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ABSTRACT:
Low latency is an essential requirement for noise reduction in real-world devices such as hearing aids and cochlear

implants. Reducing the algorithmic latency of a deep neural network charged with noise reduction allows additional

time for other processing. However, a larger analysis window may be advantageous to the performance of the net-

work. This trade-off is currently examined with regard to human speech-intelligibility performance. The algorithmic

latency of the attentive recurrent network (ARN) was modified by reducing the size of the analysis time frame. The

ARN model was talker, noise, and recording-channel independent, and fully causal. Listeners with hearing loss and

with normal hearing heard sentences in babble at various signal-to-noise ratios. Large increases in intelligibility were

observed as a result of noise reduction, especially for the listeners with hearing loss and at less favorable signal-to-

noise ratios. Slightly larger objective measures of network performance were observed at larger latencies. But more

critically, human performance was essentially unchanged as algorithmic latency was reduced from 20 to 10 or 5ms.

These results are discussed in the context of overall design and implementation of deep-learning based noise reduc-

tion, and information on latency requirements for human listeners is summarized.
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I. INTRODUCITON

The primary auditory concern of individuals with hear-

ing loss involves poor speech understanding when back-

ground noise is present. Accordingly, considerable attention

has been paid to noise reduction for several decades. An

approach based on artificial intelligence [deep neural net-

works (DNNs)] has proven to be promising. Deep-learning

based noise reduction has evolved over the past decade from

its introduction as a highly-limited laboratory proof of con-

cept (Healy et al., 2013; Wang and Wang, 2013), to elegant

networks that can operate in the real world (for reviews, see

Wang, 2017; Healy et al., 2023). They have recently been

introduced into commercially available hearing aids, includ-

ing devices from Oticon (2021 deployment; Santurette

et al., 2020; Bramsløw and Beck, 2021) and Phonak (2024

deployment; Hasemann and Kryloa, 2024; Wright et al.,
2024).

Any signal-processing scheme intended for people in

the real world carries concerns about processing latency. In

the case of a DNN, the overall latency is the sum of two dis-

tinct elements: intrinsic network latency (algorithmic

latency) and processing latency. Algorithmic latency results

from the design of the algorithm itself and corresponds to

the size of the time frame or analysis window. Processing

latency results from the computational effort needed to pro-

cess a frame.

Whereas processing latency depends entirely on the

particular hardware and implementation employed, algorith-

mic latency is independent of hardware and implementation

and is instead intrinsic to algorithm design. Unlike process-

ing latency, algorithmic latency may impact the perfor-

mance of a noise-reduction/speech-enhancement algorithm.

Accordingly, the impact of algorithmic latency on the intel-

ligibility of noise-reduced/enhanced speech for human lis-

teners was examined currently.

A wide variety of factors affect the detectible or tolera-

ble auditory delay for human listeners, and these factors

govern the latency requirements for communication devices.

These factors include the task (speech perception vs produc-

tion), the device (hearing aid, cochlear implant, or phone),

and the fitting, if the device is a hearing aid (open vs closed).

The science is fairly clear with regard to acceptable delays

across these situations. For hearing aids, detection/disrup-

tion thresholds generally range from 15–30ms for individu-

als with mild-moderate hearing loss and 20–40ms for

individuals with moderate-severe hearing loss (Stone and

Moore, 1999, 2002, 2005; Goehring et al., 2018). Smaller

delay tolerances (e.g., 5–6ms) have been observed but
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attributed to artifacts associated with simulating dynamic

processing of hearing aids in normal-hearing (NH) listeners

(Stone et al., 2008). For voice or video calls, larger accept-

able values are found (150ms; ITU, 2003). For cochlear

implant users, delay detection thresholds are driven by

auditory-visual synchrony and are quite large (approxi-

mately 225ms; Conrey and Pisoni, 2006; Hay-McCutcheon

et al., 2009; Baskent and Bazo, 2011). With regard to speech

production, delayed auditory feedback can produce disfluen-

cies above 50ms and slowed speech above 25ms (Stuart

et al., 2002), but suppression of the own-voice signal is

commonly implemented in modern hearing aids, which miti-

gates this effect. Although latency around 10ms is some-

times considered to be a requirement for hearing devices,

such low values do not appear to be well grounded in the

literature.

In the current study, the attentive recurrent network

(ARN, Pandey and Wang, 2022) was employed. The ARN

is a time-domain model for speech enhancement that

directly processes sequences of raw noisy frames to generate

enhanced (noise-reduced) frames. This method bypasses

time-frequency representations such as the short-time

Fourier transform, instead adopting an end-to-end approach

that leverages supervised training to improve speech

enhancement. The latency of such a network is defined by

the length of the time frame used for processing, because

the network outputs the estimate of clean (noise-free) speech

at the end of each frame.

In Healy et al. (2023), the frame length of a causal

ARN was set to 20ms, and intelligibility for hearing-

impaired (HI) and NH listeners was assessed. Hearing in

noise test (HINT; Nilsson et al., 1994) sentences were

mixed with speech-shaped noise and multi-talker babble at

various signal-to-noise ratios (SNRs), and intelligibility

prior to and following noise reduction was assessed.

Intelligibility increases resulting from ARN noise reduction

averaged 51% points for HI listeners and 14 points for NH

listeners.

The question addressed currently involves whether a

DNN charged with noise reduction can be modified to pro-

duce a lower algorithmic latency without hindering human

intelligibility. Shorter algorithmic latencies can be desirable

because they allow additional time to be allocated to proc-

essing, hence alleviating hardware requirements, or to other

stages of the speech-processing path. In contrast, a larger

analysis window can be advantageous to the performance of

the network – a larger time frame contains additional con-

textual information within each frame and allows for a

greater statistical pooling effect with the same frame shift

(see Sec. III). Although low latency as a requirement for

real-world deep-learning based noise reduction has been

considered by others, and the performance of human listen-

ers has been evaluated when using low-latency systems

(e.g., Goehring et al., 2017; Bramsløw et al., 2018), the
impact on human intelligibility of manipulating the latency

of an otherwise identical neural network has received less

attention.

Here, ARNs having algorithmic latencies of 20, 10, and

5ms were employed. The network architecture and training

were identical, with this one exception. Frame shift was also

held constant to produce a relatively fixed computational

demand. The ARN is a modern time-domain DNN, repre-

sentative of time-domain deep-learning models for speech

enhancement. Objective measures based on acoustic charac-

teristics of the signals themselves were performed to deter-

mine the extent to which the algorithm is able to output a

more acoustically veridical speech signal when frames are

longer or alternatively, if the frames can be reduced in size

without acoustic hindrance. More critically, intelligibility

testing revealed the extent to which any difference in the

acoustic accuracy of the output signal has perceptual ramifi-

cations for HI and NH listeners.

II. METHODS

A. Subjects

A group of ten listeners with hearing loss was recruited

from The Ohio State University Speech-Language-Hearing

Clinic to represent typical patients. All were bilateral

hearing-aid users and had sensorineural hearing loss of

likely cochlear origin. Ages ranged from 38 to 84 years, six

were female, and four were male. Pure-tone air-conduction

audiometric thresholds are shown in Fig. 1. The hearing

losses varied, but can generally be characterized as symmet-

ric and sloping. Average degree of loss (3- or 4-frequency

pure-tone average) varied from mild to moderately-severe.

A second group of ten listeners with NH also partici-

pated. These individuals were recruited from courses at The

Ohio State University. All passed a pure-tone air-conduction

audiometric screening from 250 to 8000Hz at 20 dB hearing

level (HL) on the day of the test. Their ages ranged from 18

to 22 years (average¼ 19.7) and all were female. All partici-

pants (HI and NH) were native speakers of American

English, having no previous exposure to the test sentences

used, and all received either course credit or a monetary

incentive for participating. Note that the lack of age match-

ing allows for the comparison across typical hearing-aid

users and young “ideal” ears.

B. Stimuli

The stimuli used to test human listeners were sentences

from the HINT. The standard recordings produced by a

male talker speaking standard American English were

used. The background noise was a 20-talker babble record-

ing from Auditec (http://www.auditec.com, approximately

10min in duration). This noise was selected to represent a

common real-world background, and our prior work indi-

cates that the noise-independent model is capable of gener-

alizing to different untrained nonstationary noises with

similar effectiveness. To create each test stimulus, a sen-

tence was mixed with the babble, using a random start point

in the babble file and a duration that matched that of the sen-

tence. The SNRs used for testing the HI listeners were –2, 0,
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and 3 dB, and those used for the NH listeners were –5, –2,

and 0 dB.

The speech stimuli used for neural-network training

came from the Librispeech corpus (Panayotov et al., 2015).
This corpus contains approximately 1000 h of speech

recordings from over 2000 speakers. It is primarily used for

research in large-vocabulary continuous speech recognition

systems and sources its data from the LibriVox project

(Kearns, 2014). LibriVox features a diverse collection of

audiobook recordings contributed by volunteers worldwide.

The varied recording conditions within Librispeech, includ-

ing different microphones and room acoustics, make it an

ideal dataset for training corpus-independent speech

enhancement algorithms, as noted by Pandey and Wang

(2020a,b). This diversity is crucial for preventing overfitting

to specific acoustic characteristics of the recording hardware

or environment.

The background noise stimuli used for neural-network

training included 10 000 non-speech sounds from a sound-

effects library (www.sound-ideas.com). During training,

clean and noisy speech pairs were generated by randomly

selecting an utterance, a noise segment, and an SNR level

from a range of –5 to 0 dB. Additionally, a set of 150 valida-

tion mixtures was prepared using utterances from six speak-

ers from the Wall Street Journal Corpus (WSJ0, Paul and

Baker, 1992) combined with factory noise from the

NOISEX dataset (Varga and Steeneken, 1993).

C. ARN

A noisy speech signal y, recorded by a microphone, can

be described as the sum of the target speech signal s and the

background noise signal n as

y ¼ sþ n; (1)

where {y; s; n} 2 R1�N . A speech enhancement algorithm

aims to process the observed noisy signal y to produce an

accurate estimate, ŝ, of s as

ŝ ¼ f yð Þ; (2)

here, f : R1�N ! R1�N is a function that takes a noisy sig-

nal as input and outputs an enhanced signal of the same

length. In the realm of DNN-based speech enhancement, f
denotes a DNN model.

Typically, speech enhancement algorithms operate as

short-time processing systems. In this setup, the input y is

segmented into T overlapping frames ½y0; y1;…; yT�2;
yT�1�, with tth frame defined as

yt ¼ y H � tð Þ : H � tþ Lð Þ� �
; (3)

where y a : b½ � 2 R1�ðb�aÞ, is a vector formed by extracting

elements from y starting at index a and ending at b, H is hop

size (frame shift), and L is frame size. Next, a speech

enhancement function is applied to enhance all the noisy

frames as

ŝt ¼ f1 yt�M; …; yt; …; ytþNð Þ; (4)

where f1 is a function taking M past frames, N future frames,

and the current frame yt to estimate ŝt. Finally, overlap-
add is applied to combine enhanced frames to obtain an

enhanced waveform.

The function defined in Eq. (4) leverages future frames

to estimate a current frame, thereby improving robustness

and performance. However, this method necessitates waiting

for future frames, resulting in latency between the desired

signal and the output signal. To eliminate the need to wait

for future frames, a common strategy is to design the algo-

rithm in a causal manner. This approach ensures that the

FIG. 1. Pure-tone air-conduction audiometric thresholds for the listeners with hearing loss. Listeners are numbered in order of increasing degree of hearing

loss. Right ears, circles; left ears, �’s. Listener numbers, ages in years, and sexes are also provided.
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output for any given frame relies solely on the current and

previous frames, as given by

ŝt ¼ f2 yt�M; …; ytð Þ: (5)

Modern deep learning architectures, such as recurrent

neural networks (RNNs) and transformer models (Vaswani

etal., 2017), are adept at processing sequential inputs. These

models can ingest a sequence of frames and leverage the

entire sequence of past frames rather than a fixed number of

past frames. This approach allows them to estimate a

sequence of enhanced frames, as described in the following:

ŝ0; …; ŝt½ � ¼ f3 y0; …; ytð Þ: (6)

Algorithmic latency associated with a causal speech

enhancement algorithm, as specified in Eqs. (5) and (6),

stems from short-time processing and corresponds to the

frame size (L). In the current study, ARNs having frame

sizes of 20, 10, and 5ms were employed. Following the

insights from Pandey and Wang (2020b), the hop size was

adjusted from 2 to 1ms, aiming to optimize performance for

reduced latencies. Pandey and Wang (2020b) highlighted

that a smaller hop size can effectively enhance the general-

izability of speech enhancement models to new and

untrained acoustic scenarios.

The employed ARN model for speech enhancement is

shown in Fig. 2. First, noisy speech y is segmented into

frames using a frame size of L and a hop size of H, resulting
in T frames. Next, a linear layer is used to transform

(expand) them into a representation of size D. This represen-
tation is then processed using a series of four ARN blocks.

After this, another linear layer is applied to reduce the size

of the output from D to L. Finally, overlap-add is applied to

reconstruct the enhanced waveform.

The ARN model is fundamentally built around an ARN

block, designed to handle inputs 2 RT�D and produce out-

puts 2 RT�D, thus preserving the data’s original dimension-

ality. This characteristic is crucial as it allows for the

seamless integration of multiple ARN blocks in series to

enhance performance without dimensional discrepancies.

Illustrated in Fig. 3, the ARN block’s architecture includes

three integral components: an RNN block, which processes

temporal dependencies within the data; an attention block,

which strategically emphasizes important features of the

input; and a feedforward block, which performs non-linear

transformations.

A schematic diagram of the three blocks within an

ARN block is shown in Fig. 4. The RNN block comprises

layer normalization (Ba et al., 2016) followed by a long

short-term memory (LSTM; Hochreiter and Schmidhuber,

1997) RNN. Layer normalization is used to stabilize the

training process, enhance convergence speed, and improve

the generalization of models by normalizing the inputs

across features within each layer independently. LSTM is

employed to effectively capture the temporal dependencies

within a sequence of frames in a causal manner.

The attention block refines the RNN output using self-

attention, effectively addressing the limitations of LSTM in

handling long sequences. Whereas LSTM excels in model-

ing temporal sequences, it compresses sequence information

into a single vector (hidden state), potentially losing details

in longer sequences. Self-attention complements this by

identifying correlations across the sequence to enhance

contextual understanding. However, unlike LSTM, self-

attention does not naturally maintain the sequential order.

By combining LSTM’s sequential processing with self-

attention’s refined processing of past information, the model

FIG. 2. The ARN model employed for time-domain speech enhancement/

noise reduction.

FIG. 3. The building blocks of the ARN. It is composed of an RNN block,

an attention block, and a feedforward block.
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captures both the order and the rich contextual details of

speech.

The input to the attention block undergoes normaliza-

tion through two distinct layer normalizations, each with its

own set of trainable parameters for scale and bias. The out-

put from the first normalization serves as the query (Q),

while the output from the second normalization acts as the

key (K) and value (V) for the subsequent self-attention mod-

ule. This module takes as input three matrices, Q, K, and

V 2 RT�D, and produces a single output matrix A 2 RT�D.

The self-attention mechanism includes three trainable vec-

tors, q, k, and v 2 R1�D. The vector q refines Q through the

operation Q0 ¼ LinðQÞ � rðqÞ, where r represents the sig-

moid function and � denotes element-wise multiplication.

Similarly, K is refined as K0 ¼ K � rðkÞ, and V is refined

through V0 ¼ V � r Linðvð Þ � TanhðLinðvÞÞ�½ , where Tanh

is the hyperbolic tangent function.

Before multiplication, the vectors q, k, and v are broad-

cast toRT�D to align with Q, K, and V, respectively. All lin-

ear layers involved produce outputs of size D. It is

important to note that the term r Linðvð Þ � TanhðLinðvÞÞ�½ is

a constant vector since v is constant. This aspect of the

model is relevant only during training, as it facilitates the

optimization of vector v (Merity, 2019). During evaluation,

the constant value derived from trained v is utilized.
The output A from the attention module is computed

using the following set of equations:

W ¼ Q0K0Tffiffiffiffi
D

p ; (7)

W0 ¼ Mask Wð Þ; (8)

W0 i; jð Þ ¼ W i; jð Þ; if i � j;
�1 otherwise;

�
(9)

P ¼ Softmax W0ð Þ; (10)

Softmax Wð Þ i; jð Þ ¼ eW i; jð Þ

XT
j¼1

eW i; jð Þ
; (11)

A ¼ PV0; (12)

whereT is the transpose operator. First, pairwise correlation

scores are computed between the rows of Q0 and K0, repre-
sented as

�
Q0

i; K
0
j

�
, for i; j 2 1; …; Tf g; through matrix

multiplication as detailed in Eq. (7). Subsequently, a mask-

ing function described in Eq. (9) is applied to set the correla-

tion of any given row i with a subsequent row j (where
j > i) to �1. This critical step ensures that the influence of

future rows is nullified, preparing the scores for transforma-

tion into probabilities via the Softmax function. The

Softmax operation, which utilizes an exponential function

followed by a normalization step in the denominator, effec-

tively converts any �1 values to zero. This transformation

is essential for maintaining the causality of the algorithm, as

it prevents future frames from influencing the current

frame’s output. The attention output A is then calculated by

multiplying the attention probabilities P with the values

matrix V0, as specified in Eq. (12). The process ends with

the addition of A to Q, establishing a residual connection to

facilitate gradient flow during training (He et al., 2016).
The feedforward block takes the output from the atten-

tion block and further refines it through nonlinear transfor-

mations. This block begins by applying two separate layer

normalizations to its input. The first normalized input is then

directed through a fully connected block. Within this block,

a linear layer initially projects the input to a higher-

dimensional space. This projection is immediately followed

by the application of a Gaussian error linear unit (GELU)

nonlinearity (Hendrycks and Gimpel, 2016) and a dropout

layer to enhance model robustness. Subsequently, the

expanded output is reduced back to its original size by

dividing it into four separate vectors, which are then

summed. This condensed output is combined with the sec-

ond normalized input to produce the final output of the feed-

forward block, effectively integrating and refining the

output from the attention block.

All utterances were resampled to a standard 16 kHz

(16-bit). The employed frame sizes of 20, 10, and 5ms, cor-

respond to L values of 320, 160, and 80, respectively. The

frame shift of 1ms corresponded to H ¼ 16. Within the

RNN block, an LSTM with a hidden size of 1024 was

employed, and a dropout rate of 5% was applied in the fully

connected block to prevent overfitting.

The ARN model underwent training over 100 epochs

with batches comprising 32 utterances each. To standardize

input length, all utterances within a batch were either trun-

cated or zero-padded to achieve a uniform duration of 4 s.

The input was root-mean-square (RMS) normalized, and the

target clean speech was appropriately scaled to maintain a

consistent SNR.

For optimization, the Adam optimizer (Kingma and Ba,

2014) was used with an initial learning rate of 0.0002. After

FIG. 4. The three building blocks within an ARN block. (a) RNN block, (b)

attention block, and (c) feedforward block. Layer norm denotes layer nor-

malization and� is the elementwise addition operator.
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the first 33 epochs, the learning rate underwent exponential

decay, reaching 0.00002 by the final epoch. The models

were developed using PyTorch. To enhance training effi-

ciency, mixed precision training (Micikevicius et al., 2017)
was employed, and each batch was distributed across GPU

using PyTorch’s DataParallel module.

In terms of model size, the ARN models with the frame

lengths of 20, 10, and 5ms have 55.3, 55.0, and 54.8� 106

parameters, respectively. The corresponding computational

complexities are 59.4, 59.1, and 58.9 GFLOPs. As the cur-

rent focus was on the perceptual effects of inherent or algo-

rithmic latency, no attempt was made to compress or

otherwise reduce the computational complexity of the mod-

els as would be required for deployment on mobile devices.

We point out that techniques exist that substantially reduce

DNN models with minimal degradation of speech enhance-

ment performance (see, e.g., Tan and Wang, 2021).

D. Procedure

Each listener heard 15 HINT sentences in each of 12

conditions (3 SNRs� 4 processing conditions). The condi-

tions were blocked by SNR, and the processing conditions

within SNR, as well as the SNRs, were presented in random

order for each listener. The sentences were presented in the

same order for each listener, providing a random sentence-

to-condition correspondence for each listener.

The stimuli were scaled to the same total RMS ampli-

tude, then played back from a Windows PC using an RME

Fireface UCX digital-to-analog converter (RME,

Haimhausen, Germany), through a Mackie 1202-VLZ mixer

(Mackie, Woodinville, WA), and presented diotically using

Sennheiser HD 280 Pro headphones (Sennheiser,

Wedemark, Germany). The average level at each earphone

was set to 65 dBA using a sound-level meter and flat-plate

coupler (Larson Davis models 824 and AEC 101; Larson

Davis, Depew, NY). Individualized frequency-specific gains

were added to this presentation level for the HI listeners.

The NAL-RP hearing-aid fitting formula (Byrne et al.,
1990) and a RANE DEQ 60L digital equalizer (RANE,

Mukilteo, WA) were used to implement these gains. The

use of the linear prescription formula is in accord with the

use of linear amplification. The gains prescribed for 250 and

6000Hz were applied to 125 and 8000Hz, respectively,

because the NAL-RP does not prescribe gains at these low-

est and highest audiometric frequencies. Because amplifica-

tion was provided, HI listeners were tested with hearing aids

removed.

Listeners were tested individually while seated in a

double-walled audiometric booth. The experimenter was

seated outside of the booth, using a large viewing window

and two-way intercom to maintain contact. Testing began

with practice conditions consisting of five HINT sentences

(not used for testing) for each of the following conditions: in

quiet, processed using the middle latency and SNR, then in

noise at the middle SNR. The HI listeners were asked during

this practice if the signals sounded comfortably loud. One

listener indicated that the signals sounded loud, but comfort-

able once reduced by 5 dB. Following practice, the listeners

heard the 180 test sentences. They were instructed to repeat

each back as best as they could, guessing if unsure. The

experimenter recorded the responses and controlled the pre-

sentation of sentences. In accord with standard HINT scor-

ing procedures, component words were scored as correct if

repeated exactly, apart from verb tense (e.g., is/was) and

article (a/the) variations. No feedback was provided during

testing, and no sentence was repeated for any listener.

III. RESULTS

A. Objective measures

Table I displays commonly employed objective mea-

sures of model performance for three algorithmic delays,

where the measures are based on acoustic analyses of the

signals themselves. Included are short-time objective intelli-

gibility (STOI) (Taal et al., 2011), which reflects the corre-

lation between the amplitude envelopes of (a) the original

clean speech prior to mixing with noise and (b) the

enhanced speech extracted from the noisy speech by the net-

work. The scale ranges from 0 to 100, where higher scores

represent higher predicted intelligibility. Perceptual evalua-

tion of speech quality (PESQ) (Rix et al., 2001) is an objec-

tive measure of sound quality and also reflects a comparison

between clean and processed speech. The scale ranges from

�0.5 to 4.5, and higher values represent better predicted

sound quality. These measures were developed and vali-

dated for NH (and not HI) listeners. Finally, SNR is the esti-

mated SNR of the signal prior to and following processing.

Apparent from Table I is that substantial increases in

objective values as a result of noise-reduction processing

were obtained at each SNR tested (compare Mixture versus

X ms values). These data also show that the largest objective

values (in bold) were obtained in the 20-ms latency condi-

tion—this is true for each of the measures. This slight

advantage in the 20-ms condition over the 10- or 5-ms con-

ditions reflects the slight algorithmic advantage associated

with longer time frames.

TABLE I. Objective measures.

Test SNR �5 dB �2 dB 0 dB 3 dB

STOI Mixture 54.0 62.6 68.4 76.6

20ms 77.9 85.4 88.6 92.1

10ms 76.2 83.9 87.5 91.4

5ms 74.0 82.8 86.6 90.8

PESQ Mixture 1.23 1.43 1.59 1.77

20ms 2.05 2.40 2.59 2.82

10ms 1.99 2.33 2.51 2.76

5ms 1.87 2.25 2.45 2.71

SNR Mixture �5.0 �2.0 0.0 3.0

20ms 6.7 9.0 10.3 12.2

10ms 6.1 8.3 9.7 11.6

5ms 5.3 7.6 8.9 10.9
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Table II contains values for the objective measures

Hearing-Aid Speech Perception Index (HASPI v2; Kates

and Arehart, 2021) and the Hearing-Aid Speech Quality

Index (HASQI v2, Kates and Arehart, 2014), for the SNRs

heard by the HI listeners. As with STOI and PESQ, these

indices involve a comparison between a test condition and a

clean-speech reference. However, these indices include a

model of the auditory periphery that can be adjusted to rep-

resent hearing loss. Both range from 0.0 to 1.0, with higher

values representing higher predicted intelligibility/sound

quality. Values were calculated using audiometric thresh-

olds averaged across the HI listeners (20 ears).

Apparent from Table II are large increases in predicted

intelligibility and sound quality as a result of algorithm

processing. For sound quality (bottom half of Table II), the

largest objective values are again obtained at a latency of

20ms. However, for predicted intelligibility (top half of

Table II), this is not uniformly the case. Instead, values are

similar overall, and the largest predicted intelligibility val-

ues are distributed among the different latencies.

B. Human intelligibility

Sentence recognition (intelligibility) was expressed as

the percentage of words correctly reported, and these scores

were transformed to rationalized arcsine units (RAUs;

Studebaker, 1985) to normalize variance prior to statistical

analysis. Figures 5 and 6 display mean intelligibility scores

for individual HI and NH listeners, respectively. It is appar-

ent from Fig. 5 that appreciable increases in scores were

observed from speech-in-noise to the processed conditions,

so long as baseline scores in quiet were low enough to allow

improvement. Also, apparent is no regular pattern to the dif-

ferent algorithmic-latency scores. Apparent from Fig. 6 is

the better overall performance of the NH listeners.

Figure 7 displays group mean scores for the HI and NH

listeners in each condition. The average intelligibility

improvements for the HI listeners were 47, 31, and 14%

points at the three SNRs (�2, 0, 3 dB). These results gener-

ally replicate those of Healy et al. (2023), where an ARN

having a frame length of 20ms (but a 2-ms hop) also

increased HINT scores in babble. The intelligibility

increases in that prior study were larger (58 and 53% points

at �2 and 0 dB SNR), likely attributable in part to the partic-

ipation of a different group of HI listeners having a greater

average degree of hearing loss and consequent lower base-

line scores in noise.

Of particular relevance for the current study, scores in

the algorithmic-latency conditions are similar. The three

latency scores at each SNR are within 3% points of one

another, on average across SNRs.

Group mean benefit for NH listeners was far smaller, as

a direct result of higher baseline scores (where bene-

fit¼ intelligibility following noise reduction minus that in

noise). One notable facet of the data from the NH listeners

involves the lower baseline score at the least favorable SNR,

as expected, but also lower algorithm-processed scores. Low

SNRs required to produce low baseline scores for NH listen-

ers (e.g., �5 dB) produce challenges for noise-reduction sys-

tems, as observed currently. Fortunately, such low SNRs are

not common in real-world environments (see Sec. III).

The data from the HI listeners were subjected to a

2-way repeated-measures analysis of variance (ANOVA) (3

SNRs� 4 processing conditions). The test revealed signifi-

cant main effects of SNR [F(2, 18)¼ 38.2, p< 0.001] and

TABLE II. Objective measures.

Test SNR �2 dB 0 dB 3 dB

HASPI Mixture 0.139 0.256 0.534

20ms 0.749 0.776 0.796

10ms 0.742 0.781 0.802

5ms 0.715 0.773 0.802

HASQI Mixture 0.091 0.121 0.184

20ms 0.416 0.470 0.537

10ms 0.394 0.449 0.519

5ms 0.377 0.434 0.507

FIG. 5. Displayed are scores for individual listeners with hearing loss.

Percent-correct sentence intelligibility is shown for speech in noise and

when processed by the noise-reduction algorithm having an algorithmic

latency of 20, 10, or 5ms. Scores for each of the SNR conditions are dis-

played in different panels.
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processing [F(3, 27)¼ 88.1, p< 0.001], as well as a signifi-

cant interaction [F(6, 54)¼ 10.4, p< 0.001]. Incremental

post hoc tests (Holm-Sidak) indicated that scores in the

noisy condition were different from those in each of the cor-

responding processed conditions (p< 0.001), and that scores

in the three processing-latency conditions did not differ sig-

nificantly from one another (p> 0.05).

A similar ANOVA for the NH-listener scores yielded

the same pattern (significant main effects of SNR [F(2, 18)
¼ 100.0, p< 0.001] and processing [F(3, 27)¼ 28.5,

p< 0.001], and a significant interaction [F(6, 54)¼ 5.3,

p< 0.001]). Also, as for the HI listeners, post hoc tests

revealed that scores in the noisy conditions were different

from those in the corresponding processed conditions

(p< 0.001), and that scores in each of the three algorithmic-

latency conditions did not differ significantly from one

another (p> 0.05). For the NH listeners, this pattern held for

SNRs of �5 and �2 dB, but not at 0 dB where scores did

not differ significantly in any condition (p> 0.05).

A priori planned comparisons (uncorrected paired

t-tests) were also performed, as a way to probe possible dif-

ferences between algorithmic-latency scores with greater

sensitivity. For the HI listeners, intelligibility in every proc-

essed condition was higher than in the corresponding noise

condition (i.e., benefit, p< 0.001). Scores in the three

latency conditions did not differ from one another at any

SNR (p> 0.05). The exception was at an SNR of �2 dB

between 5 and 10ms [t(9)¼ 2.8, p¼ 0.02].

Planned comparisons performed on the data for the NH

listeners revealed a similar pattern. Intelligibility in every

processed condition was higher than in the corresponding

noise condition (p< 0.001), and scores in the three latency

conditions did not differ from one another at any SNR

(p> 0.05). The exception occurred at the most favorable SNR

FIG. 6. As Fig. 5, but for individual listeners with normal hearing.

FIG. 7. Group-mean sentence intelligibility (and std. errors) for speech in

noise and when processed by the noise-reduction algorithm having an algo-

rithmic latency of 20, 10, or 5ms. Means for the listeners with hearing loss

are displayed in the left panels and those for listeners with normal hearing

are displayed in the right panels. The different SNR conditions are dis-

played in different panels.
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of 0 dB, where baseline scores were high and benefit was sig-

nificant (p< 0.05) for only the 5-ms latency condition.

An additional comparison was made between unpro-

cessed speech in noise for NH listeners versus algorithm-

processed scores for HI listeners. This comparison reflects

the extent to which we are able to eliminate the speech-in-

noise deficit for HI listeners by producing conditions that

allow their performance to match that of young, healthy

ears. It also mimics a communication situation in which a

typical hearing-aid user and a NH individual are communi-

cation partners in a particular setting—can the older HI indi-

vidual perform as well as their young NH counterpart, if

given access to the current DNN noise reduction? At the

common SNR of 0 dB, intelligibility for the HI listeners,

averaged across processing latencies, was within four per-

centage points (below) of the intelligibility produced by the

NH listeners (HI, 92.4%; NH, 96.2%). At the common SNR

of �2 dB, where scores are farther from the performance

ceiling, averaged intelligibility for the HI listeners was

within two percentage points (above) of that produced by

NH listeners (HI: 87.5%, NH: 86.1%). Planned comparisons

(uncorrected t-tests) on RAU-transformed scores indicated

that the difference between NH intelligibility in noise versus

HI intelligibility after algorithm processing was nonsignifi-

cant at each latency for both SNRs (p> 0.05).

IV. DISCUSSION

The current results replicate those of Healy et al.
(2023), where a frame length of 20ms was used. They also

show that the latency of the DNN can be reduced by a factor

of 2 or 4 without affecting intelligibility for human listeners.

The objective measures in Tables I and II indicate that the

waveforms output by the longer-frame ARN are slightly

more veridically accurate (more similar to the original

speech prior to mixing with noise) relative to the waveforms

output by the shorter-frame ARNs. This was true for most,

but not all, metrics. However, the critical question is

whether these slight increases in acoustic accuracy are per-

ceptually meaningful for human listeners—do they result in

better intelligibility? That answer appears to be no.

Longer time frames can have algorithmic advantages.

The larger frame offers additional contextual cues for the

neural network to exploit within each frame. This context

advantage exists despite the use of RNNs that integrate prior

time-frame information (which also provides context). In

frequency-domain processing, such as short-time Fourier

transform, larger time frames produce greater frequency res-

olution, at the expense of resolution in the time domain.

This higher frequency resolution is often desirable despite

the trade-off, as the extraction of speech cues from noise

often requires good frequency resolution (e.g., Apoux and

Healy, 2009). A second potential advantage of longer

frames exists when the frame shift is held constant. This is

what was done currently in order to compare algorithms

having similar computational complexity. A given time

point of a signal will fall within a larger number of frames

when those frames are larger, following the overlap-add

step in reconstructing the output noise-reduced waveform

signal (see Fig. 2). Thus, the output signal at that time point

will result from the average of a larger number of esti-

mates—a statistical pooling effect. However, despite these

potential advantages associated with longer time frames, the

current study suggests that the currently employed smaller

frames appear to be equivalent to longer time frames for

human intelligibility.

Low SNRs were used for the NH listeners in order to

reduce baseline scores in quiet and allow benefit to be

observed. The lowest SNR value of �5 dB was successful in

reducing baseline scores and yielded large benefits of noise

reduction, but it also reveals the noise-reduction challenge

posed by low SNRs. The relative lack of speech information

and dominance of the signal by noise pose difficulty for any

noise-reduction system. Accordingly, the noise-reduced

scores in this condition were lower than at other SNRs.

Fortunately, noise-reduction does not have to operate at

very low SNRs in order to provide real-world benefit. This

occurs for two reasons. First, typical hearing-aid users dis-

play poor speech understanding at higher SNRs (e.g., 0 dB)

where the network is able to operate more effectively and

improve scores to values over 90% correct (see Fig. 7).

Listeners using cochlear implants struggle to understand

speech at even higher SNRs (e.g., 10 dB; Gifford and Revit,

2010; Dorman and Gifford, 2017; Abdel-Latif and Meister,

2021), where the noise-reduction task is far easier. Second,

low SNRs such as �5 dB do not often occur in the real-

world (Pearsons et al., 1977; Smeds et al., 2015; Wu et al.,
2018; Ben�ıtez-Barrera et al., 2020; Mansour et al., 2021).
Although this can be difficult to understand given the high

noise levels of some communication environments, it can be

understood in terms of the tendency for communication

partners to compensate for background noise by modifying

speaking intensity and distance. The most extreme environ-

ments (e.g., an amplified music concert) provide an example

of how individuals correct for background noise—in this

environment, the talker will speak loudly into the listener’s

ear in order to produce an acceptable SNR. Variations of

this (albeit to lesser extents) occur constantly (Lombard,

1911; Pearsons et al., 1977). Accordingly, real-world bene-

fits can be obtained despite the algorithmic challenges asso-

ciated with very low SNRs, which typically do not occur.

It is emphasized that the current study involves monau-

ral or single-microphone noise reduction, in which the

speech and noise are picked up by the same single micro-

phone or mixed into a single channel. This arrangement rep-

resents the most flexible and universally applicable, but also

the most challenging situation for a noise-reduction algo-

rithm. Any additional cues, including those associated with

directionality of signals and noises that are not co-located,

will add information and make the task easier (Kalkhorani

and Wang, 2024). The current results, therefore, apply to sit-

uations that are applicable to any environmental situation

and that can be considered “worst case” or most challenging

for a noise-reduction network.
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Deep-learning based solutions have become the future

of noise reduction. Modern devices are capable of perform-

ing vast computations, which were impossible only a few

years ago. A monaural approach has been employed by

major hearing aid manufacturers. For example, Oticon uses

a monaural DNN for noise reduction that receives input fol-

lowing scene classification and single or dual directional

microphones (Oticon, 2022). The pre-processing improves

the SNR provided to the monaural DNN. Phonak has

adopted a similar approach involving scene classification

followed by microphone input adjustment. This signal is

then fed to a monaural DNN. Their current frequency-

domain DNN operates in the complex domain (involving

both real and imaginary parts, Williamson et al., 2016) and
has 4.5� 106 parameters (Hasemann and Kryloa, 2024).

The current study, and those like it, may be of value in the

design of future devices that best navigate the various con-

straints that exist when deploying these systems in everyday

devices (e.g., Park et al., 2025) by allocating the available

processing time most effectively.
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