in age from 25 to

73 yr (mean¼ 58.4) and seven were female. Prior diagnoses

were confirmed on day of test using otoscopy, tympanometry

[American National Standards Institute (ANSI), 1987], and

pure-tone audiometry (ANSI, 2004, 2010). The hearing

losses ranged from mild to severe and were moderate on av-

erage. Pure-tone average audiometric thresholds (PTAs, av-

erage of thresholds at 500, 1000, and 2000 Hz, averaged

across ears) ranged from 35 to 71 dB hearing level (HL) with

an average of 48 dB HL. The configurations of hearing loss

ranged from flat to sloping. Audiograms obtained on day of

test are presented in Fig. 1, along with subject number, age,

and gender.

Also recruited were ten younger listeners having NH, as

defined by audiometric thresholds of 20 dB HL or below at

octave frequencies from 250 to 8000 Hz (ANSI, 2004,

2010). These listeners were recruited from undergraduate

courses at The Ohio State University. They ranged in age

from 20 to 22 yr (mean¼ 20.8) and eight were female. All

subjects received a monetary incentive or course credit for

participating. As in Healy et al. (2013), age matching

between HI and NH subjects was not performed because the

goal was to assess the abilities of typical (older) HI listeners

relative to the gold-standard performance of young NH

listeners.

B. Stimuli

The stimuli were 16 consonants (/p, t, k, b, d, g, f, v, s,Ð
, h, ð, z, Z, m, n/) in /a/-consonant-/a/ format. The 44.1-

kHz, 16-bit digital files were produced using two male and

two female talkers for a total of 64 vowel-consonant-vowels

(VCVs, recordings from Shannon et al., 1999). The back-

grounds included speech-shaped noise (SSN) and multi-

talker babble. The SSN was created by shaping a 10-s white

noise to match the long-term average amplitude spectrum of

all 64 VCV utterances. This shaping was performed using a

1000-order arbitrary-response finite impulse-response filter

(fir2 in MATLAB) having frequency-magnitude characteristics

derived from the 64 000 point, Hanning-windowed, fast-

Fourier transform of the concatenated utterances. Signal-to-
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noise ratios in SSN were �5 and �8 dB for the HI listeners

and �8 and �12 dB for the NH listeners. The multi-talker

babble was that employed in Healy et al. (2013) and was cre-

ated by mixing at equal amplitudes sentences from the

TIMIT database (Garofolo et al., 1993; four male and four

female talkers, two sentences each). Signal-to-noise ratios in

babble were �3 and �5 dB for the HI listeners and �5 and

�8 dB for the NH listeners. All stimuli were downsampled

to 16 kHz prior to processing.

These stimuli were presented under four conditions:

Unprocessed speech in noise, algorithm processed, IBM proc-

essed, and unprocessed speech in quiet. The first condition

consisted of speech mixed with SSN or babble. Each individ-

ual utterance was mixed with the background having a ran-

dom start point within the looped noise or babble sample. The

noise began approximately 50 ms before the speech and

ended approximately 100 ms after. It was anticipated that

increases in masking that can occur as a result of signal place-

ment near the onset of a masker (termed temporal effects of

masking or overshoot, see Bacon and Healy, 2000) should be

largely absent because the target consonant was preceded by

an initial vowel in every utterance and therefore distanced

from masker onset. The algorithm- and IBM-processed condi-

tions were based on these same speech-noise mixtures and are

described in the next two sections. Because the algorithm is

based on IBM estimation, the IBM is described first.

1. IBM Processing

Ideal binary-mask processing followed closely that of

Wang et al. (2009). Specifically, the signals were divided

using a 64-channel gammatone filterbank having center fre-

quencies ranging from 50 to 8000 Hz, equally spaced in

equivalent rectangular bandwidths (Glasberg and Moore,

1990). The signals were then divided into 20-ms frames hav-

ing 10-ms overlap. Based on this cochleagram representation

(Wang and Brown, 2006), the IBM was derived by

calculating the local SNR (computed from premixed signals)

within each T-F unit. If the local SNR was greater than the

LC, the mask value was set to 1 and the T-F unit was desig-

nated as target dominant. Otherwise, the mask value was set

to 0 and the T-F unit was designated as noise dominant. That

is,

IBMðt; f Þ ¼ 1; if SNR ðt; f Þ > LC

0; otherwise;

�
(1)

where SNR(t, f) denotes the local SNR within the T-F unit

centered at time t and frequency f. The IBM-processed speech

was synthesized by gating the speech-noise mixture using the

IBM (Wang and Brown, 2006). The selection of LC value is

important for speech recognition. To preserve a sufficient

amount of speech information, LC was set as follows: [�8,

�10, �12, and �16 dB] for input SNRs of [�3, �5, �8, and

�12 dB], respectively. These LC choices were made to pro-

duce roughly the same difference between LC and input SNR,

which is referred to as Relative Criterion (RC). The IBM is

determined by the RC, and it has been shown that the same

RC values yield comparable intelligibility scores over a wide

range of input SNRs (Kjems et al., 2009).

2. Algorithm processing

The algorithm processing followed generally that of

Healy et al. (2013). In that system, the speech-noise mixture

was divided into T-F units using the same 64 frequency

channels and 20-ms overlapping frames as described for

IBM processing. A set of acoustic features (see below) was

extracted from the mixture in each T-F unit and fed to an

array of DNNs, one for each frequency channel. These fea-

tures were used by the DNNs to classify each T-F unit as tar-

get dominant or noise dominant, thus estimating the IBM.

The DNNs were then trained to minimize the difference

between the estimated binary mask and the true IBM, for

FIG. 1. Pure-tone air-conduction audiometric thresholds for the listeners with sensorineural hearing impairment. Right ears are represented by circles and left

ears are represented by �’s. Also displayed is subject number, listener age in years, and gender. Listeners are numbered and arranged according to increasing

pure-tone average audiometric threshold.
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each speech utterance, using backpropagation. Once the

DNNs were trained using one set of sentences mixed with

noise having random start points, they were used to estimate

the IBMs for a different set of sentences mixed with noise

having random start points, and these latter sentences were

used to test listeners.

In the system of Healy et al. (2013), a trained DNN for

each frequency channel (a subband DNN) output the proba-

bility of target dominance for the T-F units in that channel.

A second subband DNN was then trained on a window of

these posterior probabilities to incorporate spectro-temporal

context. In the current study, a similar but more efficient sys-

tem was employed. Instead of training two DNNs for each of

64 frequency channels (128 in total), only a single DNN was

employed to estimate the IBM. This single DNN output a

vector of estimated mask values (zeros or ones) for all 64

gammatone frequency channels in each 20-ms time frame.

The same set of complementary features (Wang et al.,
2013) employed previously was input to the DNN during sys-

tem training. This feature set consisted of (1) the amplitude

modulation spectrogram (AMS), (2) relative spectral trans-

form and perceptual linear prediction (RASTA-PLP), and (3)

the mel-frequency cepstral coefficient (MFCC). The inter-

ested reader is directed to Wang et al. (2013) for descriptions

of these features, which are commonly used in speech proc-

essing. In the current implementation, the features were

extracted from each frame of the speech-noise mixture (i.e.,

across all frequencies simultaneously), rather than from each

individual T-F unit. Additionally, the features were mean-

variance normalized and then post-processed by an autore-

gressive and moving average (ARMA) filter (Chen and

Bilmes, 2007), which has been shown to improve speech-

segregation performance in low SNR conditions (Chen et al.,
2014). Temporal context was incorporated in the current sys-

tem using a five-frame spliced window of the combined fea-

tures as input to the DNN.

The DNN had three hidden layers, each having 1024

rectified linear hidden units. Supervised training of the DNN

was performed using the backpropagation algorithm coupled

with a dropout regularizer (Hinton et al., 2012). No unsuper-

vised pretraining was used. The adaptive stochastic gradient

descent (Duchi et al., 2011), with momentum as the opti-

mizer, was employed to minimize the difference between the

estimated IBM and the IBM. The current training set for

each SNR condition consisted of 513 utterances not used

during subject testing. This corresponded to an average of

eight utterances of each VCV by each of the four talkers.

C. Procedure

There were a total of 13 conditions heard by each lis-

tener (2 noise types� 2 SNRs� 3 processing conditions,

plus speech in quiet). Each listener heard all 64 utterances

(16 VCVs� 4 talkers) in random order in each condition.

Conditions were blocked and randomized, such that noise

type and SNR were heard in random order for each subject,

but the three processing conditions within a particular noise

type and SNR were heard contiguously in random order.

Speech in quiet was presented as the last condition.

Each utterance in each condition was scaled to play

back at the same RMS level. The presentation level for NH

listeners was 65 dBA. Levels for the HI listeners were set

to 65 dBA plus frequency-specific insert gains as deter-

mined by the NAL-R hearing-aid fitting formula (Byrne

and Dillon, 1986). These individualized gains maximized

audibility across frequencies for the HI subjects, who had

primarily sloping losses. This was important because the

various speech cues examined here differ in their spectral

distribution of energy, and it was desired to reduce the

influence of differential audibility on the transmission of

these cues. Insert gain (IG) at each frequency f was deter-

mined by

IGf ¼ 0:15PTAþ 0:31Hf þ kf ; (2)

where Hf is the audiometric threshold at frequency f in dB

HL, and kf takes the following values [�17, �8, 1, �1, �2,

and �2] at the following frequencies [250, 500, 1000, 2000,

4000, and 6000 Hz]. Gain applied at 6000 Hz was also

applied at 8000 Hz, and gain applied at 250 Hz was also

applied at 125 Hz (see Table I). A 500-order fir2 filter was

employed to perform this subject-specific shaping of stimuli.

Hearing-impaired listeners were tested with hearing aids

removed, and all levels were calibrated using a sound-level

meter and flat-plate headphone coupler (Larson Davis mod-

els 824 and AEC 101; Depew, NY).

Signals were delivered using a personal computer run-

ning custom software written in MATLAB. Subjects responded

by selecting with a computer mouse from a matrix of alter-

natives displayed on the computer screen and labeled using

everyday labels (e.g., “aSHa”) and example words (e.g.,

“Ship”). The signals were transformed to analog form using

Echo Digital Audio (Santa Barbara, CA) Gina 3G digital-to-

analog converters and presented diotically over Sennheiser

HD280 headphones (Wedemark, Germany).

Listeners were tested while seated in a double-walled

audiometric booth. Testing began with audiometric evalua-

tion followed by a brief familiarization. During this familiar-

ization, the experimenter presented each consonant while

pointing out its location on the response matrix. The subject

then heard and responded to all 16 consonants produced by

one male and one female talker not used for testing. These

TABLE I. Gains (in dB) for each hearing-impaired subject at each fre-

quency (in Hz) as prescribed by the NAL-R.

125 250 500 1000 2000 4000 6000 8000

HI1 0 0 8 16 17 20 23 23

HI2 �5 �5 5 17 19 19 20 20

HI3 �2 �2 11 17 14 17 25 25

HI4 �2 �2 10 18 17 17 22 22

HI5 �1 �1 9 22 18 21 23 23

HI6 4 4 15 26 25 23 25 25

HI7 7 7 16 27 23 24 28 28

HI8 12 12 17 26 25 23 30 30

HI9 5 5 14 27 28 28 30 30

HI10 18 18 26 34 30 29 33 33
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stimuli were unprocessed and in quiet, and feedback was

provided during familiarization but not during testing. This

phase was repeated if desired by the subject or experimenter

up to a maximum of three times. During familiarization, HI

listeners were asked if the signals were adequate in level and

comfortable, and “if they would turn it up or down if they

could.” Six subjects indicated that the stimuli were adequate

and comfortable, and four indicated that they would turn the

stimuli down if they could. For these listeners, the overall

levels were reduced by 5 dB, additional stimuli were pre-

sented, and the question was repeated. All found the level

adequate and comfortable after this 5-dB reduction. Overall

presentation levels for the HI listeners were at or below 92

dBA.

III. RESULTS

A. Consonant recognition

Figure 2 shows recognition for individual HI (filled sym-

bols) and NH listeners (open symbols). The upper two rows

of panels display data for SSN and the lower two rows of pan-

els display data for multi-talker babble. Panels displaying per-

formance following algorithm processing are immediately

above those for IBM processing. Unprocessed speech-in-noise

scores are represented by circles, algorithm-processed scores

are represented by triangles, IBM-processed scores are repre-

sented by squares, and scores in quiet are represented by hori-

zontal dashes. The benefit from processing is therefore

represented by the height of the bar connecting symbols.

FIG. 2. Mean VCV phoneme recognition for each listener. Hearing-impaired listeners are represented by filled symbols and NH listeners are represented by

open symbols. Unprocessed speech-in-noise conditions are represented by circles, algorithm-processed conditions are represented by triangles, IBM-processed

conditions are represented by squares, and speech-in-quiet conditions are represented by horizontal lines. The top two rows represent recognition in speech-

shaped noise at the three SNRs indicated, and the bottom two rows represent recognition in multi-talker babble at three SNRs. Panels displaying scores follow-

ing algorithm processing are immediately above those displaying scores following IBM processing. Hearing-impaired listeners are numbered and plotted in

order of increasing pure-tone average (as in Fig. 1).
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All of the HI listeners received some benefit from algo-

rithm processing for at least one of the SSN SNRs and both

babble SNRs. Nine of the ten NH listeners received some

benefit from algorithm processing for at least one of the SSN

SNRs, and all received some benefit at both babble SNRs.

With regard to IBM processing, all listeners received some

benefit in all conditions. Generally speaking, scores for

algorithm- or IBM-processed speech did not reach scores for

speech in quiet.

Figure 3 displays group-mean recognition scores for HI

and NH listeners. Data for SSN are displayed in the top row

and data for babble are displayed in the bottom row. The

dashed lines represent group-mean performance on speech in

quiet. Apparent from the figure are increased group-mean rec-

ognition scores for both algorithm and IBM processing, rela-

tive to corresponding unprocessed speech in noise. Further,

group-mean scores in the IBM conditions are greater than

those in the corresponding algorithm conditions. This pattern

held for both listener groups, both noise types and all SNRs.

These observations were confirmed using a series of paired t
tests and the procedure of Benjamini and Hochberg (1995) to

limit the false-discovery rate to 0.05 or lower. It was found

that algorithm and IBM processing increased scores

significantly (alpha equivalent to 0.005 or lower) relative to

corresponding unprocessed speech in noise. It was also found

that IBM scores were significantly greater than corresponding

algorithm scores (0.005 or lower). These significant effects

held for all listener, noise type, and SNR conditions. Finally,

algorithm and IBM scores were all significantly lower than

corresponding scores for speech in quiet (0.05 or lower).

1. Algorithm processing

In accord with the results observed previously for every-

day sentences (Healy et al., 2013), the average benefit result-

ing from algorithm processing was greater for HI than for

NH listeners. This advantage for HI listeners is reflected as

(a) larger increases in scores from unprocessed speech in

noise to algorithm processed and (b) smaller differences in

scores between algorithm processed and speech in quiet.

This HI-listener advantage is apparent within each center

panel of Fig. 3, where SNR was equated across listeners. It

is also observed when the rightmost panel is compared to the

leftmost panel, for each noise type. This latter comparison

allows an evaluation across similar baseline (unprocessed

speech-in-noise) scores. Averaged across SNRs for SSN, the

FIG. 3. Group mean recognition scores and standard errors for VCVs presented in SSN (top panels) and babble (bottom panels), at the SNRs indicated. Scores

are presented separately for HI and NH listeners. The three columns reflect scores in unprocessed speech in noise, speech extracted by algorithm processing,

and speech extracted by IBM processing. The dashed lines represent recognition of unprocessed speech in quiet for HI (SE¼ 2.12) and NH listeners

(SE¼ 1.09).
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algorithm benefit relative to unprocessed speech in noise

was 22.3 percentage points for HI listeners vs 11.3 for NH.

The distance to scores in quiet averaged 25.8 percentage

points for HI listeners vs 44.6 for NH. Averaged across

SNRs for babble, the algorithm benefit was 28.7 percentage

points for HI listeners vs 15.9 for NH. The distance to scores

in quiet averaged 22.9 points for HI listeners vs 36.8 for NH.

Benefit resulting from algorithm processing was calcu-

lated as a proportion to capture both increase from unpro-

cessed speech in noise and distance to scores in quiet. This

proportion increase (P) was calculated as

P ¼ Proc� UNP

Q� UNP
; (3)

where Proc is the score following algorithm processing, UNP

is the corresponding score in unprocessed noise, and Q is the

corresponding score in quiet. The HI-listener advantage was

confirmed using this metric and planned comparisons (uncor-

rected unpaired t tests) to assess benefit averaged across

SNRs. Algorithm benefit was significantly greater for HI than

for NH listeners in SSN [0.42 vs 0.20, t(18)¼ 2.94, p< 0.01]

and in babble [0.55 vs 0.29, t(18)¼ 5.94, p< 0.001].

Also in accord with prior results involving sentences, the

benefit resulting from algorithm processing was generally

larger in babble than in SSN. This babble advantage is some-

what smaller than the HI-listener advantage just described,

but it appears for both benefit relative to unprocessed speech

in noise and for distance to scores in quiet. This advantage

holds for all but one comparison across corresponding top

versus bottom panels in Fig. 3. Averaged across SNRs, the

algorithm benefit relative to unprocessed speech in noise was

28.7 percentage points for babble vs 22.3 for SSN (HI listen-

ers) and 15.9 percentage points for babble vs 11.3 for SSN

(NH listeners). The distance to scores in quiet averaged 22.9

percentage points for babble vs 25.8 for SSN (HI listeners)

and 36.8 percentage points for babble vs 44.6 for SSN (NH

listeners). The babble advantage was also assessed using

planned comparisons (uncorrected paired t tests) on the pro-

portion metric averaged across SNRs. Algorithm benefit in

terms of proportion increase was numerically larger for bab-

ble than for SSN, but statistically equivalent, for HI listeners

[0.55 vs 0.42, t(9)¼ 2.00, p¼ 0.08, power¼ 0.33] and for NH

listeners [0.29 vs 0.20, t(9)¼ 1.88, p¼ 0.09, power¼ 0.29].

Another planned comparison of interest involves HI-

listener performance following algorithm processing versus

NH-listener performance prior to algorithm processing

(unprocessed speech in noise), in conditions of identical noise

type and SNR (Fig. 3, center panels). It was found that mean

HI-listener recognition scores were significantly greater than

those for their NH counterparts in babble [59.1% vs 52.0%,

t(18)¼ 2.21, p< 0.05], and numerically greater than but stat-

istically equivalent in SSN [48.4% vs 44.5%, t(18)¼ 1.22,

p¼ 0.24, power¼ 0.10].

2. IBM processing

With regard to IBM processing, the benefit was again

generally larger for HI than for NH listeners. The increases

relative to unprocessed speech in noise were substantially

larger for HI listeners in conditions of common noise type

and SNR (Fig. 3, center panels). Although this HI-listener

advantage is less apparent when conditions are compared

across similar baseline scores (rightmost panel compared to

leftmost panel, for each noise type), it appears again when

IBM scores are compared to scores in quiet: Whereas large

differences between IBM and speech-in-quiet scores remain

for NH listeners, these differences are substantially reduced

for HI listeners.

Averaged across SNRs for SSN, the IBM benefit rela-

tive to unprocessed speech in noise was 35.0 percentage

points for HI listeners vs 31.6 for NH. The distance to scores

in quiet averaged 13.1 percentage points for HI listeners vs

24.3 for NH. Averaged across SNRs for babble, the IBM

benefit relative to unprocessed speech in noise was 45.8 per-

centage points for HI listeners vs 38.5 for NH. The distance

to scores in quiet averaged 5.9 points for HI listeners vs 14.2

for NH. The HI-listener advantage was found to be signifi-

cant for SSN [0.71 vs 0.56, t(18)¼ 3.42, p< 0.005] and for

babble [0.90 vs 0.72, t(18)¼ 4.56, p< 0.001] using planned

comparisons of the proportion-benefit metric [Eq. (3)], again

averaged across SNRs.

Also in accord with what was observed for algorithm

processing, the benefit resulting from IBM processing was

greater in babble than in SSN. This babble advantage

appears for both benefit relative to unprocessed speech in

noise and for distance to scores in quiet, across each corre-

sponding top versus bottom panel in Fig. 3. Averaged across

SNRs, the IBM benefit relative to unprocessed speech in

noise was 45.8 percentage points for babble vs 35.0 for SSN

(HI listeners) and 38.5 percentage points for babble vs 31.6

for SSN (NH listeners). The distance to scores in quiet aver-

aged 5.9 percentage points for babble vs 13.1 for SSN (HI

listeners) and 14.2 percentage points for babble vs 24.3 for

SSN (NH listeners). Planned comparisons of the proportion

metric averaged across SNRs indicated that the IBM benefit

was significantly greater for babble than for SSN, for HI lis-

teners [0.90 vs 0.71, t(9)¼ 4.41, p< 0.005] and for NH lis-

teners [0.72 vs 0.56, t(9)¼ 4.82, p< 0.001].

B. Speech-cue transmission

An information-transmission analysis (Miller and

Nicely, 1955) employing the sequential information analysis

(SINFA) of Wang and Bilger (1973) was conducted on the

averaged consonant-confusion matrices to determine the per-

centage of speech cues transmitted to listeners in each condi-

tion. See http://web.cse.ohio-state.edu/~dwang/ for these

consonant-confusion matrices. The cues examined were

those associated with voicing (voiced, unvoiced), manner of

articulation (fricative, plosive, nasal, sibilant), and place of

articulation (front, mid, back). Figure 4 displays the results

of this analysis. Displayed in separate panels are results for

HI and NH listeners and the two noise types. Displayed

within each panel is information transmitted in each process-

ing condition as well as values averaged across the two

SNRs in each panel. Finally, information transmitted in the

quiet condition is displayed at the right of each panel.
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Overall, all three classes of speech cues were transmit-

ted at similar levels within each condition. For unprocessed

speech in noise, the transmission of voicing information

was greatest, and transmission of the other two cues was

similar and slightly reduced. For speech in quiet, transmis-

sion of manner information was greatest and transmission

of the remaining cues was similar and slightly reduced.

These effects held for both listener and noise types. The

speech cues transmitted by the algorithm followed gener-

ally the pattern of cues transmitted by speech in quiet. For

most IBM conditions, the transmission of voicing and place

was slightly better than the transmission of manner.

Figure 5 displays information transmission as ratios of

the values obtained in the corresponding unprocessed

speech-in-noise conditions, then averaged across the two

SNRs. Thus, these values reflect increases in information

transmission resulting from algorithm or IBM processing.

Most notable is the similarity in patterns between corre-

sponding algorithm versus IBM conditions, for each noise

and listener type (compare the rightmost pair of column trios

to one another, and the leftmost pair of column trios to one

another, in each panel). Increases in speech-cue transmission

were generally greatest for manner of articulation in HI lis-

teners and for place of articulation in NH listeners. This pat-

tern generally held for both noise types. The ratio increases

in speech-cue transmission resulting from algorithm process-

ing averaged 3.4 for the HI listeners and 1.9 for the NH

listeners. Ratio increases for the IBM averaged 4.7 for the

HI listeners and 3.2 for the NH listeners.

IV. DISCUSSION

A. Consonant recognition

1. Algorithm and IBM processing

The first main goal of the current study was to assess

consonant-in-noise recognition after processing by the

algorithm and by the IBM. The current results indicate that

a more efficient version of the algorithm described by

Healy et al. (2013) is capable of improving recognition of

isolated consonants. This is encouraging for at least two

reasons. First, isolated phonemes lack the semantic context

and multitude of redundant cues that characterize senten-

ces, which limits listeners’ ability to use top-down process-

ing mechanisms. Accordingly, phoneme recognition

typically requires additional acoustic information to

achieve similar levels of recognition, and it is typically pre-

sumed to involve a greater reliance on bottom-up process-

ing of these cues. Second, the introduced efficiency,

including a reduction from 128 DNNs to 1, did not prevent

the algorithm from substantially improving speech recogni-

tion for NH and HI listeners. As they did with sentences

(Healy et al., 2013), the older HI listeners tested here per-

formed as well or better than their young NH counterparts

FIG. 4. Percent information transmitted for the speech features associated with voicing, manner of articulation, and place of articulation. The four panels dis-

play information for HI and NH listeners in SSN and in babble. Each panel contains information transmission for unprocessed speech in noise (UNP), algo-

rithm processing (ALG), and IBM processing, at the SNRs indicated, as well as averaged across the two SNRs. Also displayed is information transmission for

speech in quiet.
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in identical conditions of noise, once the HI listeners had

access to the current algorithm (compare HI algorithm to

NH unprocessed). This effectiveness despite increased

processing efficiency bodes well for the eventual goal of

real-time implementation in hearing technology, including

hearing aids and cochlear implants.

One issue that must be addressed before an algorithm

such as this can be implemented into wearable devices

involves processing speed. A major advantage of the current

classification-based framework is that much of the process-

ing load is transferred to an earlier stage involving DNN

training. The operational stage primarily involves the extrac-

tion of features from the sound mixture and binary labeling

of each T-F unit by the trained DNN classifiers. The time

required to perform these tasks on a 3-s. speech-plus-noise

mixture, using an Intel Xeon X5650 2.67 GHz CPU, was

143 ms per frequency channel (times 64 channels) using the

2013 implementation of the algorithm. The current efficient

implementation requires 215 ms to perform these same tasks,

which represents a 43-fold increase in processing speed.

The magnitude of benefit observed currently for isolated

consonants is smaller than that observed by Healy et al.
(2013) for sentences, at least in terms of percentage-point

benefit. This may be understood in terms of the psychometric

transfer functions relating recognition to information content,

which are far shallower for isolated phonemes than for senten-

ces (e.g., ANSI, 1969, Fig. 15). Although transfer functions

for the specific recordings employed here are not available,

the functions that do exist support the view that speech-

information benefits resulting from algorithm processing are

similar across the current study and the former study involv-

ing sentences, despite the different percent-point gains.

Surprisingly, group-mean algorithm scores were lower

at �3 dB SNR babble than at �5 dB, for nine of the ten HI

listeners. This apparent reversal in scores was not observed

for the IBM. However, the corresponding unprocessed

speech-in-noise scores were similar in these conditions

(group means within 2 percentage points, and similarly

reversed in direction for four of the ten HI listeners). We do

not have a good explanation for the algorithm’s poorer per-

formance at this input SNR.

As with the algorithm, it was found that the IBM

improved recognition of isolated phonemes, thus extending

results observed previously for sentences (Anzalone et al.,
2006; Brungart et al., 2006; Li and Loizou, 2008; Wang

et al., 2008, 2009; Cao et al., 2011; Sinex, 2013). This result

should not be surprising, given the effectiveness of algorithm

processing observed here and the fact that the algorithm

aimed to estimate the IBM. The fact that IBM scores were

uniformly superior to algorithm scores indicates that the bi-

nary masks estimated by the algorithm were not as effective

as the ideal masks, which were constructed from premixed

speech and noise signals. This topic of mask-estimation ac-

curacy is discussed in Sec. IV B.

2. HI-listener and babble advantages

In accord with previous work involving sentences and ei-

ther algorithm processing (Healy et al., 2013) or IBM proc-

essing (Anzalone et al., 2006; Wang et al., 2009), gains were

greater for HI than for NH listeners and for modulated than

for stationary backgrounds. The HI-listener advantage is

promising because it indicates that the algorithm and the IBM

are effective despite the multitude of limitations imposed by

the impaired auditory system. Speech extracted from noise

using the estimated or ideal binary masks contains a sufficient

concentration of cues to be successfully processed despite

these limitations, even for isolated phonemes. The babble

advantage (which was statistically significant for sentences,

but only marginally so here for algorithm processing using a

low-power test) is promising because it indicates that the

algorithm and the IBM are most effective in backgrounds that

represent real-world interferers. Finally, algorithm improve-

ments in these nonstationary backgrounds represent a far

larger technical challenge than do improvements in stationary

noise (Wang and Brown, 2006).

Relationships between various HI-subject variables and

performance were examined in an attempt to identify subject

characteristics associated with maximum benefit. No

FIG. 5. Increases in information transmission for the speech features associ-

ated with voicing, manner of articulation, and place of articulation. Values

are displayed separately for algorithm (ALG) and IBM processing, and for

HI and NH listeners. They are displayed as ratios of the values obtained in

the corresponding unprocessed speech-in-noise conditions, then averaged

across the two SNRs employed. Values in SSN are displayed in the top

panel and values in babble are displayed in the bottom panel.
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significant correlations were observed between subject varia-

bles including age or PTA, and performance including

unprocessed speech-in-noise scores, algorithm or IBM

scores, or algorithm or IBM benefit. Rather, most every HI

subject received some benefit from algorithm and from IBM

processing, despite a range of audiometric profiles and a

wide range of ages, from 25 to 73 yr.

3. Assessing benefit

Benefit can be assessed in two ways: Increases in scores

from unprocessed speech in noise and distance between proc-

essed scores and scores in quiet. The proportion metric on

which planned comparisons were made reflects both of these

components. With regard to recognition of unprocessed con-

sonants in noise, scores obtained here match or are lower

than those obtained in other studies employing these speech

materials, NH listeners, similar SNRs, and different simpli-

fied SSNs (e.g., Fu et al., 1998; Apoux and Healy, 2011).

The somewhat lower scores obtained currently may poten-

tially be attributed to the greater masking by the current SSN,

which closely matched the long-term average amplitude

spectrum of the speech. The current unprocessed scores are

also similar to or slightly greater than those for corresponding

sentence-in-noise conditions in Healy et al. (2013). But it

should be noted that comparisons across speech materials can

be difficult to interpret. As suggested earlier, isolated pho-

nemes require additional acoustic information content to

yield recognition scores similar to sentences. Some of this

advantage for sentences likely reflects the benefit of semantic

context. But in contrast, the open-set response paradigm typi-

cally employed for sentences can potentially reduce scores

relative to the closed-set paradigm typically employed for

consonants. The comparison between the current unprocessed

consonant-recognition scores and those involving sentences

likely reflects this tradeoff.

Consonants allow a different level of analysis relative to

sentences. Sentences better reflect real-world recognition

because everyday communication involves words in senten-

ces that follow grammatical rules and a contextual theme.

But because of their redundancy and ability to be understood

with only a small subset of cues, sentence scores quickly

reach ceiling values. Consonants’ relative robustness to ceil-

ing effects can be advantageous. In the current study, speech

in quiet was always heard last. This provided a maximum

amount of practice prior to this condition and tended to max-

imize scores in this condition. The procedure likely down-

played the benefit from algorithm and IBM processing. But

despite this procedure, speech-in-quiet scores were slightly

below ceiling levels for NH listeners and far below ceiling

for HI listeners. These lower scores for HI listeners should

be anticipated, because only audibility was corrected, and no

attempt was made to rectify suprathreshold deficits associ-

ated with hearing impairment.

One consequence of the current reduction in ceiling

effects is the finding that IBM scores were significantly

lower than speech-in-quiet scores. This difference is gener-

ally obscured when using sentence materials, as IBM scores

tend to reach ceiling values (e.g., Brungart et al., 2006; Li

and Loizou, 2008; Wang et al., 2009; Sinex, 2013). Another

consequence is that the increased effectiveness of IBM proc-

essing for HI listeners is reflected with clarity when assessed

as the distance between IBM scores and scores in quiet (see

Fig. 3). For NH listeners, a substantial difference in scores

remains between these conditions. In contrast, this difference

for HI listeners is reduced to as low as 4 percentage points.

This result suggests that IBM processing is effective enough

to improve HI-listener scores, but not NH-listener scores, to

values near those for speech in quiet, even in the absence of

ceiling effects.

The possibility exists that these IBM scores could be

increased further through the manipulation of LC values.

The choices made here, with LC about 5 dB smaller than

input SNR, were motivated by values shown to be effective

for noisy sentences (Brungart et al., 2006; Li and Loizou,

2008; Wang et al., 2009; Kjems et al., 2009). It is possible

that LC values that are most effective for consonant materi-

als will differ from those for sentence materials, perhaps due

to the increased requirements for acoustic speech informa-

tion and increased reliance on bottom-up processing.

B. Accuracy of the estimated binary mask

A second main goal of the current study was to assess

the effective accuracy of the binary mask estimated by the

current algorithm. This accuracy was assessed by comparing

speech features transmitted to listeners by the algorithm ver-

sus by the IBM. Apparent from Fig. 5 is the marked similar-

ity in how the algorithm and the IBM increase cue

transmission for a given noise and listener type. This indi-

cates that the masks estimated by the algorithm are transmit-

ting cues in a fashion highly similar to that of the IBM,

which suggests that the masks are being estimated with per-

ceptually relevant accuracy. This further indicates that the

lower performance in algorithm-processed conditions rela-

tive to corresponding IBM-processed conditions is not due

to a deficiency in any particular aspect of mask estimation or

a deficiency in the transmission of any particular speech fea-

ture. Instead, these results suggest that the algorithm is esti-

mating the IBM with general accuracy, but simply with

imperfect fidelity.

C. Speech features transmitted by algorithm-
and IBM-processed speech

A third main goal of the current study was to determine

the features of speech that are conveyed to HI and NH lis-

teners by the estimated and ideal binary masks. Figure 4

displays the results of this information-transmission analy-

sis. The primary conclusion that can be drawn from these

results is that both the algorithm and the IBM transmit

speech cues with substantial uniformity. The speech fea-

tures examined here were transmitted to listeners at gener-

ally similar levels, and no class of cues failed to be

transmitted. The possibility existed that the high sentence

recognition obtained previously using the algorithm and/or

IBM was based on transmission of only a subset of speech

features. However, the current results indicate that this is

not the case.
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Figure 5 shows that the increases in cue transmission

were highly similar for the algorithm versus the IBM when

compared within the HI group and when compared within the

NH group. The patterns are also highly similar across the two

noise types. However, a somewhat different pattern of speech-

cue transmission increase is observed across HI versus NH lis-

teners. Whereas HI listeners experienced greatest gains in

manner of articulation, NH listeners generally experienced

greatest gains in place of articulation. This modest difference

in the pattern of speech-cue transmission increases across lis-

tener groups should not be surprising, as differences have been

observed previously (e.g., Bilger and Wang, 1976; Wang

et al., 1978; but see Gordon-Salant, 1987). The difference

between listener groups observed here is likely attributable to

a reduction in the transmission of place-of-articulation cues to

HI listeners, due to their broad auditory tuning. Place of articu-

lation is known to be a cue encoded with substantial spectral

detail (e.g., Shannon et al., 1995) and one requiring fine fre-

quency resolution for accurate perception.

V. CONCLUSIONS

(1) The current segregation algorithm is capable of improv-

ing recognition of isolated consonants, for which seman-

tic context is absent and increased reliance on bottom-up

acoustic speech cues is typically required. In accord with

results from sentences (Healy et al., 2013) these

improvements were greatest for HI listeners. Older HI

listeners having access to the algorithm performed as

well or better than young NH listeners in conditions of

identical noise.

(2) The IBM also substantially increased recognition of iso-

lated consonants. Not surprisingly, these increases

exceeded those resulting from the algorithm and were

greatest for HI listeners and for a babble background.

These scores generally did not reach scores in quiet.

(3) The binary masks estimated by the segregation algorithm

transmitted speech features to listeners in a fashion simi-

lar to that of the IBM, suggesting that the algorithm is

estimating the IBM with considerable effective or per-

ceptual accuracy. Further, both the algorithm and the

IBM appear to be without any specific deficiency in the

transmission of speech cues.

(4) The current algorithm has remained highly effective,

while being made substantially more efficient. The 43-

fold increase in segregation speed makes the current

algorithm more amenable to real-time implementation in

devices such as hearing aids and cochlear implants.
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