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ABSTRACT

Speech super-resolution (SR), also called speech bandwidth
extension (BWE), aims to increase the sampling rate of a
given lower resolution speech signal. Recent years have wit-
nessed the successful application of deep neural networks in
time or frequency domains, and deep learning has improved
the performance considerably compared with conventional
approaches. This paper proposes an autoencoder based fully
convolutional neural network (CNN) that merges the infor-
mation from both time and frequency domains. At the train-
ing time, we optimize the CNN using a new time-frequency
loss (T-F loss), which combines a time domain loss and a fre-
quency domain loss. The experimental results show that our
model trained with the T-F loss achieves significantly better
results than other state-of-the-art models, and yields balanced
performance in terms of time and frequency metrics.

Index Terms— Super-resolution, bandwidth extension,
deep learning, convolutional neural network, T-F loss.

1. INTRODUCTION

Audio super-resolution (SR) is the challenging task of recov-
ering a high-resolution (HR) audio from the corresponding
low-resolution (LR) audio input. From the spectral domain
perspective, this task is also called bandwidth extension, i.e.,
extending from a narrowband to a wideband. This problem
has been studied for decades. Due to the limitation of trans-
mission bandwidth and restriction of audio equipment, such
as telephone and bluetooth devices, speech resolution (and
quality) is often limited (and low) at the user end. Speech
bandwidth extension (BWE) is employed to recover the wide-
band signal. It has been demonstrated that this technique
can also help with many other speech processing tasks, like
speech coding and automatic speech recognition.

Early studies adopt signal processing techniques, such as
the source-filter model [1]. To predict the upper band spec-
tral envelopes, methods including codebook mapping [2] and
linear mapping [3] have been proposed. Approaches from
the statistical perspective consist of GMM [4, 5] and joint

This research was supported in part by an NIDCD (R01 DC012048)
grant and the Ohio Supercomputer Center. We thank Ashutosh Pandey for
discussions on AECNN.

978-1-5090-6631-5/20/$31.00 ©2020 IEEE

HMM/GMM [6, 7]. After the introduction of deep learning,
we have seen advances in many topics in the speech field.
In audio SR, recent studies have introduced deep learning
techniques, which are shown to outperform conventional ap-
proaches. These have explored feedforward neural networks
[8], recurrent neural networks with long short-term memory
(LSTM) [9], CNN [10], waveform synthesizers like WaveNet
[11] and SampleRNN [12], and generative adversarial net-
works (GAN) [13, 14]. A more detailed summary of related
studies is given in Sect. 2.

Recent deep learning studies either work in the frequency
domain or the time domain. Lim et al. [15] introduced a
time-frequency network (TFNet) to jointly optimize the time
and frequency domains of a signal. TFNet first trains two net-
works in each domain respectively, and then combines their
respective results to reconstruct an HR signal. It outperforms
methods that only use information from one domain. As
TFNet essentially trains two deep networks at the same time,
its structure is complicated and takes considerable computa-
tional resources to train. In addition, its spectral branch suf-
fers from the issue of a limited receptive field.

In this paper, we propose a CNN to leverage cross-domain
information. For this purpose, we introduce a new time-
frequency loss (T-F loss) to facilitate training in both time
and frequency domains. Our model operates in the time do-
main by taking an LR signal as the input, and outputs an re-
constructed signal with a higher resolution. During training,
the model minimizes the T-F loss. The experiments show that
our new model performs well for both time and frequency
domain metrics. Unlike TFNet, our CNN is relatively simple
and efficient to train.

The rest of the paper is organized as follows. In Sect. 2,
we provide a detailed description of the related prior stud-
ies. In Sect. 3 we present the network design, and the time-
frequency loss function. In Sect. 4, the experimental setup,
results, and comparisons are presented. Finally Sect. 5 con-
cludes this paper.

2. RELATED WORK
Li et al. [8] appears to be the first work that introduced deep

neural network (DNN) to address BWE. Their DNN is pre-
trained as restricted Boltzmann machines and predicts the
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wideband log power spectrum (LPS) from the narrowband
LPS. The phase in the extended high-frequency range is pro-
duced by flipping and repeating the narrowband phase and
adding a negative sign. The experimental results show that
the DNN yields better results in terms of objective and subjec-
tive measures. Abel and Fingscheidt [16] proposed another
frequency domain method, which utilized a DNN to estimate
the lower-dimensional cepstral representation of the speech.

There are also studies that tackle the SR task from the time
domain perspective. Inspired by the successful application
of deep convolutional networks in image super-resolution,
Kuleshov et al. [10] introduced AudioUnet, which is adapted
from the image domain network [17, 18]. Their model is
trained with signals in the time domain, and learns the map-
ping from pairs of LR signals and HR signals. AudioUnet is
shown to outperform conventional methods and considerably
improves speech quality. Another time domain research em-
ployed SampleRNN [12], which is a hierarchical recurrent
neural network (RNN) used for audio waveform generation.

While the above studies have promising results, they only
focus on information in one domain of signal representation.
To combine the advantages of both time and frequency do-
main methods, Lim et al. [15] proposed a time-frequency net-
work (TFNet). They adapted AudioUnet and built two net-
works, including one that is trained on pairs of LR and HR
signals in the time domain and the other trained on pairs of
short-time Fourier transform (STFT) magnitude in the fre-
quency domain. The two networks are jointly optimized and a
spectral fusion layer is utilized to combine the outputs of two
branches. Experiments show that TFNet successfully merges
information from both domains and outperforms methods that
operate in one domain. Our research also focuses on incor-
porating cross-domain information. The major difference be-
tween our network and TFNet is that our model consists of a
single network and operates only in the time domain, but it is
optimized with a cross-domain T-F loss.

3. NETWORK DESIGN

Fig. 1 depicts the pipeline of our SR framework. Given an LR
signal sampled by 8 KHz, we first upsample it to 16 kHz using
the cubic spline interpolation [19], which corresponds to the
baseline of image domain SR (bicubic upsampling). Then the
upsampled signal and the HR signal are fed to our network
as the input and target, respectively. We jointly optimize the
network with our T-F loss, and reconstruct the HR signal after
training is done.

3.1. AECNN

Our network structure is based on the autoencoder CNN
(AECNN) by Pandey and Wang [20]. AECNN is a fully con-
volutional network composed of a series of encoder and de-
coder blocks. It includes skip connections to better recon-
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Fig. 1. Illustration of the super-resolution workflow and

AECNN network structure.

struct the final output from the encoder, as the output of en-
coder has a limited dimension. Rectified linear unit (ReLU)
is used in each layer of the network as the nonlinearity, except
for the last layer where we use the hyperbolic tangent (tanh)
activation. A dropout ratio of 0.2 is employed for every one of
three layers. Our CNN takes upsampled LR audio segments,
each having 2048 samples as the input, and outputs HR audio
segments of the same shape. One major change we introduce
to AECNN is replacing the transposed convolution layers in
decoder blocks with subpixel layers. A subpixel layer, first
proposed by Shi et al. [17], is a upscaling layer implemented
by convolution. It has been reported in [21] that transposed
convolution layers tend to introduce artifacts to SR tasks in
the image domain, and by applying subpixel layers these arti-
facts can be alleviated. We also find in our experiments that,
by employing subpixel layers, we can accelerate the training
process and improve the objective performance.

3.2. Time-frequency loss

Our model is optimized with a T-F loss. The calculation of
this loss function is illustrated in Fig. 2. The loss function
consists of two parts: the time domain loss and the frequency
domain loss. For the frequency domain loss, we adopt the loss
function from [20]. Our network operates on a frame length of
2048 samples. This corresponds to a 128 ms long speech seg-
ment for a signal with a 16 kHz sampling rate. We utilize the
overlap and add (OLA) method to combine the reconstructed
output (denoted as SR) and calculate the loss in the frequency
domain. The SR signal is first divided into frames of 512 sam-
ples, and frame shift of length 256. Then the obtained frames
are multiplied by the Hamming window, so our analysis win-
dow size is 32 ms with a 50% overlap between neighboring
frames. We calculate the STFT magnitude of the windowed
frames and compare the results with the HR STFT magnitude.
The frequency domain loss is obtained as the mean absolute
error (MAE) between these two magnitudes, defined as
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where S and S are the STFT of SR and HR signals, respec-
tively. We use m, k to index the frames and frequencies, re-
spectively. For the time domain loss, we calculate the MAE
of the SR and HR time series,
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where § is the SR signal, and s is the ground truth HR signal.
We use n to index time samples. The T-F loss is the linear
combination of the time domain loss Ly and the frequency
domain loss L g, which is calculated as:

L:aLT+(1—a)LF. (3)

As shown in Eq. 3, we combine L7 and Ly with a coefficient
«. The value of « is set to 0.85, obtained by a grid search.

Essentially, our model is a time domain model but opti-
mized with a T-F loss. We calculate the loss function using
the OLA method to combine consecutive frames, as we find
in experiments that the OLA method has better performance
than simple concatenation. This result is expected, since 2048
samples are too large a frame size to satisfy the stationary as-
sumption for short-time signal processing. The reason for cal-
culating the STFT magnitudes is two-fold. First, by visualiz-
ing the magnitude and phase after STFT, we can observe T-F
structure in the magnitude spectrogram, but not in the phase
spectrogram. Second, the experiments in [20] show that a fre-
quency domain loss function using both real and imaginary
parts of the STFT does not perform as well as the one that
employs only STFT magnitudes.
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Fig. 2. Schematic diagram showing the process of calculating
the T-F loss. L denotes the number of 2048-sample frames,
and M is the number of 512-sample frames.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

We train our CNN using the ADAM optimizer with a learning
rate of 0.0003. The network is trained with a batch size of
16 for 100 epochs. We add an early stopping criterion such
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that the training process will stop if the validation loss has
not improved for 3 consecutive epochs. To ensure the input
and target signal for our CNN have the same length, we pre-
process the source input with the cubic spline interpolation.

We evaluate the SR performance with two objective met-
rics, the signal to noise ratio (SNR) and the log-spectral dis-
tance (LSD) [22]. They reflect the performance from the time
domain and the frequency domain, respectively. SNR is de-
fined as,
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LSD measures the distance between two signals in the fre-
quency domain, which is defined as follows:
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4.2. Results and Comparisons
4.2.1. TIMIT dataset

We first evaluate and analyze the performance of our model
on the TIMIT corpus [23]. TIMIT is a standard corpus which
contains English utterances from 630 speakers with a 16
kHz sampling rate. We choose 4620 utterances as the train-
ing dataset, and 1153 utterances to construct the validation
dataset. The TIMIT core test subset consisting of 192 utter-
ances is used as our test dataset. The test dataset consists of
24 speakers that are not included in the training and valida-
tion datasets, so we can assess the ability to generalize to new
speakers. To create the LR, HR pairs for our CNN, we down-
sample the signal to 8 kHz for each file in the dataset as the
LR signal.

We compare the quantitative performance of our model
with four other deep SR models. These are DNN-BWE by
Li et al. [8], AudioUnet by Kuleshov [10], TFNet by Lim et
al. [15] and SampleRNN by Ling et al. [12]. See Sect. 2 for
more description of each comparison method. We have suc-
cessfully implemented DNN-BWE and TFNet, and adopt the
code provided by the authors to implement AudioUnet. As
we have difficulty in replicating the results of SampleRNN,
we copy their reported results on the TIMIT core test dataset.
We train all the models on the TIMIT dataset and follow the
training setup described in Sect. 4.1.

Table 1 shows the super-resolution results of the proposed
CNN, as well as the four comparison methods, on the TIMIT
dataset. The upscaled signal obtained by the cubic spline in-
terpolation (available in SciPy) is used as the baseline with-
out deep SR. Our model has improved over the spline base-
line by 4.64 dB in terms of SNR, and cut LSD by 65.1%. The
results show that our network consistently improve over other
deep learning methods for SNR and LSD metrics. Compared



Table 1. Evaluation and comparison results of SR methods
on the TIMIT dataset.

SNR | LSD
Spline 1548 | 2.27
DNN-BWE | 17.37 | 1.56
AudioUnet 18.59 | 0.89
TFNet 18.91 | 0.87
SampleRNN | 19.00 | 0.83
Proposed 20.12 | 0.79

with the state-of-the-art model (SampleRNN) on the TIMIT
dataset, we have improved SNR by 1.12 dB and decreased
LSD by 0.04.

Fig. 3 illustrates the output of our super-resolution model
on a TIMIT utterance ( “In wage negotiations, the industry
bargains as a unit with a single union”). Comparing the spec-
trograms we can observe that the missing high-frequency
components in the LR spectrogram are recovered very well
by our model.
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Fig. 3. SR results visualized using spectrograms. From left
to right are the spectrograms that correspond to the LR input,
the ground truth HR signal and the reconstructed SR signal.

4.2.2. VCTK dataset

To further evaluate our model and compare it with prior stud-
ies, we run experiments on the VCTK dataset [24], which
contains 44 hours of speech data from 108 different speak-
ers with a 16 kHz sampling rate. Our experiments follow
the setup of two tasks in previous studies [10, 15]. One is
the single-speaker task, which trains the model on one spe-
cific speaker from the VCTK dataset. We select the first 223
recordings of that speaker as the training dataset, and test on
the last 8 recordings of the same speaker. The other task is the
multi-speaker task. We train our model on the first 99 VCTK
speakers and run tests on the 8 remaining speakers. We com-
pare the performance of our model with four baselines: the
cubic spline and three deep learning methods (DNN-BWE,
AudioUnet and TFNet) using their reported results. Sam-
pleRNN is not included in this comparison because it was not
evaluated on this corpus by its authors. The results are sum-
marized in Table 2.

The ratio in Table 2 indicates the upscaling ratio. ratio =
2 means we upscale speech signals from 8 kHz to 16 kHz,
and ratio = 4 indicates the task is upscaling from 4 kHz to
16 kHz. As shown in the table, our model considerably out-
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Table 2. Experimental results comparison on the VCTK
dataset at upscaling ratio 2 and 4.

VCTKg VCTK ys
Model Ratio | SNR LSD | SNR LSD
Spline 2 203 195 | 197 191
DNN-BWE 2 20.1 1.61 | 199 1.56
AudioUnet 2 21.1 1.39 | 207 1.35
TFNet 2 N/A  N/A | NNA N/A
Proposed 2 254 0.81 | 24.0 0.89
Spline 4 148 356 | 13.0 3.51
DNN-BWE 4 159 213 | 149 252
AudioUnet 4 17.1  1.56 | 16.1 1.52
TFNet 4 185 1.3 175 1.27
Proposed 4 193 093 | 181 0.97

performs other baselines at the upscale ratio of 2. Compared
with the cubic spline baseline, Our model improves SNR by
approximately 5 dB, and cut LSD to below 0.9 for both tasks.
Moreover, our CNN significantly outperforms AudioUnet and
DNN-BWE for both metrics. Additionally, Our model per-
forms better at the upscale ratio of 4 over the baselines, and
we see a substantial improvement in terms of LSD. However,
the SNR gap is not as big as for the ratio 2 case.

4.2.3. Comparison of loss functions

To examine the superiority of our T-F loss, we conduct a study
of different loss functions on the TIMIT corpus following the
setup described in 4.1. As shown in Table 3, only using a fre-
quency domain loss achieves the best LSD performance, but
SNR performance is poor. Only using a time domain loss has
a similar phenomenon. It has a high SNR value, but the per-
formance is mediocre in terms of LSD. Our T-F loss combines
the strengths of loss functions in time and frequency domains,
and has a balanced performance for both metrics.

Table 3. Comparison of loss functions. From left to right
are the results of the time domain mean squared error (MSE)
loss, the time domain MAE loss, the frequency domain loss,
and the T-F loss.

T loss (MSE) | T loss (MAE) | Floss | T-F loss
SNR | 19.69 20.11 12.75 | 20.12
LSD | 0.88 0.95 0.78 0.79

5. CONCLUSION

In this paper, we have proposed a novel CNN model for
speech super-resolution that combines the strengths of both
time and frequency domain methods. The proposed CNN is
fed with time domain signals and optimized using a T-F loss.
The experimental results demonstrate that our model signif-
icantly outperforms the existing approaches and has a bal-
anced performance in SNR and LSD metrics. Furthermore,
our approach is computationally efficient and avoids complex
network design.
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