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Machine learning algorithms to segregate speech from background noise hold considerable prom-

ise for alleviating limitations associated with hearing impairment. One of the most important con-

siderations for implementing these algorithms into devices such as hearing aids and cochlear

implants involves their ability to generalize to conditions not employed during the training stage.

A major challenge involves the generalization to novel noise segments. In the current study, sen-

tences were segregated from multi-talker babble and from cafeteria noise using an algorithm that

employs deep neural networks to estimate the ideal ratio mask. Importantly, the algorithm was

trained on segments of noise and tested using entirely novel segments of the same nonstationary

noise type. Substantial sentence-intelligibility benefit was observed for hearing-impaired listeners

in both noise types, despite the use of unseen noise segments during the test stage. Interestingly,

normal-hearing listeners displayed benefit in babble but not in cafeteria noise. This result high-

lights the importance of evaluating these algorithms not only in human subjects, but in members

of the actual target population. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4929493]

[DB] Pages: 1660–1669

I. INTRODUCTION

Poor intelligibility of speech in background noise

remains a major complaint of hearing-impaired (HI) listen-

ers. The difference between quiet backgrounds, in which HI

listeners can perform quite well, and noisy backgrounds, in

which they typically struggle, can be quite dramatic: back-

ground noises that appear to present little challenge to

normal-hearing (NH) listeners can be quite debilitating to HI

listeners (see Moore, 2007; Dillon, 2012). This issue is com-

pounded by the fact that difficulty is most pronounced in

noises that fluctuate over time, as most naturally occurring

backgrounds do. Whereas NH listeners demonstrate better

intelligibility in fluctuating relative to non-fluctuating back-

grounds, HI listeners generally benefit less from this advan-

tageous masking release (e.g., Wilson and Carhart, 1969;

Festen and Plomp, 1990; Takahashi and Bacon, 1992; ter

Keurs et al., 1993; Eisenberg et al., 1995; Bacon et al.,
1998; Bernstein and Grant, 2009; Oxenham and Kreft,

2014).

In accord with the ubiquitous nature and severity of the

deficit, techniques to remedy poor speech reception in noise

by HI listeners have been widely pursued. One approach

involves monaural (single-microphone) algorithms that

segregate speech from background noise and aim to increase

intelligibility for HI listeners. This may be considered an

ultimate goal because it is the algorithm and not the impaired

listener that is tasked with extracting intelligible speech

from noise. Whereas such “speech enhancement” techniques

are capable of improving acoustic signal-to-noise ratio

(SNR), few are capable of producing meaningful increases

in intelligibility, particularly for HI listeners (for reviews,

see Loizou, 2007; Healy et al., 2013).

The first demonstration of substantial intelligibility

increases in HI listeners was provided by Healy et al.
(2013). In this work, sentences were segregated from back-

ground noise using an algorithm based on binary masking, a

technique in which time-frequency (T-F) units are classified

based on local SNR as either dominated by speech or domi-

nated by noise, and only units dominated by speech are

retained. But unlike the ideal binary mask (IBM), defined in

terms of the individual premixed speech and noise signals

(Hu and Wang, 2001; Wang, 2005), the algorithm in Healy

et al. (2013) estimated the IBM using only the speech-plus-

noise mixture. The algorithm employed deep neural net-

works (DNNs) that were trained to classify T-F units, by

receiving acoustic characteristics of the speech-plus-noise

mixture and the IBM. During supervised learning, the algo-

rithm minimized the difference between the binary mask it

produced and the IBM for each sentence in noise (see Wang

and Wang, 2013, for technical descriptions of the algorithm).a)Electronic mail: healy.66@osu.edu
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Once trained, the algorithm was employed to segregate

Hearing in Noise Test sentences (HINT, Nilsson et al.,
1994) from speech-shaped noise and multi-talker babble, at

several SNRs. It was found that algorithm-processed senten-

ces were far more intelligible than unprocessed sentences for

both NH and HI listeners. The intelligibility increases were

largest for HI listeners and in the babble background, which

represent the target end-user population and more typical

noise backgrounds. Further, the intelligibility increases were

sufficient to allow the HI listeners hearing algorithm-

processed sentences to outperform the NH listeners hearing

unprocessed sentences, in conditions of identical noise.

Thus, having the algorithm was more advantageous in these

conditions than having NH.

A subsequent study (Healy et al., 2014) involved recog-

nition of isolated consonants in order to identify the specific

speech cues transmitted by the algorithm and the IBM.

Consonant recognition in speech-shaped noise and babble

was substantially increased by the algorithm for both NH

and HI listeners, despite the lack of top-down cues associ-

ated with sentence recognition and the correspondingly

increased reliance on bottom-up acoustic cues. An

information-transmission analysis revealed that the speech

cues transmitted by the algorithm were similar to those trans-

mitted by the IBM, indicating that the algorithm estimated

the IBM with effective accuracy.

One major hurdle that must be overcome before an algo-

rithm such as this can have direct translational impact

involves the ability to generalize to noisy conditions not

used during training. Indeed, the inevitable mismatch

between conditions encountered during typical use and those

employed during algorithm training is a common concern in

supervised learning. Some steps have been taken to deal

with generalizability. In the study by Healy et al. (2013),

sentences employed during the training of the algorithm

were not employed during its operation that produced stimuli

used for human-subjects testing. This same novel-sentence

technique was employed by Kim et al. (2009) and Hu and

Loizou (2010) in their demonstrations of an IBM-based algo-

rithm employing Gaussian Mixed Model (GMM) classifiers,

which produced large gains in noisy sentence intelligibility

for NH listeners (Kim et al., 2009) and for cochlear-implant

users (Hu and Loizou, 2010).

A primary step toward generalization involves the use

of novel or unseen noise segments. In the work of Kim et al.
(2009) and Hu and Loizou (2010), the same brief noise seg-

ment was used during both algorithm training and operation.

The use of the same brief noise segment has the potential to

substantially increase “overfit” to the training conditions,

thus limiting generalizability. Healy et al. (2013) and Healy

et al. (2014) used longer-duration noise (10 s) with looping,

in an effort to decrease overfit and increase the potential to

generalize. However, the background noise selected for each

utterance was drawn from the same overall 10-s noise seg-

ment during both algorithm training and operation. Thus, the

ability to generalize to novel noise segments is likely

improved relative to Kim et al. (2009) and Hu and Loizou

(2010), but it is still limited.

The generalization to novel or unseen noise segments is

an obvious issue for the future goal of implementation into

hearing technology, including hearing aids and cochlear

implants. Because it is not possible to train the algorithm on

all noises that will be encountered by a user, noise employed

during training will have to be different from that encoun-

tered during the operational stage. May and Dau (2014)

examined the impact of a noise mismatch between training

and operational (test) stages on the performance of a GMM

algorithm modeled after Kim et al. (2009). The accuracy of

the binary mask estimated by the algorithm was assessed rel-

ative to the IBM using the classification performance metric

of hit rate (HIT, percentage of correctly classified speech-

dominant T-F units) minus false-alarm (FA) rate (percentage

of erroneously classified noise-dominant T-F units; see Kim

et al., 2009). It was found that the mask estimated by the

algorithm was substantially reduced in accuracy when train-

ing and test noises were drawn from different segments of

the same noise type. These accuracy reductions became

smaller as noise durations were increased, but they remained

as large as 50 percentage points in HIT-FA rate, even at

training/test noise durations of 10 s each. The study of May

and Dau (2014) thus highlights the importance of training

and evaluating on different segments of a noise.

The focus of the current study was to investigate the

ability of a new speech-segregation algorithm to generalize

to unseen segments of background noise. Assessed was the

ability of the DNN algorithm to generalize from training

conditions involving segments of everyday, nonstationary

background noises to operation/test conditions employing

entirely novel segments of the same noise type. Recognition

of sentences segregated by the algorithm from multi-talker

babble and from cafeteria noise was assessed in NH and HI

listeners to characterize this generalizability.

II. METHOD

As described below, the algorithm tested currently dif-

fers from those employed in Healy et al. (2013) and Healy

et al. (2014) in several aspects. Whereas the goal of the algo-

rithms employed by Healy et al. (2013) and Healy et al.
(2014) was to estimate the IBM, the current algorithm esti-

mates the Ideal Ratio Mask (IRM; Srinivasan et al., 2006;

Narayanan and Wang, 2013; Wang et al., 2014). To address

the challenge of unseen noise segments, the current algo-

rithm was trained using substantially longer noises, which

were further expanded using a noise-perturbation technique

(Chen et al., 2015).

A. Stimuli

The stimuli were sentences drawn from the IEEE corpus

(IEEE, 1969). The 44.1 kHz, 16-bit files were spoken by one

male talker and each sentence contained five keywords used

for scoring. Although grammatically and semantically cor-

rect, these sentences are typically considered more difficult

to understand than those of other corpora (e.g., HINT senten-

ces, Nilsson et al., 1994; or Central Institute for the Deaf

everyday-speech sentences, Silverman and Hirsch, 1955;

Davis and Silverman, 1978). Two background noises were
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employed. These were 20-talker babble and cafeteria noise,

each 10 min in duration, and both from an Auditec CD (St.

Louis, MO, www.auditec. com). The babble included both

male and female young-adult voices. The cafeteria noise

consisted of three overdubbed recordings made in a hospital

employee cafeteria. It therefore contained a variety of sour-

ces, including voices, transient noises from dishes, etc.

SNRs were selected to obtain scores for unprocessed senten-

ces in noise below and above 50%. These were 0 and þ5 dB

for the HI subjects and �2 and �5 dB for the NH subjects.

All stimuli were downsampled to 16 kHz prior to processing.

The stimulus set employed during algorithm training at

each SNR included 560 IEEE sentences and noise segments

randomly selected from the first 8 min of each noise. The

stimulus set employed to test algorithm performance

included 160 IEEE sentences not used during training and

noise segments randomly selected from the remaining 2 min

of each noise. New random draws of noise were employed

for each SNR. An unprocessed speech-in-noise condition

was prepared by simply mixing each of the 160 test senten-

ces with a randomly selected segment of babble or cafeteria

noise at the appropriate SNR. The same randomly selected

noise segment used for each test sentence in the algorithm-

processed condition was also used for the corresponding sen-

tence in the unprocessed condition. Thus, the only difference

between these conditions was algorithm processing.

B. Algorithm description

1. Ideal ratio mask estimation

The IRM is defined as

IRM t; fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S t; fð Þ
S t; fð Þ þ N t; fð Þ

s

where Sðt; f Þ is the speech energy contained within T-F unit

ðt; f Þ and Nðt; f Þ is the noise energy contained within the

unit ðt; f Þ. Thus, in the IRM, each T-F unit is scaled down in

level according to its SNR. Units having a larger (more-

favorable) SNR are attenuated less, and those having a

smaller (less-favorable) SNR are attenuated more, but no

units are zeroed. This makes the IRM different from the

IBM. In the latter, T-F units are classified as either speech

dominant or noise dominant. This determination is based on

the SNR of each unit relative to a local criterion SNR (LC).

Speech-dominant units (SNR>LC) are retained and unaf-

fected, whereas noise-dominant units (SNR�LC) are

entirely discarded. The estimated IRM has been shown to

produce slightly better objective intelligibility (based on

acoustic measures) but substantially better objective sound

quality than the estimated IBM (Wang et al., 2014).1

The IRM for each sentence-plus-noise mixture was esti-

mated from the cochleagram (Wang and Brown, 2006) of

the premixed speech and noise. The cochleagram is similar

to the spectrogram, but as the name implies, it has additional

perceptual relevance, due in part to the use of spectral filter-

ing that mimics the shape of the auditory filters. The coch-

leagram had 64 gammatone frequency channels centered

from 50 to 8000 Hz and equally spaced on the ERBN scale

(Glasberg and Moore, 1990). It employed 20-ms time frames

with 10-ms frame shifts.

An overview of the IRM estimation system is shown in

Fig. 1. First, a complementary feature set consisting of the

amplitude modulation spectrogram (AMS), relative spectral

transformed perceptual linear prediction (RASTA-PLP),

mel-frequency cepstral coefficient (MFCC), and gammatone

filterbank (GFB) features was extracted from each frame of

the broadband speech-plus-noise mixture. These features

have been employed previously in machine speech segrega-

tion, and their descriptions can be found in Chen et al.
(2014). The GFB features were computed by passing the

input signal to a 64-channel gammatone filterbank and

downsampling the response signals to 100 Hz (see Chen

et al., 2014). Extraction of the remaining features followed

the procedures described in Healy et al. (2013). These fea-

tures of the speech-plus-noise mixture were then fed to a sin-

gle DNN having four hidden layers and 1024 rectified linear

units (Nair and Hinton, 2010) in each hidden layer. The

DNN was trained to estimate the IRM using backpropagation

and mean square error as the loss function. A minibatch size

of 1024 and dropout ratio of 0.2 were used. The Adagrad

algorithm (Duchi et al., 2011) was used to adjust the learning

rate. To incorporate context, five frames of features (two to

each side of the current frame) were used to simultaneously

predict five frames of the IRM. By incrementing frame-by-

frame, each frame of the IRM was estimated five times and

the average was taken as the final estimate for each frame

(Wang et al., 2014).

2. Noise perturbation for training-set expansion

Because the noises employed in the current study were

nonstationary, there was potential mismatch between the

noise segments used for algorithm training and those used

for testing. As described in Sec. I, limited training will likely

lead the DNN to overfit the training set, resulting in poor

generalization. One technique to mitigate this issue involves

the use of longer-duration noises during algorithm training,

hence the current use of 8-min training noises. To further

expand the training set, a noise perturbation technique (Chen

et al., 2015) was also employed here. This was accomplished

by applying frequency perturbation to the spectrogram of the

FIG. 1. (Color online) Overview of the system used to estimate the ideal ra-

tio mask. DNN, deep neural network.
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noise in order to generate new noise samples. The procedure

for frequency perturbation was as follows. A 161-band spec-

trogram of the noise was first computed by short time

Fourier transform using a frame length of 20 ms and a frame

shift of 10 ms. Each T-F unit of the spectrogram was then

assigned a random value D drawn from the uniform distribu-

tion in the range of (�1000 to 1000). The value of D was

then replaced by the average of the random values in a win-

dow centered at this T-F unit with the window spanning 201

time frames and 101 frequency bands. The energy E(t, f) in

the unit (t, f) was then replaced by E(t, fþD). Finally, the

modified spectrogram was converted to a time-domain sig-

nal. This procedure results in a new noise that is acoustically

and perceptually similar, but not identical, to the unperturbed

noise. More details of the frequency-perturbation technique

may be found in Chen et al. (2015).

Training sets were created using both original and per-

turbed noises. Each of the 560 training sentences was mixed

with a different randomly selected noise segment 50 times,

with half of the segments left unperturbed and the other half

perturbed. This procedure resulted in a training set having

560� 50 mixtures for each noise type and SNR. The stimuli

employed for algorithm testing consisted of the 160 test sen-

tences and 160 randomly selected noise segments drawn

from the original unperturbed noise, for each noise type and

SNR.

Figure 2 illustrates the results of the speech-segregation

algorithm for a mixture of an IEEE sentence and babble

noise at �5 dB SNR. The cochleagram of clean speech is

shown in Fig. 2(a), and that of noisy speech in Fig. 2(b).

The IRM is given in Fig. 2(c), and the estimated IRM in

Fig. 2(d). Figure 2(e) shows the cochleagram of the speech

utterance segregated from noise. From the figure, it is clear

that the target speech is well separated from the babble noise

and that the spectro-temporal structure of the speech is

retained following segregation.

C. Subjects

Two groups of subjects were recruited. One group con-

sisted of ten HI listeners representative of typical patients of

the Speech-Language-Hearing Clinic at The Ohio State

University. All were bilateral hearing-aid wearers having a

sensorineural hearing loss. Ages ranged from 26 to 74 years

(mean, 59.1 years), and seven were female. Hearing status

was confirmed on day of test through otoscopy, tympanome-

try (ANSI, 1987) and pure-tone audiometry (ANSI, 2004,

2010). Pure-tone averages (PTAs, average of audiometric

thresholds at 500, 1000, and 2000 Hz) ranged from 33 to

75 dB hearing level (HL) (average, 50.5). Hearing losses

therefore ranged from mild to severe and were moderate on

average. Configurations were flat or sloping. Audiograms

obtained on day of test are presented in Fig. 3, along with

subject number, age, and gender. Hearing-impaired subjects

are numbered and plotted in order of increasing PTA.

The second group of subjects was composed of ten NH

listeners. The NH subjects were recruited from undergradu-

ate courses at The Ohio State University. Normal hearing

was defined by audiometric thresholds at octave frequencies

from 250 to 8000 Hz at or below 20 dB HL on day of test

(ANSI, 2004, 2010). Ages ranged from 19 to 30 years

(mean, 21.2 years) and all were female. All subjects received

a monetary incentive or course credit for participating. As in

FIG. 2. (Color online) Segregation of an IEEE sentence (“Paint the sockets in the wall dull green”) from babble noise at �5 dB SNR; (a) the cochleagram of

the utterance in quiet; (b) the cochleagram of the speech-plus-noise mixture; (c) the IRM for this mixture; (d) the IRM for this mixture estimated by the algo-

rithm; and (e) the cochleagram of the utterance after applying the estimated IRM to segregate the speech from noise.
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our previous work on this topic (Healy et al., 2013; Healy

et al., 2014), age matching between HI and NH subjects was

not performed because the goal was to assess the abilities of

typical (older) HI listeners relative to the gold-standard per-

formance of young NH listeners.

D. Procedure

A total of eight conditions were employed (2 noise types

� 2 SNRs� 2 processing conditions). Subjects heard 20

sentences in each condition for a total of 160 sentences.

Sentence list-to-condition correspondence was pseudo-

randomized for each subject. Noise type and SNR were

blocked to allow unprocessed and algorithm conditions to

appear juxtaposed in presentation order for each noise type

and SNR. Half the listeners heard unprocessed prior to algo-

rithm for each noise type and SNR and the other half heard

the opposite order. Half of the subjects heard the babble con-

ditions followed by the cafeteria-noise conditions and the

other half heard the opposite order. No subjects had prior ex-

posure to the sentence materials, and no sentence was

repeated in any condition for any listener.

The total RMS level of each stimulus in each condition

was equated for playback. Presentation level was 65 dBA for

NH listeners and 65 dBA plus frequency-specific gains as

prescribed by the NAL-R hearing-aid fitting formula (Byrne

and Dillon, 1986) for each individual HI listener. The NAL-

R fitting procedure employed in Healy et al. (2014) was also

employed here. The only exception was that a RANE DEQ

60L digital equalizer (Mukilteo, WA) was used currently to

shape the stimuli, rather than digital filtering in MATLAB. The

signals were transformed to analog form using Echo Digital

Audio Gina 3G digital-to-analog converters (Santa Barbara,

CA), shaped using the RANE equalizer, routed to a Mackie

1202-VLZ mixer (Woodinville, WA) to adjust gain, and pre-

sented diotically over Sennheiser HD 280 Pro headphones

(Wedemark, Germany). Hearing-impaired listeners were

tested with hearing aids removed, and presentation levels

were calibrated using a sound-level meter and flat-plate

headphone coupler (Larson Davis models 824 and AEC 101;

Depew, NY).

The subjects were seated with the experimenter in a

double-walled audiometric booth. Prior to testing, a familiar-

ization was performed during which listeners heard five

IEEE sentences in quiet followed by five sentences each in

the algorithm and then unprocessed conditions in either bab-

ble or cafeteria noise, corresponding to whichever noise the

subject was to receive first. This familiarization was repeated

half way through the experiment using the other noise type,

prior to switching noise types. After presentation of the ini-

tial sentences in quiet, the HI subjects were asked if the stim-

uli were at a comfortable level. Two of the ten HI subjects

indicated that the stimuli sounded loud, and so the experi-

menter reduced the presentation level by 5 dB. These indi-

viduals then judged the stimuli to be comfortable. The

overall presentation level did not exceed 96 dBA for any

subject. The experimenter instructed the listener to repeat

back as much of each sentence as possible and controlled the

presentation of each sentence.

III. RESULTS AND DISCUSSION

A. Objective acoustic measures of intelligibility

Before presenting the human-subjects results, we pro-

vide predicted intelligibility scores, in part to facilitate com-

parisons with the obtained listener scores and to give an

objective benchmark for future segregation studies. The

short-time objective intelligibly (STOI) (Taal et al., 2011)

score based on the mean of all 160 test sentences was

employed to evaluate the speech processed by the algorithm.

STOI compares the envelopes of speech segregated from

noise and clean speech. First, the effect of noise perturbation

was examined. It was found that the use of noise perturba-

tion during algorithm training improved the STOI score for

cafeteria noise by approximately 0.02 at negative SNRs and

0.01 at 0 dB SNR, while it decreased STOI for babble noise

FIG. 3. Pure-tone air-conduction audiometric thresholds for the listeners with sensorineural hearing impairment. Right ears are represented by circles and left

ears are represented by X’s. Also displayed is subject number, listener age in years, and gender.
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by around 0.02 at negative SNRs and 0.01 at 0 dB SNR.

Noise perturbation did not affect STOI scores at 5 dB SNR

for either cafeteria or babble noise. The greater positive

impact of perturbation on cafeteria noise is likely due to the

fact that cafeteria noise contains strong transient compo-

nents, making it more nonstationary than multi-talker babble

and therefore more suitable for noise perturbation. Despite

the differential impact of noise perturbation on processing of

cafeteria noise versus babble, we decided to use perturbation

(i.e., the same system) for both noise types to avoid the com-

plexity of using two different systems. The STOI scores for

the 160 test sentences are shown in Table I. The current

algorithm substantially improves STOI scores compared

with unprocessed mixtures, with increases ranging from 0.13

to 0.24 proportion points depending on SNR and noise type.

The HIT-FA rate was also computed to facilitate com-

parisons with binary masking algorithms (e.g., Kim et al.,
2009; Healy et al., 2013). To compute the HIT-FA rate, the

estimated IRM was converted to the estimated IBM using an

LC set to be 5 dB lower than the overall mixture SNR. HIT-

FA rates for the 160 test sentences are also shown in Table I.

These HIT-FA values are broadly consistent with STOI

scores and indicate that the system was estimating the mask

with reasonable accuracy.

B. Intelligibility by human listeners

Figure 4 shows intelligibility based on percentage of

keywords reported by each HI and NH listener, in each con-

dition. Hearing-impaired listeners are represented by filled

symbols and NH listeners are represented by open symbols.

Scores on unprocessed speech in noise are represented by

circles and scores on algorithm-processed speech are repre-

sented by triangles. Algorithm benefit for each listener is

therefore represented by the height of the line connecting

these symbols. As in Fig. 3, HI subjects are numbered and

plotted in order of increasing PTA.

In the babble background, all HI and NH subjects

received some benefit at the less favorable SNR, and all but

one listener in each group received some benefit at the more

favorable SNR. Benefit at the less favorable babble SNR

ranged as high as 67 percentage points (HI3) and was 45

points or greater for 6 of the 10 HI listeners. Benefit at the

more favorable babble SNR ranged as high as 49 percentage

points (HI3) and was 30 points or greater for 7 of the 10 HI

listeners. Like their HI counterparts, the NH listeners also

displayed substantial benefits in babble.

In the cafeteria-noise background, all but one HI listener

received some benefit at the less favorable SNR and all but

two HI listeners received some benefit at the more favorable

SNR. Benefit at the less favorable cafeteria-noise SNR

ranged as high as 43 percentage points (HI6) and was 30

points or greater for 6 of the 10 HI listeners. Benefit at the

more favorable cafeteria-noise SNR also ranged as high as

43 percentage points (HI3) and was 20 points or greater for 5

of the 10 HI listeners. In contrast to these substantial benefits

observed for HI listeners, and in contrast to what was

observed in babble, the listeners with NH generally did not

receive benefit from algorithm processing in the cafeteria-

noise background.

Group-mean intelligibility in each condition is displayed

in Fig. 5. The average benefit from algorithm processing in

babble was 27.8 and 44.4 percentage points for the HI listen-

ers (at 5 and 0 dB SNR) and 21.5 and 26.8 percentage points

for the NH listeners (at �2 and �5 dB SNR). A series of

planned comparisons (paired, uncorrected t tests) between

unprocessed and processed scores in each panel of Fig. 5

indicated that algorithm processing produced significant

increases in intelligibility for both HI and NH listeners at all

babble SNRs [t(9)� 4.8, p< 0.001].

The average benefit from algorithm processing in cafe-

teria noise was 18.2 and 26.9 percentage points for the HI

listeners (at 5 and 0 dB SNR). Planned comparisons indi-

cated that algorithm processing produced significant

increases in intelligibility for the HI listeners at both

cafeteria-noise SNRs [t(9)� 3.5, p� 0.007]. In contrast,

algorithm processing resulted in numerical decreases in av-

erage intelligibility scores for the NH listeners. Benefit was

�3.0 and �1.5 percentage points for the NH listeners (at �2

and �5 dB SNR). Planned comparisons indicated that scores

in unprocessed and processed conditions were statistically

equivalent for the NH listeners at both cafeteria-noise SNRs

[t(9)� 1.0, p� 0.35].

IV. GENERAL DISCUSSION

The current study demonstrates that an algorithm

designed to estimate the IRM using a trained DNN can suc-

cessfully generalize to novel segments of the same type of

nonstationary noise to produce substantial improvements in

intelligibility in HI listeners. For these listeners, substantial

benefit was observed in both babble and cafeteria noises.

Benefit was largest at the least favorable SNRs and in the

babble background. Benefit also tended to be greatest for the

HI listeners who performed most poorly on unprocessed

TABLE I. Short-time objective intelligibly (STOI) values for speech embedded in (unprocessed), and segregated from (processed), babble and cafeteria noise,

at the SNRs indicated. Also shown are hit minus false-alarm (HIT�FA) and false alarm (FA) rates for the IRM estimated by the algorithm.

Babble Cafeteria Noise

Unprocessed STOI Processed STOI HIT�FA (FA) Unprocessed STOI Processed STOI HIT�FA (FA)

5 dB 0.783 0.908 79% (12%) 0.761 0.889 84% (7%)

0 dB 0.668 0.856 78% (9%) 0.651 0.820 78% (6%)

�2 dB 0.616 0.830 76% (9%) 0.604 0.778 75% (6%)

�5 dB 0.548 0.783 72% (8%) 0.544 0.697 66% (8%)
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speech in background noise. In particular, HI1 and HI2 dis-

played less benefit than others, primarily as a result of their

high scores in the unprocessed conditions (see Fig. 4). Thus,

the algorithm appears to operate most effectively for those

listeners who need it most and under conditions of high-

level noise where these listeners perform most poorly.

For an algorithm to have translational significance for

HI listeners, it must produce gains in intelligibility under

conditions of high-level noise, but not degrade intelligibility

in conditions of lower-level noise where intelligibility is rel-

atively good. To assess this, SNRs were selected in the cur-

rent study to produce intelligibility of unprocessed speech in

noise both below and above 50%. Figures 4 and 5 show that

algorithm processing still provides performance benefit rela-

tive to unprocessed conditions when SNRs were more favor-

able and sentence-intelligibility scores were above 50%.

The successful generalization to unseen segments of the

same noise type was undoubtedly related to the magnitude

FIG. 4. Intelligibility of IEEE sentences based on percentage of keywords reported. The top panels represent scores in, or segregated from, babble noise, and

the bottom panels represent scores in, or segregated from, cafeteria noise, all at the SNRs indicated. Individual HI listeners are represented by filled symbols

and individual NH listeners are represented by open symbols. Scores on unprocessed speech in noise are represented by circles and scores on algorithm-

processed speech are represented by triangles. Algorithm benefit is represented by the height of the line connecting these symbols.

FIG. 5. Group-mean intelligibility

scores and standard errors for HI and

NH listeners hearing unprocessed

IEEE sentences in noise and sentences

following algorithm processing. The

top panels show scores for a babble

background, and the bottom panels

show scores for a cafeteria-noise back-

ground, both at the SNRs indicated.
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of training. First, to mitigate overfit to the nonstationary

noise, relatively long-duration training noises were

employed. Second, perturbation (Chen et al., 2015) was

employed to expand the set of noises employed during train-

ing. The modest modifications to the acoustic content of the

training-noise segments allowed the training set to better

capture the variations that can potentially exist in unseen

segments of the nonstationary backgrounds.

In addition to expanded training and the use of unseen

noise segments, another major difference between the cur-

rent algorithm and those described previously (Healy et al.,
2013; Healy et al., 2014) involves estimation of the IRM,

rather than the IBM. In the IBM, the binary classification

and discard of noise dominant T-F units leaves a signal hav-

ing “holes” in its spectro-temporal pattern. In the IRM, all

T-F units are retained, and each is scaled in level according

to its SNR. As mentioned earlier, this ratio-masking strategy

leads to significantly better objective speech quality with no

loss of (even slightly better) predicted speech intelligibility

(Wang et al., 2014).

The amount of intelligibility improvement observed in

this study appears to be somewhat lower than that observed

in Healy et al. (2013). Speech corpora and noises used are

both different across these two studies, making direct com-

parisons difficult. Nonetheless, for the 8-talker babble at

�5 dB, for example, the improvement for NH listeners in

Healy et al. (2013) was 35 percentage points, compared to

27 percentage points in the current study with a 20-talker

babble. On the other hand, the test conditions employed cur-

rently, i.e., on segments of nonstationary noises unseen dur-

ing training, are far more difficult to handle than the

matched, briefer-noise conditions tested in Healy et al.
(2013).

To assess the ability to generalize to an entirely new

noise, the algorithm trained on the cafeteria noise was tested

using a recording of noise from a French restaurant. This

new noise recording was obtained from Sound Ideas (2015)

and was created by recording the actual ambient sounds

within a medium-sized restaurant in Paris. As with the cafe-

teria noise employed in the formal study, a 2-min segment of

the French-restaurant noise was employed during testing.

Although similar in a general sense, the two separate record-

ings represented a substantial mismatch between training

and test conditions. Three of the original HI listeners (HI3,

HI4, and HI6) returned for additional testing. They heard

unprocessed speech in French-restaurant noise at the same

SNRs employed previously (0 and 5 dB), and corresponding

conditions in which the algorithm was used to extract the

speech from noise, for a total of four conditions. Each heard

a different set of 18 IEEE sentences in each condition, sen-

tences that were not heard previously, and the conditions

were presented in random order for each subject. All other

test conditions were identical to those employed in the for-

mal experiments. It was found that substantial intelligibility

improvements remained when the new noise was tested. All

subjects displayed benefit at both SNRs. At 5 dB SNR, this

benefit ranged from 9 to 29 percentage points and averaged

16 percentage points (group mean percent correct¼ 62.6

unprocessed versus 78.5 algorithm processed). At 0 dB SNR,

benefit ranged from 12 to 28 percentage points and averaged

21 percentage points (group mean percent correct¼ 27.0

unprocessed versus 48.2 algorithm processed). We stress

that these increases were obtained with no retraining per-

formed on the new noise at all.

One result of potential interest involves the algorithm

benefit displayed by the HI versus the NH subjects in cafete-

ria noise. Whereas the HI subjects displayed substantial

improvements in intelligibility at both SNRs, the NH sub-

jects did not. One way to interpret this result is to recognize

that the algorithm benefit we observe (Healy et al., 2013;

Healy et al., 2014) is typically larger for HI than for NH lis-

teners. As more challenging conditions are introduced (such

as the current novel-segment cafeteria-noise conditions) and

benefit is made smaller for the HI subjects, it is eventually

reduced to zero for the NH subjects. The generally smaller

benefit displayed by NH listeners is likely related to their re-

markable ability to extract speech from background noise in

challenging conditions—an ability not shared by their HI

counterparts. It is the high scores achieved by NH listeners

in unprocessed conditions that cause their benefit to be gen-

erally reduced. Of course, objective measures of intelligibil-

ity (e.g., STOI or HIT-FA rate) are based on acoustic

analyses of the signal and do not reflect differences across

human-subject types. These results underscore the impor-

tance of testing not only in human subjects, but in subjects

who represent the actual target end-user population.

The human-subject results in Fig. 5 and STOI scores in

Table I afford an opportunity to assess the accuracy of intel-

ligibility prediction. STOI has been shown to be more accu-

rate than many alternative metrics, such as the classic speech

intelligibility index, and has become a standard objective

speech intelligibility metric (Taal et al., 2011; Yu et al.,
2014) for NH listeners. For the IEEE corpus with the same

male speaker employed here, Taal et al. (2011) provide pa-

rameter values of a logistic transfer function that maps STOI

scores to percent-correct numbers. After such mapping,

STOI predicts, for NH listeners, improvement of 25 and 51

percentage points for babble noise (at �2 and �5 dB, respec-

tively), and 28 and 47 percentage points for cafeteria noise

(at �2 and �5 dB, respectively). Comparing these predicted

recognition values and the recognition scores obtained cur-

rently shows that the STOI numbers are far off (see Fig. 6).

In general, the predicted gains are much larger than the

actual ones. The best match occurs for babble noise at

�2 dB with a 3 percentage-point difference in terms of pre-

dicted gain, but even in this case STOI overestimates the

human-subject performance for the unprocessed noisy

speech. The worst case appears for the cafeteria noise at

�5 dB, where STOI predicts a large improvement of 47 per-

centage points even though there is actually none. This

assessment shows the challenge of predicting human speech

intelligibility despite a considerable amount of recent work

on this topic (e.g., Yu et al., 2014; Kates and Arehart, 2014);

see Valentini-Botinhao et al. (2011) for a related assessment

in the context of modified speech. While we still consider

the STOI metric to be a useful reference, its overestimation

of intelligibility gain should be kept in mind when interpret-

ing STOI scores. As mentioned earlier, there is no substitute
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for conducting actual listening tests on human subjects rep-

resentative of the desired target population.

Although the preliminary results on an entirely new res-

taurant noise described earlier are encouraging, we point out

that generalization to completely different noisy back-

grounds remains to be addressed. Another limitation is that

no room reverberation is considered in this study. Although

we think that large-scale training with a variety of back-

ground interference, including typical room reverberation, is

a promising approach (Wang and Wang, 2013), its viability

has to be verified in future research. Furthermore, the input

to the DNN consists of five frames of features, including two

future frames. The inclusion of future frames in the input

cannot be done in real-time processing, which is required for

hearing aid and cochlear implant applications.

V. CONCLUSIONS

A trained DNN algorithm that estimates the IRM pro-

duced substantial improvements in sentence intelligibility

for HI listeners in two types of nonstationary noise, despite

training on one segment of noise and testing on different seg-

ments of the same noise type. Improvements were largest

for those HI listeners who performed most poorly in back-

ground noise, in the multi-talker babble background, and at

the least-favorable SNRs. This ability of the algorithm to

generalize to novel segments of the same noise type likely

resulted from the large training set, which consisted of a

long-duration training noise and noise perturbation (Chen

et al., 2015) to further expand the training set. Of potential

interest is the fact that, for one of the noise types, algorithm

processing substantially improved intelligibility for HI lis-

teners, but not for NH listeners. This result underscores the

importance of testing in human subjects representative of

actual target end users. The current results are promising for

the translational significance of algorithms such as this, as

the ability to generalize to novel noise backgrounds is an

inescapable requirement for actual devices such as hearing

aids and cochlear implants.
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